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Abstract 
Three performance curves for evaluation of face recognition 
algorithms are introduced in this paper. Cumulative Match Score 
Curves (CMC) is the curve between the rank and face recognition 
rate. Expected Performance Curves (EPC) is the graph between 
the alpha and error rate. Receiver Operating Characteristics 
(ROC) is the graph between false acceptance rate and verification 
rate. Twelve face recognition algorithms based on Eigen and 
fisher features are compared based on these curves. The 
performances of all these algorithms are analyzed based on these 
metrics. 
Index Terms 
Facial features, Principle Component Analysis, Kernel Fisher 
Analysis, Kernel Principle Component Analysis, Linear 
Discriminant Analysis, CMC, EPC, ROC. 

1. Introduction 

Face recognition aims at identifying the person’s 
distinctiveness by comparing the facial features with the 
available face data base features. The face data base, with 
known characteristics, is referred as the face gallery and the 
input face requiring determining the identity is the probe. 
One of the problems in face recognition is identification, 
and the other is the authentication (or verification). Of the 
two, face identification is more tricky as it cross verifies the 
gallery completely for minimum variance.  
Face recognition has been an important topic of research 
originated way back in the year 1961. Numerous algorithms 
are developed on face recognition particularly in the last 
two to three decades. Improving the Face recognition rate is 
always the challenge ever since the first algorithm was 
developed. In 1991, Alex Pentland and Matthew Turk [1], 
[3] – [5] applied Principal Component Analysis (PCA) 
which was invented in 1901 to face classification. This has 
become the standard known as the eigenface method and is 
today an inspiration for all face recognition algorithms 
evolved. Sebastain Mike et. al. [2] competing with PCA 
which is an orthogonal linear transformation proposed 
Fisher Discriminant Analysis with Kernels (KFD). Being a 
non linear classification model, KFD has better 
performance over PCA. The problem with KFD is that it 
uses all the training samples in the solution not only the 
difficult ones which makes the algorithm slower and also 
complex.  

We compare algorithms namely PCA [6] – [10], LDA [11] 
– [12], KPCA [13] – [16], KFA [17] – [18], G-PCA, 
G-KPCA, G-LDA, G-KFA [21] – [26], PC-PCA, 
PC-KPCA, PC-LDA and PC-KFA [26].  
 
While numerous face recognition algorithms are being 
developed, the authors are comparing them with the 
existing ones very superficially and few simple 
comparisons are presented. Given that large set of 
techniques and the theories that are applicable for face 
recognition, it is evident that the detailed analysis and 
bench marking these algorithms is very crucial. Effort done 
by Universities and research laboratories in developing the 
data sets pushed the comparisons of face recognition 
algorithms to the higher level. CMC, ROC and EPC curves 
[19] – [20] were introduced for comparisons. Apart from 
finding the recognition rate, these curves become the basis 
for showing the superiority of the author’s developed 
algorithms.  
 
The contributions of this paper are as follows: 

• Twelve face recognition algorithms are 
compared using performance metrics.  

• Extensive comparisons are made by taking the 
performance metrics curves namely CMC, EPC 
and ROC and showed that the curves are 
effective for proposed algorithm [20].  

2. Related Work 

Face recognition methods mainly deal with images which 
are of large dimensions. This makes the task of recognition 
very difficult. Dimensionality reduction is a concept which 
is introduced for the purpose of reducing the image 
dimensions. PCA is the most widely used dimensionality 
reduction and also for subspace projection. PCA can supply 
the client with a lower-dimensional picture, a projection of 
this object when seen from its informative view point. This 
can be achieved by taking only the starting few principal 
components in such a way that the dimension of the 
transformed data is minimized. The linear combination of 
pixel values here in PCA are called Eigen faces. PCA is an 
unsupervised and it ignores all the class labels. It treats the 
entire data as a whole. It uses SVD for dimensionality 
reduction. PCA is however not optimized for class 
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separability. An alternative is proposed by Ronald Fisher 
which is Linear Discriminant Analysis (LDA).  This cares 
for class seperability. Being a supervised, it performs well 
when the dataset contains more number of face images. 
PCA, however performs well if the data set is very small. 
PCA is primarily used for feature extraction whereas LDA 
is used for classification. For non-linear structures, kernel 
based algorithms are developed. By using the PCA or LDA 
for high dimensional mapping, the computational time is 
greatly increased. To use the PCA and LDA for higher 
dimensions, kernel based algorithms are developed. The 
kernel based PCA is called Kernel Principal Component 
Analysis (KPCA) and the kernel based LDA is called 
Kernel Fisher Analysis (KFA). These kernel functions 
enable the algorithms to operate at higher dimensions 
without computing the data coordinates in the higher space. 
Rather it simply computes the inner products between the 
images of all pairs of data in the feature space. These kernel 
based algorithms are computationally cheaper than the 
explicit computation of the coordinates which is done in 
PCA and LDA.  
Among all these kernel trick based methods, Kernel Fisher 
Analysis is computationally simple. It needs only the 
factorization of gram matrix calculated with the given 
training examples. The other kernel based methods namely 
KPCA solves convex optimization problems. The beauty of 
the KFA is that it is comparable to the famous SVD 
classifier. These four methods are considered for 
conducting experiments. Apart from these four, their Gabor 
and phase congruency based methods are also included. 
Gabor filter is spatially and frequency localized. Because of 
this it can achieve desired frequency resolution. For normal 
face images, Gabor representation is sparser than the pixel 
representation.  
In phase congruency based method, first the phase 
congruency features are calculated. Instead of probing for 
dots of high intensity gradients, the model finds out those 
points in the face image Region Of Interest (ROI) where the 
2-D log Gabor filter output over a number of orientations 
and scales are maximum in phase. Therefore, a point in the 
image is of high value only if the phase responses of the 
log-Gabor filters over a range of orientations and scales 
display different kind of order. Phase congruency acts as an 
edge (or line) descriptor of an image and is, unlike gradient 
based edge-detectors, it is not susceptible to the image 
variations affected by blurring, magnification, illumination 
and alike [38] – [39]. It is robust to image variations and it 
stems from the multi-orientation and multi-scale approach 
to phase congruency calculation and also from the fact that 
phase rather than magnitude information is considered for 
edge (or line) detection. 
 
Three performance metrics curves are considered. 
Cumulative Match Score Curves (CMC) is the curve 
between the rank on the x-axis and face recognition rate on 

the y-axis. Expected Performance Curves (EPC) is the 
graph between the alpha and error rate. Receiver Operating 
Characteristics (ROC) is the graph between false 
acceptance rate and verification rate. ROC curves are more 
informative and EPC curves are hard to compute and read. 
EPC curves need a separate development set. But this 
problem of EPC curves can be taken care by relying on the 
cross-validation techniques.   
 
In this work we take these four namely PCA, KPCA, LDA 
and KFA and their extension algorithms (Gabor based [21] 
–[25] and Phase Congruency [26] based face recognition 
algorithms) and show how by using this new recognition 
engine for these algorithms, the performance of these 
algorithms is optimized.  

3. Face recognition algorithm 

A typical face recognition algorithm is presented in this 
section. For any face recognition algorithm, there are two 
phases. One is training phase and the other is the testing 
phase. In the training phase, the features of all the faces in 
the gallery are found and stored in the data base. Eigen 
features are taken in the sample face recognition algorithm 
shown below in the figure 1. In the testing phase, the 
features of the probe are calculated. These features and the 
features of the gallery are given to any of the classifier. 
SVD classifier is taken as example in the figure. The Eigen 
features of the probe and the Gallery are taken by the SVD. 
The classifier looks for the closest feature matching face 
from the gallery with the probe and gives that face as output. 
Figure1 shows the sample face recognition algorithm block 
diagram.  

 

Fig.1 existing face recognition system 

4. Principal Component Analysis 

PCA can be thought of as fitting 
an n-dimensional ellipsoid to the data, where each axis of 
the ellipsoid represents a principal component. If some axis 

https://en.wikipedia.org/wiki/Ellipsoid
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of the ellipse is small, then the variance along that axis is 
also small, and by omitting that axis and its corresponding 
principal component from our representation of the dataset, 
we lose only a commensurately small amount of 
information. 
To find the axes of the ellipse, we must first subtract the 
mean of each variable from the dataset to center the data 
around the origin. Then, we compute the covariance 
matrix of the data, and calculate the Eigen values and 
corresponding eigenvectors of this covariance matrix. Then, 
we must orthogonalize the set of eigenvectors, and 
normalize each to become unit vectors. Once this is done, 
each of the mutually orthogonal, unit eigenvectors can be 
interpreted as an axis of the ellipsoid fitted to the data. The 
proportion of the variance that each eigenvector represents 
can be calculated by dividing the Eigen value 
corresponding to that eigenvector by the sum of all Eigen 
values. 
It is important to note that this procedure is sensitive to the 
scaling of the data, and that there is no consensus as to how 
to best scale the data to obtain optimal results. 
PCA is mathematically defined as an orthogonal linear 
transformation that transforms the data to a new coordinate 
system such that the greatest variance by some projection of 
the data comes to lie on the first coordinate (called the first 
principal component), the second greatest variance on the 
second coordinate, and so on. 
Consider a data matrix, X, with column-wise 
zero empirical mean (the sample mean of each column has 
been shifted to zero), where each of the n rows represents a 
different repetition of the experiment, and each of 
the p columns gives a particular kind of feature (say, the 
results from a particular sensor). 
Mathematically, the transformation is defined by a set 
of p-dimensional vectors of weights 
or loadings )(1 ),......( kpk ww=w that map each row 

vector )(ix  of X to a new vector of principal 

component scores )(1 ),......( ikk ww=t , given by 

)()()( . kiik wxt =
                                                        (1)

 

in such a way that the individual variables of t considered 
over the data set successively inherit the maximum possible 
variance from x, with each loading vector w constrained to 
be a unit vector. 

A. First component 

The first loading vector w (1) thus has to satisfy
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Since w (1) has been defined to be a unit vector, it 
equivalently also satisfies 
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The quantity to be maximized can be recognized as 
a Rayleigh quotient. A standard result for a symmetric 
matrix such as XTX is that the quotient's maximum possible 
value is the largest Eigen value of the matrix, which occurs 
when w is the corresponding eigenvector. 
With w(1) found, the first component of a data 
vector x(i) can then be given as a score t1(i) = x(i) ⋅ w(1) in 
the transformed co-ordinates, or as the corresponding 
vector in the original variables, {x(i) ⋅ w(1)} w(1). 

Further components 
The kth component can be found by subtracting the 

first k − 1 principal component from X: 
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and then finding the loading vector which extracts the 
maximum variance from this new data matrix 
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It turns out that this gives the remaining eigenvectors 
of XTX, with the maximum values for the quantity in 
brackets given by their corresponding Eigen values. Thus 
the loading vectors are eigenvectors of XTX. 

The kth component of a data vector x(i) can therefore be 
given as a score tk(i) = x(i)  ⋅ w(k) in the transformed 
co-ordinates, or as the corresponding vector in the space of 
the original variables, {x(i) ⋅ w(k)} w(k), where w(k) is 
the kth   eigenvector of XTX. 

The full principal components decomposition of X can 
therefore be given as 

T=XW                                                                   (7) 
where W is a p-by-p matrix whose columns are the 

eigenvectors of XTX 

B. Covariance 
XTX itself can be recognized as proportional to the 

empirical sample covariance matrix of the dataset X. 
The sample covariance Q between two of the different 

principal components over the dataset is given by: 

https://en.wikipedia.org/wiki/Covariance_matrix
https://en.wikipedia.org/wiki/Covariance_matrix
https://en.wikipedia.org/wiki/Orthogonal_transformation
https://en.wikipedia.org/wiki/Linear_transformation
https://en.wikipedia.org/wiki/Linear_transformation
https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Coordinate_system
https://en.wikipedia.org/wiki/Matrix_(mathematics)
https://en.wikipedia.org/wiki/Empirical_mean
https://en.wikipedia.org/wiki/Unit_vector
https://en.wikipedia.org/wiki/Rayleigh_quotient
https://en.wikipedia.org/wiki/Eigenvalue
https://en.wikipedia.org/wiki/Eigenvector
https://en.wikipedia.org/wiki/Covariance_matrix
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where the eigen value property of w(k) has been used to 
move from line 2 to line 3. However 
eigenvectors w(j) and w(k) corresponding to eigen values of 
a symmetric matrix are orthogonal (if the eigen values are 
different), or can be orthogonalised (if the vectors happen to 
share an equal repeated value). The product in the final line 
is therefore zero; there is no sample covariance between 
different principal components over the dataset. 

Another way to characterize the principal components 
transformation is therefore as the transformation to 
coordinates which diagonalise the empirical sample 
covariance matrix. 

In matrix form, the empirical covariance matrix for the 
original variables can be written 

TT WWXXQ Λ=α                                            (9) 
The empirical covariance matrix between the principal 

components becomes 

Λ=Λ WWWWQWW TTT α                       (10) 
where Λ is the diagonal matrix of 

eigenvalues λ(k) of XTX 
(λ(k) being equal to the sum of the squares over the 

dataset associated with each component k: λ(k) = Σ i tk
2

(i) = 
Σ i (x(i) ⋅ w(k))2) 

C. Dimensionality reduction 
The transformation T = X W maps a data vector x(i) from 
an original space of p variables to a new space 
of p variables which are uncorrelated over the dataset. 
However, not all the principal components need to be kept. 
Keeping only the first L principal components, produced by 
using only the first L loading vectors, gives the truncated 
transformation 

LL XWT =                       (11) 
where the matrix TL now has n rows but only L columns. 

In other words, PCA learns a linear transformation  
LpT RtRxxWt ∈∈= ,,                                            (12) 

Where the columns of p × L matrix W form an orthogonal 
basis for the L features (the components of representation t) 

that are decorrelated. By construction, of all the 
transformed data matrices with only L columns, this score 
matrix maximizes the variance in the original data that has 
been preserved, while minimizing the total squared 
reconstruction error  

2

2

T
LL

T WTTW −
                                                      (13)

 

 or   
2

2LXX −  

Such dimensionality reduction can be a very useful step for 
visualizing and processing high-dimensional datasets, 
while still retaining as much of the variance in the dataset as 
possible. For example, selecting L = 2 and keeping only the 
first two principal components finds the two-dimensional 
plane through the high-dimensional dataset in which the 
data is most spread out, so if the data contains clusters these 
too may be most spread out, and therefore most visible to be 
plotted out in a two-dimensional diagram; whereas if two 
directions through the data (or two of the original variables) 
are chosen at random, the clusters may be much less spread 
apart from each other, and may in fact be much more likely 
to substantially overlay each other, making them 
indistinguishable. 
Similarly, in regression analysis, the larger the number 
of explanatory variables allowed, the greater is the chance 
of over fitting the model, producing conclusions that fail to 
generalize to other datasets. One approach, especially when 
there are strong correlations between different possible 
explanatory variables, is to reduce them to a few principal 
components and then run the regression against them, a 
method called principal component regression. 
Dimensionality reduction may also be appropriate when the 
variables in a dataset are noisy. If each column of the 
dataset contains independent identically distributed 
Gaussian noise, then the columns of T will also contain 
similarly identically distributed Gaussian noise (such a 
distribution is invariant under the effects of the matrix W, 
which can be thought of as a high-dimensional rotation of 
the co-ordinate axes). However, with more of the total 
variance concentrated in the first few principal components 
compared to the same noise variance, the proportionate 
effect of the noise is less—the first few components achieve 
a higher signal-to-noise ratio. PCA thus can have the effect 
of concentrating much of the signal into the first few 
principal components, which can usefully be captured by 
dimensionality reduction; while the later principal 
components may be dominated by noise, and so disposed of 
without great loss. 

D. Singular value decomposition 
The principal components transformation can also be 
associated with another matrix factorization, the singular 
value decomposition (SVD) of X, 

https://en.wikipedia.org/wiki/Dimensionality_reduction
https://en.wikipedia.org/wiki/Cluster_analysis
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Explanatory_variable
https://en.wikipedia.org/wiki/Principal_component_regression
https://en.wikipedia.org/wiki/Signal-to-noise_ratio
https://en.wikipedia.org/wiki/Singular_value_decomposition
https://en.wikipedia.org/wiki/Singular_value_decomposition
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TWUX ∑=                                                     (14) 
Here Σ is an n-by-p rectangular diagonal matrix of positive 
numbers σ(k), called the singular values of X; U is 
an n-by-n matrix, the columns of which are orthogonal unit 
vectors of length n called the left singular vectors of X; 
and W is a p-by-p whose columns are orthogonal unit 
vectors of length p and called the right singular vectors 
of X. 

In terms of this factorization, the matrix XTX can be 
written 

T

TTT

WW
WUUWXX

2∑=

∑∑=

                             (15)
 

Comparison with the eigenvector factorization 
of XTX establishes that the right singular 
vectors W of X are equivalent to the eigenvectors of XTX, 
while the singular values σ(k) ofX are equal to the square 
roots of the eigenvalues λ(k) of XTX. 
Using the singular value decomposition the score 
matrix T can be written 

∑=
∑=

=

U
WWU
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T
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so each column of T is given by one of the left singular 
vectors of X multiplied by the corresponding singular value. 
This form is also the polar decomposition of T. 
Efficient algorithms exist to calculate the SVD 
of X without having to form the matrix XTX, so computing 
the SVD is now the standard way to calculate a principal L 
components analysis from a data matrix, unless only a 
handful of components are required. 
As with the eigen-decomposition, a truncated n × L score 
matrix TL can be obtained by considering only the first L 
largest singular values and their singular vectors: 

LLLL XWUT =∑=                                        (17) 

The truncation of a matrix M or T using a truncated 
singular value decomposition in this way produces a 
truncated matrix that is the nearest possible matrix 
of rank L to the original matrix, in the sense of the 
difference between the two having the smallest 
possible Frobenius norm, a result known as the 
Eckart–Young theorem. 

5. Kernel Principal Component Analysis 

To perform kernel based PCA, the following steps have to 
be carried out. First we compute the dot product matrix  

ijjiij kK )),(( xx=
                                                        (18)

 

Next we solve  
Mλα=Kα                                                                               (19) 
By diagonalizing K, and normalize the Eigen vector 
expansion coefficients αn 

By requiring  

l=λn(αn.αn)                                         (20)       

 

Fig. 2. Linear PCA and Kernel PCA graphical view 

To extract the principal components corresponding to the 
kernel k of a test point x, we then compute projections onto 
the Eigen vectors by  
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We know that this procedure exactly corresponds to 
standard PCA in some high-dimensional feature space 
except that we  do not need to perform expensive 
computation in that space. 

6. Linear Discriminant Analysis 

Intuitively, the idea of LDA is to find a projection where 
class separation is maximized. Given two sets of labeled 
data, C1 and C2, define the class means m1 and m2 to be 
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where li is the number of examples of class Ci. The goal of 
linear discriminant analysis is to give a large separation of 
the class means while also keeping the in-class variance 
small. This is formulated as maximizing 
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https://en.wikipedia.org/wiki/Diagonal_matrix
https://en.wikipedia.org/wiki/Polar_decomposition
https://en.wikipedia.org/wiki/Rank_(linear_algebra)
https://en.wikipedia.org/wiki/Frobenius_norm
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where SB is the between-class covariance matrix and SW is 
the total within-class covariance matrix: 
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Differentiating J(w) with respect to w, setting equal to zero, 
and rearranging gives 

wSwSwwSwSw BW
T
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T )()( =               (25) 

Since we only care about the direction of w and SBw has 
the same direction as (m2-m1) , SBw can be replaced 
by (m2-m1) and we can drop the 
scalars (wTSBw)and (wTSWw) to give 
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7.Kernel Fisher Analysis{\displaystyle \mathbf 
{w} \propto \mathbf {S} _{W}^{-1}(\mathbf 
{m} _{2}-\mathbf {m} _{1}).} 

To extend LDA to non-linear mappings, the data, given as 
the l points xi, can be mapped to a new feature space, F, via 
some function ϕ. In this new feature space, the function that 
needs to be maximized is 
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Further, note that wЄF. Explicitly computing the 
mappings ϕ(xi) and then performing LDA can be 
computationally expensive, and in many cases intractable. 
For example, F may be infinitely dimensional. Thus, rather 
than explicitly mapping the data to F, the data can be 
implicitly embedded by rewriting the algorithm in terms 
of dot products and using the kernel trick in which the dot 
product in the new feature space is replaced by a kernel 
function, k(x,y)=ϕ(x).ϕ(y) 

LDA can be reformulated in terms of dot products by 
first noting that w will have an expansion of the form 
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Then note that 
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With these equations for the numerator and denominator 

of J(w), the equation for J can be rewritten as 
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Then, differentiating and setting equal to zero gives 

αααααα MNNM )()( TT =                     (30) 
Since only the direction of w, and hence the direction of α, 
matters, the above can be solved for α as 

)( 12
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Note that in practice, N is usually singular and so a multiple 
of the identity is added to it  

INN εε +=                                            (32) 
Given the solution for α, the projection of a new data point 
is given by 
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1) Gallery images 

 

Fig. 3. First face image of all 40 people in the ORL database 

https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Kernel_trick
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Fig. 4. All 10 images of first person from ORL database. 

Here for experiment purpose the simple database AT&T 
ORL data base has been taken. There are 40 set of faces in 
the data base and each set has 10 images. The first 8 images 
from each set are considered for training and the remaining 
two images from the data set are considered for testing 
purpose. The total number of images considered for training 
are 320 and for testing are 40. The features of all the face 
images in the training group are extracted using Eigen 
feature extraction. This Eigen feature extraction preserves 
the edges and also the directionality of the edge information. 
Here SVD classifier is used. This is a non probabilistic 
binary classifier which looks for optimal hyperplane as a 
decision function. In the testing phase, the test image is 
taken and given to the SVD classifier for classification.  

The face recognition rate is calculated as 
100*

dataset in the persons ofnumber  Total
matchedproperly  areset which  data in the images ofnumber  Total

    (34)    
The images considered in the numerator of (34) are the test 
images. These images are excluded from the dataset of the 
denominator.  

 

Fig. 5. Eigen faces of first 10 and 20 images from ORL database. 

 

Fig. 6. Eigen faces of first 30 and 40 images from ORL database. 

 

Fig. 7. Eigen faces of first 50 and 60 images from ORL database. 

 

Fig. 8. Eigen faces of first 70 and 80 images from ORL database. 

 

Fig. 9. Eigen faces of first 90 and 100 images from ORL database. 

 

Fig. 10. Eigen faces of first 200 and 300 images from ORL database. 
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Fig. 11. Eigen faces of all 400 images from ORL database. 

 Figures from 5 to 11 shows the Eigen faces of first 10, 20, 30, 40, 50, 60, 
70, 80, 90, 100, 200, 300 and 400 images from ORL database. 

8. Experimental Results 

Experiments have been conducted on proposed 
algorithm by taking ORL AT&T data base [29]. For 
training phase the first eight face images are taken and for 
the testing purpose the last two face images are taken.  
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All the 12 different prominent face recognition algorithms 
namely PCA, KFA, KPCA, LDA, Gabor based algorithms 
and Phase Congruency based algorithms are compared 
[35].   

 

Fig. 12. Comparison of FR algorithms with respect to CMC curves 

 

Fig. 13. Comparison of FR algorithms with respect to CMC curves 
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Fig. 14. Comparison of FR algorithms with respect to CMC curves 

TABLE III. Different Datasets and their total number of images and 
persons 

Data base Total number of 
persons 

Pose, 
Illumination and 
facial expression 

variations 

Total 
number of 

face 
images 

Yale Database 
[27] 15 11 165 

Yale Face 
Database ‘B’ 

[28] 
10 64 illumination 

9 poses 5760 

MIT CBCL [30] 10 524 5240 
University of 

Essex, UK [31] 395 20 7900 

JAFFE [32] 60 7 420 
Sheffield [33] 20 25-30 564 
Caltech [34] 27 10-20 450 

Senthil Kumar 
IRTT v1.2 [36] 10 10 100 

Senthil Kumar 
IRTT v1.1 [37] 5 16 80 

TABLE IV. Different Datasets and their total number of images and 
persons used in this experiment 

D
at

ab
as

e 

To
ta

l n
um

be
r o

f p
eo

pl
e 

co
ns

id
er

ed
 

To
ta

l n
um

be
r o

f f
ac

es
 p

er
 p

er
so

n 

Fa
ce

s c
on

sid
er

ed
 fo

r t
es

tin
g 

Fa
ce

s c
on

sid
er

ed
 fo

r t
ra

in
in

g 

Fa
ce

 re
co

gn
iti

on
 

ra
te

 (i
n 

%
) 

PC
A

 
A

lg
or

ith
m

 
K

PC
A

 
A

lg
or

ith
m

 

Yale Database 15 11 9 2 88.26 97.25 
Yale Face Database ‘B’ 10 10 8 2 80.01 81.38 

MIT CBCL 10 10 8 2 64.25 61.07 
University of Essex, UK 40 20 16 4 70.0 77.0 

JAFFE 60 7 6 1 71.2 80 
Sheffield 20 25 20 5 61.8 77.5 
Caltech 25 15 13 2 70.12 62.5 

Senthil Kumar IRTT v1.2 10 10 8 2 86.5 79.26 
Senthil Kumar IRTT v1.1 5 16 14 2 75.8 77.9 

In case of testing images taken are more than one, then the 
face recognition rate is calculated by taking the average of 
the face recognition rates of all the testing images.  
The performance metrics for different algorithms shown 
below are with ORL database. Table IV and Table V shows 
the comparison of face recognition rates of PCA and KPCA. 

One algorithm based on the Eigen face features and another 
algorithm based on the fisher face features are compared.  

9. Conclusions 

In this paper, three performance metrics for face 
recognition algorithm are introduced. 12 prominent face 
recognition algorithms based on Eigen face features and 
Fisher face features are compared with respect to these 
performance metrics. Ten face data bases are taken for 
comparing the face recognition rate of these algorithms. 
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