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Summary 
In this work, we develop a multilevel edge detection method 
based on the Kapur and Tsal- lis entropies. The multilevel 
thresholding approach gives rise to an NP-hard optimization 
problem. We have used the Classical Genetic Algorithm (CGA) 
and the Quantum Genetic Algorithm (QGA) to solve this 
problem. The performance of the QGA has been tested on ten 
sample images and it is shown that the QGA outperforms 
significantly the CGA on a sample of real-world images. 
Moreover, it was found that the Kapur entropy is leads to a 
slightly better image segmentation quality than the Tsallis one. 
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1. Introduction 

Digital image processing is one of the most applicable 
research areas used in many practical applications in 
different fields like medicine, security, quality control, 
astronomy, etc. Image segmentation is one of the most 
widely used image processing techniques. The goal of 
image segmentation is to divide an image into 
homogeneous and disjoint sets of pixels sharing similar 
properties such as intensity, color or contours. Image 
segmentation usually represents the first step in image 
understanding. The results obtained by segmentation are 
used for further higher-level methods such as feature 
extraction, semantic interpretation, image recognition, 
and classification of objects [1]. 
Image thresholding is a largely used segmentation 
technique that performs image segmentation based on the 
information contained in the image histogram. In the 
literature we found a lot of image processing applications 
including medical image analysis, automatic target 
recognition, in- frared gait recognition, optical character 
recognition, etc. Thresholding is a widely used technique 
in various image processing applications. In general, 
thresholding approaches are divided into parametric and 
nonparametric methods. 

The nonparametric family of approaches search for the 
optimal thresholding values that sepa- rate the gray-level 
regions of an image according to some discriminating 
criteria like the between class variance and the maximum 
entropy thresholding. However, in the parametric 
approaches the gray-level distribution of each group is 
assumed to obey a Gaussian distribution. The goal is to 
estimate the parameters of Gaussian distribution that best 
fits the histogram [2]. 
Nonparametric thresholding can be divided into bilevel 
and multilevel thresholding. Bilevel thresholding 
classifies the pixels into two groups (object and 
background), one including those pixels with gray levels 
above a certain threshold and the other including the rest. 
Multilevel thresh- olding divides the pixels into several 
classes. The pixels belonging to the same class have gray 
levels within a specific range defined by several 
thresholds. 
Generally, the multilevel image thresholding problem is 
transformed into an optimization prob- lem. Indeed, the 
optimal thresholds are obtained by getting the optimum 
of an objective function based on the image informations. 
Presumably, the objective functions based on the entropy 
(Kapur method) and the between-class variance (Otsu 
method) are the most popular ones [1]. 
Nondeterministic metaheuristic optimization and digital 
image processing are two very differ- ent research fields, 
both extremely active and applicable. They touch in a 
very limited area, but that narrow interaction opens new 
very promising applications for digital image processing 
and new and different deployment of metaheuristic 
optimization. More specifically, in image process- ing 
some hard optimization problems occur. For example, 
multilevel image thresholding is an NP-hard 
combinatorial problem. Indeed, it consists in finding k 
optimal numbers in the image intensities range [0, 255]. 
Such problem cannot be solved in reasonable time by 
standard math- ematical deterministic methods. For 
instance, an exhaustive search for 4 thresholding values 
for Lena image is computationally prohibitive. 
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Meanwhile, the computation time will increase expo- 
nentially whit the number of thresholds. Consequently, 

the traditional exhaustive method does not work. 

Nature inspired metaheuristic algorithms have recently 
been successfully used for this type of hard optimization 
problems to find acceptable sub-optimal thresholds 
quickly. In this work we choose to compare the Quantum 
Genetic Algorithm to the Classical Genetic Algorithm to 
determine the thresholding values. We will also compare 
the Kapur and the Tsallis entropies. 
The remainder of this paper is organized as follows. The 
next section describes the used heuris- tics and entropies. 
The multilevel edge detection approach is presented in 
section 3. The exper- imental results are given in section 
4. Finally, Section 5 is devoted to some concluding 
remarks and presents some possible perspectives. 

2. Genetic Algorithms for Image Processing 

Multilevel image thresholding is very important for 
image segmentation, which in turn is cru- cial for higher 
level image analysis. A proper segmentation is heavily 
dependent on adequately computed thresholds. The 
problem includes exponential combinatorial optimization 
with complex objective functions which are efficiently 
solvable only by nondeterministic methods [3]. 
Best possible thresholds (absolute optimum) can always 
be found by exhaustive search. All possibilities can be 
examined and the best one selected.  However, the 
number of possibilities 
when searching for k thresholds within the range [0, 255] 

is C (255, k)  Since computational time for 
finding multiple thresholds grows exponentially with the 
number of desired thresholds, the exhaustive search is not 
a reasonable option. However, the intelligence non-
deterministic metaheuristics based on evolutionary 
computation offer an interesting alternative to the 
exhaustive search. 
In this section we present the classical and the quantum 
genetic algorithms that we will use in our experiments. 

A. Classical genetic algorithm 

Many algorithms are performed to multilevel 
thresholding segmentation to improve the com- 
putational efficiency. Genetic algorithm (GA) provides a 
common system framework to solve complex 
optimization problems, and independent on the specific 
problem areas. 
The father of the original Genetic Algorithm (GA) was 
John Holland [4] who invented it in the early 1970’s. 

Genetic algorithms belong to the larger class of 
Evolutionary Algorithms (EA), 

 

FIG. 1: Genetic algorithm flowchart. 

which generate solutions to optimization problems using 
techniques inspired by natural evolution. A GA come 
from the artificial intelligence field and it is an adaptive 
heuristic search algorithm that mimics some of the 
processes observed in natural selection. 
An implementation of a GA begins with a population of 
chromosomes (typically random). One then evaluates 
these structures and allocates reproductive opportunities 
in such a way that those chromosomes which represent a 
better solution to the target problem are given more 
chances to ”reproduce” than those chromosomes which 
are poorer solutions. The ”goodness” of a solution is 
typically defined with respect to the current population 
[5]. 
In the computational sense, the main operators of a GA 
are evaluation, selection, crossover and mutation. Given a 
clearly defined problem to be solved and a bit-string 
representation for candidate solutions, the simple GA 
works as shown in figure 1. 
The main advantages of GA are as follows: 

• It is derivative-free technique. 
• It can be used for both continuous and 

discrete optimization problems. 
• It uses stochastic operators instead of 

deterministic rules to search for an 
optimum solution. It considers many 
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points in the search space 
simultaneously, not a single point. 
Thus, there is a reduced chance of 
converging to local minima. 

• It works directly with binary strings of 
characters representing the parameter 
set (population, solution set), but not 
the parameters themselves. 

In our image segmentation problem we aim at dividing 
the pixels into two groups that maxi- mizes the Tsallis 
and Kapur entropies which are employed as fitness 
functions. 

B. Quantum genetic algorithm 

 

FIG. 2: Quantum genetic algorithm flowchart. 

QGA is proposed in the framework of a qubit and 
quantum superposition state [6, 7, 8, 9]. Qubit is the 
main unit of information in quantum computers. It is acts 
any state |0이, |1이, or any superposition state between 
them [10]. A state of a qubit can be written as 

α 
|ψ이 = α |0이 + β |1이 =   

β 
 

where α, β are complex numbers satisfy the normalization 

condition |α|2 + |β|2 = 1. The states |0이(|1이) are the spin 
up (dawn) respectively. In this way the multiqubits can be 
encoded as 

 
Where Qt represents the jth individual chromosome of the 
jth generation; m represents the num- ber of qubits encoding 
of each gene; t represents the number of genes in the 
chromosome [11] Let us consider the quantum encoding for 
the amplitudes (α, β) for each individual in the popu- lation 
with ( 1 , 1 ) which indicates that when t = 0, the possibility 
of each state expressed by a chromosomal is equal [12]. 

√ √ 
2 2 

Quantum Rotating Gates (QRG) compared with the 
conventional GA, QGA applies the proba- bility 
amplitude of qubits to encode chromosome and uses 
QRG to realize chromosomal updated operation. Since 
the chromosomes are prepared in the entanglement 
state or in the superposition state, so the generation of 
offspring can not be determined by the parent group 
when the QRG is used to realize the genetic operation. 
It is jointly detected by the optimal individual of the 
parent group and probability amplitude of each qubit. 
In this way, the genetic manipulation of QGA is 
mainly through acting on the entanglement state by the 
QRG to change the probability amplitude. Therefore, 
the construction of QRG is the key issue of QGA [13, 
14] and it directly affects the performance of the 
algorithm. 
The QRG can be defined as 

 
The updated process is 
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Table 1: Adjustment strategy of rotating angle. 
 

xj bestj  f (x) > f (best) ∆φj s(αj, βj ) 
 

 

αjβj > 0 αjβj < 0 αj = 0 βj = 0 
 

0 0 False 0 0 0 0 0 

0 0 True 0 0 0 0 0 

0 1 False ∆φj +1 − 1 0 ±1 
0 1 True ∆φj − 1 +1 ±1 0 

1 0 False ∆φj − 1 +1 ±1 0 

1 0 True ∆φj +1 − 1 0 ±1 
1 1 False 0 0 0 0 0 
1 1 True 0 0 0 0 0 

 
where (αj, βj )T  and (αl , βl )T  are the probability 
amplitudes of the rth qubit in chromosome before and 
after the QRG updating. Also, φj are given in Table 1 to 
determined the value and the sign of φj [15]. Moreover, 
xi is the jth bit of the current chromosome; bestj is the jth 
bit of the current optimal chromosome. Also, ∆φj is the 
value of the rotating angle, f (x) is the fitness function 
which we consider it as the Reyni and Tasslis entropy. 
On the other hand s(αj, βj ) is the direction of the rotating 
angle and . The value of ∆φj is determined by a certain 
adjustment strategy, in conventional QGA and the value 
of ∆φj is generally a constant value is around 0.01π. The 
adjustment strategy is, comparing the fitness of the 
currently measured value ∆φj of the individual f (x) with 
the fitness of the current optimal individual f (bestj ), if f 
(x) > f (best), then adjust the corresponding qubits of Qt , 
making the probability amplitude (αj, βj ) evolves toward 
the direction that is propitious to the emergence of xj . 
Conversely, if f (x) < f (best), then adjust the 
corresponding qubits of Qt , making the probability 
amplitude (αj, βj ) evolves toward the direction that is 
propitious to the emergence of best 

A. Tsallis and Kapur entropies 

The entropy is basically a thermodynamic concept 
associated with the order of irreversible processes from a 
traditional point of view. In this regared Shannon 
redefined the entropy concept of Boltzmann/Gibbs as a 
measure of uncertainty regarding the information content 
of a system [16].  The Shannon entropy is defined from 
the probability distribution, where pk denotes the 

probability of each state j. Therefore, the Shannon 
entropy is defined as: 

 
where L is the total number of states or symbols.For a two 
statistical independent subsystems A and B, the Shannon 
entropy satisties the extensive property (additivity): 
S(A + B) = S(A) + S(B)  (2) 
However, for a certain class of physical system which 
entail long-range interactions, long time memory, and 
fractal-type structures, it is necessary to use nonextensive 
entropy. Tsallis has pro- posed a generalization of BGS 
statistics, and its form can be depict 
 

 
where the real number q denotes an entropic index that 
characterizes the degree of nonextensivity. 
Above expression will meet the Shannon entropy in the 
limit q →  1. The Tsallis entropy is nonextensive in such 
a way that for a statistical dependent system. Its entropy 
is defined with the obey of pseudo additivity rule: 

 
Sq (A + B) = Sq (A) + Sq (B) + (1 −  q)Sq 

(A)Sq (B) 
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It is well known that three different entropies can be 
defined with regard to different values of q. For q < 1 the 
Tsallis entropy becomes a subextensive entropy where Sq 
(A+B) < Sq (A)+Sq (B); for q = 1, the Tsallis entropy 
reduces to an standard extensive entropy where Sq (A+B) 

= Sq (A)+ Sq (B), the Tsallis entropy becomes a 
superextensive entropy where Sq (A + B) > Sq (A) + Sq 
(B). The  generalization  of  the  pseudo  additivity  rule  
to  n mutually  independent  subsystems 
A1, . . . , An is given by: 

 
The Tsallis entropy can be extended to the fields of image 
processing, because of the presence of the correlation 
between pixels of the same object in a given image.  The 
correlations can be regarded as the long-range 
correlations that present pixels strongly correlated in 
luminance levels and space fulfilling. Let us assume that 
an image can be represented by gray levels L . The 
probabilities of pixels at level i is denoted by pi; so pi and 
p1 + p2 + ....... = 1. If the image is divided into two 
classes, CA and CB by a threshold at level t, where class 
CA consists of gray levels from 1 to t and CB contains 
the rest gray levels from t + 1 to L, the cumulative 
probabilities can be defined as: 

 
Therefore, the normalization of probabilities PA and PB 
can be defined as: 

 
Now, the Tsallis entropy for each individual class is 
defined as: 

 

The task is to maximize the total Tsallis entropy between 
class CA and CB . When the value of Sq (t) is maximized, 
the corresponding gray-level t∗ is regarded as the 
optimum threshold value: 

t∗ = arg max (Sq (t)) 
The optimal threshold is the gray level that maximizes 
equation f (t) = H0 + H1. This Ka- pur’s entropy criterion 
method tries to achieve a centralized distribution for each 
histogram-based segmented region of the image. This 
Kapur’s entropy criterion method has also been extended 
to multilevel thresholding and can be described as 
follows: The optimal multilevel thresholding prob- lem 
can be configured as a m-dimensional optimization 
problem, for determination of m optimal thresholds for a 
given image [t1, t2, ...tm], where the aim is to maximize 
the objective function: 
f (t1, t2, ...tm) = H0 + H1 + H2 + ... + Hm [16] 

where 

 

3. Edge Detection Based On Multilevel 
Thresholding 

Thresholding is one of the powerful methods used for 
image edge detection. Edge detection seeks to define the 
boundary between two or serval regions having relatively 
distinct gray level properties [18]. 
Let F  be a grayscale image of size M × N and g (i, j) be 
the gray value of the pixel of 
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coordinates (i, j) . Denote G = {0 ≤  gmin, . . . , gmax ≤  
255} the set of all gray levels forming this image, where 
gmin and gmax are the lowest and the highest gray levels, 
respectively. The multilevel image thresholding involves 

dividing the set G into k + 1 categories by means of k 
thresholds t1 < ·  ·  · < tk . Regarding the category of 
pixels, a (k + 1)-levels image A of the same size as F is 
created by assigning each pixel its label as follows: 

 
 
 

The multilevel thresholding task can be seen as a global 
combinatorial optimization problem to determine the k 
optimal thresholds t1∗ < · · · < tk∗ that maximize the 
fitness function based on the Tsallis or the Kapur 
entropies. The optimization problem will be solved using 
classical and quantum genetic algorithms. 
Once the (k + 1)-levels matrix A is constructed we use it 
to determine the borders delimiting the (k + 1) different 
homogeneous regions. To do this, we use an edge 
detection procedure based on the 8-neighbors 
connectivity window. This procedure gives rise to a 
binary matrix B showing the objects borders within the 
image. The edge detection procedure is described in the 
following algorithm. 

Let B a null matrix with size M × N 
For i = 1:M 

For j = 1:N Compute 
λ1 = |A (i, j) − A (i, j − 1)| + |A (i, j) − A (i, j + 1)| 
λ2 = |A (i, j) − A (i − 1, j)| + |A (i, j) − A (i + 1, j)| 
ϕ1 = |A (i, j) − A (i − 1, j − 1)| + |A (i, j) − A (i + 1, j + 
1)| 
ϕ2 = |A (i, j) − A (i − 1, j + 1)| + |A (i, j) − A (i + 1, j − 
1)| 
if λ1 + λ2 = 0 or ϕ1 + ϕ2 = 0 
B (i, j) = 1 

end 
end 

end 

4. Numerical Results and Discussion 

In order to check the proposed method (Edge detection 
based on QGA) in this article and compare with the edge 

detectors based on CQA, common gray level test images 
with different resolutions and sizes are detected by the 
quantum and classical edge detection respectively. On the 
other hand two different forms of entropy are used as a 
fitness function to demonstrate the important roles played 
by the optimal choosing of the fitness function in the 
CGA and QGA. 
The performance of the proposed scheme is evaluated 
through the numerical results using MAT- LAB. Prior to 
the application of this algorithm, no pre-processing was 
done on the tested images. We apply the previous 
methods on 10 real-world images displaying different 
sizes. As shown in Figures (2)-(11), the charts of the test 
images and the average of run time for the classical 
methods and proposed scheme. It has been observed that 
the proposed edge detector works effectively for different 
gray scale digital images as compare to the run time of 
CGA and QGA detectors. 
Image quality is a characteristic of an image that 
measures the perceived image degradation (typically, 
compared to an ideal or perfect image). Two parameters 
are there: First, MSE, it is defined as the squared 
difference between the original image and estimated 
image 

 
where X = original value, Xˆ = stego value and N = 
number of samples.  
Second, PSNR, Peak Signal-to-Noise Ratio, often 
abbreviated PSNR, is an engineering term for the ratio 
between the maximum possible power of a signal and the 
power of corrupting noise that affects the fidelity of its 
representation [19]. Because many signals have a very 
wide dynamic range, PSNR is usually expressed in terms 
of the logarithmic decibel scale. 
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FIG. 3:  (a) Original image 1, (b) CGA based on TE, (c) QGA based on TE, (d) Histogram, (e) CGA based on KE, (f) QGA based on KE. 

 

FIG. 4:  (a) Original image 2, (b) CGA based on TE, (c) QGA based on TE, (d) Histogram, (e) CGA based on KE, (f) QGA based on KE. 
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FIG. 5:  (a) Original image 3, (b) CGA based on TE, (c) QGA based on TE, (d) Histogram, (e) CGA based on KE, (f) QGA based on KE. 

 

FIG. 6:  (a) Original image 4, (b) CGA based on TE, (c) QGA based on TE, (d) Histogram, (e) CGA based on KE, (f) QGA based on KE. 

 

FIG. 7:  (a) Original image 5, (b) CGA based on TE, (c) QGA based on TE, (d) Histogram, (e) CGA based on KE, (f) QGA based on KE. 
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FIG. 8:  (a) Original image 6, (b) CGA based on TE, (c) QGA based on TE, (d) Histogram, (e) CGA based on KE, (f) QGA based on KE. 

 

FIG. 9:  (a) Original image 7, (b) CGA based on TE, (c) QGA based on TE, (d) Histogram, (e) CGA based on KE, (f) QGA based on KE. 

 

FIG. 10: (a) Original image 8, (b) CGA based on TE, (c) QGA based on TE, (d) Histogram, (e) CGA based on KE, (f) QGA based on KE. 
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FIG. 11: (a) Original image 9, (b) CGA based on TE, (c) QGA based on TE, (d) Histogram, (e) CGA based on KE, (f) QGA based on KE. 

 

FIG. 12:  (a) Original image 10, (b) CGA based on TE, (c) QGA based on TE, (d) Histogram, (e) CGA based on KE, (f) QGA based on KE. 

Table 2: The numerical results on the ten images 
Image  PSNR Thr e shol ds Y Time 
 

Im.1 
QGA TE  1.85 [52;101;151;203] 19973.17 42.07  
CGA TE 1.84 [44;111;174;199] 17459.22 16.47 
QGA KE 1.94 [39;95;145;199]  17 . 54 29.75 
CGA KE 1.91 [43;44;190;191]  10 . 81 13.76 

 
Im.2 

QGA TE  5.86 126;154;186;215  7487.47 45.89  
CGA TE 5.75 [128;161;199;225]  7155.33 23.69 
QGA KE 5.87 [123;151;183;211]  16 . 01 37.59 
CGA KE 6.46 [124;124;171;171]  10 . 76 21.83 

 
Im.3 

QGA TE  4.19 [75;114;157;202] 13543.06 47.26  
CGA TE 4.39 [59;92;133;192]  12539.07 25.35 
QGA KE 4.17 [82;120;157;198] 15 . 66 41.74 
CGA KE 3.78 [177;180;200;200]  9 . 0 3 29.67 

 
Im.4 

QGA TE  5.30 [71;110;148;185] 18143.57 63.46  
CGA TE 5.26 [57;112;164;201] 16212.14 43.26 
QGA KE 5.41 [65;96;131;178]  17 . 99 57.53 
CGA KE 5.10 [83;84;189;189]  11 . 98 20.45 

 
Im.5 

QGA TE  4.95 [97; 142; 180; 209]  24461.66 54.57  
CGA TE 4.88 [50;98;133;193]  23638.05 17.07 
QGA KE 4.94 [44;97;146;195]  18 . 27 27.11 
CGA KE 4.93 [77;77;114;114]  11 . 08 13.03 

I m. 6 QGA TE 4 . 0 5 [59; 105; 148; 193]  21027.72 61.07 
CGA TE 3.87 [60;106;151;188] 19806.47 23.25 
QGA KE 4.20 [61;106;148;193] 18 . 19 45.79 

CGA KE 4.17 [86;87;153;153]  12 . 20 29.86 
I m. 7 QGA TE 3.02 [34;73;123;174]  20782.48 38.49 

CGA TE 2.90 [35;81;127;177]  20584.39 18.25 
QGA KE 3.25 [34;61;119;171]  18 . 02 32.02 
CGA KE 3.81 [55;60;103;105]  9 . 0 4 7.90 

I m. 8 QGA TE 4.95 [97;142;180;209] 10217.56 54.57 
CGA TE 4.90 [101;149;181;217]  9583.52 38.63 
QGA KE 4.93 [97;144;179;208] 15 . 57 56.37 
CGA KE 4.67 [179;183;207;208]  8 . 6 1 35.77 

I m. 9 QGA TE 2.77 [84;131;180;215] 20653.78 36.39 
CGA TE 2.75 [62;108;153;201] 19198.12 18.55 
QGA KE 2.64 [92;128;180;215] 17 . 69 33.77 
CGA KE 2.38 [126;126;187;189]  11 . 10 15.51 

Im.10 QGA TE 2.07 [40;89;149;207]  170.02 32.91 
CGA TE 1.92 [48;106;166;215] 164.80 18.25 
QGA KE 2.07 [40;89;141;190]  8 . 6 8 27.49 
CGA KE 1.99 [40;40;157;157]  6 . 3 4 10.85 

 
Table 2 shows the numerical results obtained on the ten 
real-world images. The first interesting result is that the 
QGA outperforms significantly the GA in the 
optimization task whatever the used entropy on all the 
used images. Indeed the achieved optimal value of the 
fitness function, denoted by Y, is usually higher when 
using the QGA. In the other hand, we see that the higher 
PSNR value corresponds to the higher optimal fitness 
value, except for image 3 when using the Tsallis entropy 
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and for images 2 and 7 when using the Kapur entropy. 
This agreement prove that achieving higher value for the 
fitness function leads to a better segmentation quality. 
Finally, the PSNR values obtained by QGA TE and QGA 
KE methods show that the Kapur entropy performs 
slightly better than the Tsallis entropy. Indeed, the PSNR 
values corresponding to QGA KE are higher on six from 
the ten images. This can be explained by the fact that 
Tsallis entropy based fitness function is more complex 
than that using the Kapur entropy. 

5. Conclusion 

In this work, we have presented a multilevel edge 
detection method based on Kapur and Tsallis entropies. 
We have employed CGA and QGA to solve the resulting 
optimization problem. It was proven that QGA is more 
efficient than CGA. Moreover, the Kapur entropy is 
cheaper to compute than the Tsallis one and gives rise to 
a better segmentation quality. 
Of course, the problem of image segmentation remains 
one of the main open issues in image processing. 
Certainly this study deserves further methodological, 
algorithmic and numerical in- vestigations. For instance, 
the QGA optimization performances can be improved by 
modifying the quantum gate and the population 
initialization. Furthermore, the fitness function 
maximization and the entropy parameter tuning, for each 
image, can be combined into a single optimization task. 
Finally, this work can be broadened by considering other 
entropies and a large sample of real-world and synthetic 
images. 
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