
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016

137

Manuscript received July 5, 2016
Manuscript revised July 20, 2016

A New Testability Transformation Method for Programs with
Assertions

Ali M. Alakeel
Department of Computer Science University of Tabuk Tabuk, Saudi Arabia

Abstract
Assertion-Based software testing has been shown to be effective
in detecting program faults as compared to traditional black-box
and white-box software testing methods; however in the presence
of large numbers of assertions this approach may be very
expensive. As reported in the literature, Assertion-Based software
testing executes the whole program based on a given input data in
order to find an assertion’s violation. Executing the whole
program for every assertion may be very costly especially for
large programs with very larger number of assertions. The cost is
related to search time required during the process of generating
test input data to violate such large number of assertions. This
paper introduces a testability transformation approach based on
the analysis of control and data flow dependencies that affect the
execution of every assertion in the program. It achieves this by
eliminating program statements that do not lead the program flow
control to the assertion under consideration. A small case study is
presented, which demonstrates the value of the proposed approach.
Keywords
Assertion-based software testing; testability transformation;
software testing; data dependency analysis

1. Introduction

Software testing is the process of executing a program with
the intent of detecting faults [1]. Software testing is a very
labor intensive and tedious task. For this reason, many
studies have been devoted to the automation software
testing [2]-[7]. There are two main approaches to software
testing: Black-box and White-box [1]. Test data generation
is the process of finding program input data that satisfies a
given criteria. Test generators that support black-box
testing create test cases by using a set of rules and
procedures; the most popular methods include equivalence
class partitioning, boundary value analysis, cause-effect
graphing [1]. White-box testing is supported by coverage
analyzers that assess the coverage of test cases with respect
to executed statements, branches, paths, etc. Programmers
usually start by testing software using black-box methods
against a given specification. By their nature, black-box
testing methods might not lead to the execution of all parts
of the code. Therefore, this method may not uncover all
faults in the program. To increase the possibility of
uncovering program faults, white-box testing is then used
to ensure that an acceptable coverage has been reached, e.g.,
branch coverage.

Assertion-based software testing [9]-[10] has been shown
to be effective in detecting program faults as compared to
traditional black-box and white-box software testing
methods. The main objective of assertion-based testing is to
find a program input on which an assertion is violated. If
such an input is found then there is a fault in the program.
Some programming languages support assertions by default,
e.g., Java [21] and Perl [22]. For languages without built-in
support, assertions can be added in the form of annotated
statements. In [9], assertions are represented as commented
statements that are pre-processed and converted into Pascal
code before compilation. Many types of assertions can be
easily generated automatically such as boundary checks,
division by zero, null pointers, variable overflow/underflow,
etc. Therefore, programmers may be encouraged to write
more assertions in their programs in order to enhance their
confidence in their programs.
As reported by Korel and Al-Yami [9], assertion-based
software testing searches for a program input data that may
lead to the violation of a given assertion. In order to test
whether this input data will violate the given assertion or
not, assertion-based testing executes the whole program
based on based on the given input data. The process of
executing the whole program for every assertion may be
very costly in larger programs with possibly very large
number of assertions. Therefore, the performance of
assertion-based software testing may be degraded. In order
to alleviate this problem and to enhance the performance of
assertion-based software testing in the presence of larger
number of assertions, the main goal of this paper is to
utilize the advantages offered by testability transformation
(TeTra) techniques [8] during the process of assertion-
based software testing.
The approach presented in this paper applies testability
transformation techniques [8] on an original program Po
with assertions to produce a new version Pn such that
assertion-based software testing will be more effective in
testing the new version Pn than it would be in testing the
old version Po. The primary contributions of this paper are:
(1) It introduces a new testability transformation
mechanism for programs with assertions. (2) It empowers
assertion-based software testing approach and makes more
effective in large commercial software with very large
number of assertions. (3) The approach may be generally
applied to programs with complex pre/post conditions or

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016

138

temporarily embedded pieces of code during
instrumentation.
The rest of this paper is organized as follows. A
background of assertion-based software testing is presented
in Section II. In Section III, related work is discussed. The
proposed approach is presented in Section IV. A case study
to demonstrate the proposed approach is presented in
Section V. Conclusions and future work is discussed in
Section VI.

2. Assertion-Based Software Testing

Assertions have been recognized as a powerful tool for
automatic run-time detection of software errors during
testing, debugging, and maintenance [9]-[14]. An assertion
specifies a constraint that applies to some state of a
computation. When an assertion evaluates to a false during
program execution, there exist an incorrect state in the
program. An approach which employs program assertions
for the purpose of test data generation was presented in [9].
In that research, it was shown that assertion-based testing
was able to uncover program faults which were uncovered
by black-box and white-box testing. Given an assertion A,
the goal of Assertion-Based testing is to identify program
input for which A will be violated. The main aim of
Assertion-Based software testing is to increase the
developer confidence in the software under test. Therefore,
Assertion-Based software is intended to be used as an extra
and complimentary step after all traditional testing methods
have been performed to the software. Assertion-Based
Testing gives the tester the chance to think deeply about the
software under test and to locate positions in the software
that are very important with regard to the functionality of
the software. After locating those important locations,
assertions are added to guard against possible errors with
regard to the functionality performed in these locations
An assertion may be described as a Boolean formula built
from the logical expressions and from the (and, or, not)
operators. There are two types of logical expressions:
Boolean expression and relational expression. A Boolean
expression involves Boolean variables and has the
following form: e1 op e2, where e1 and e2 are Boolean
variables or true/false constant, and op is one of {=, ≠}.
Relational expressions, on the other hand, have the
following form: e1 op e2, where e1 and e2 are arithmetic
expressions and op is one of {<, ≤, >, ≥, =, ≠}. For example,
(x < y) is a relational expression, and (f = false) is a
Boolean expression.
The goal of assertion-based test data generation [9] is to
identify program input on which an assertion(s) is violated.
Assertion-based testing is based on goal-oriented testing
[2][15], which requires the execution of the program
during the process of test data generation. This method
reduces the problem of test data generation to the problem
of finding input data to execute a target program’s

statement s. In this method, each assertion is eventually
represented by a set of program’s statements (nodes). The
execution of any of these nodes causes the violation of this
assertion. In order to generate input data to execute a target
statement s (node), this method uses the chaining approach
[15]. Given a target program statement s, the chaining
approach starts by executing the program for an arbitrary
input. When the target statement s is not executed on this
input, a fitness function [4][5][20] is associated with this
statement and function minimization search algorithms are
used to find automatically input to execute s. If the search
process can not find program input to execute s, this
method identifies program’s statements that have to be
executed prior to reaching the target statement s. This way,
this approach builds a chain of goals that have to be
satisfied before the execution to the target statement s.
More details of the chaining approach can be found in [20].
As presented in [9], each assertion is written inside Pascal
comment regions using the extended comment indicators:
(*@ assertion @*) in order to be replaced by an actual
code and inserted into the program during a preprocessing
stage of the program under test. Figure 1 shows a sample
program with two assertions A1 and A2.

Figure 1. A Sample program with assertions

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016

139

Assertion-based software testing [9]-[10] is a promising
approach in terms of finding programming bugs. However,
this approach may be expensive in terms of search time
required to violate each assertion imbedded in the program.
This is because this approach is an execution-based
approach [2], which depends on finding a program input
data that may lead to the violation of an assertion during the
program execution on this input data. The problem arises in
big size programs with large number of assertions, where
the process of re-executing the program for each assertion
may be very costly. In order to make assertion-based
software testing [9] more effective and efficient in testing
big programs with large number of assertions, we propose
applying testability transformation [8] on programs with
assertions prior to the process of assertion-based software
testing.

3. Related Work

Testability transformation (TeTra) is a source-to-source
program code transformation with the objective to make the
new programs easier to test [8]. In other words, testability
transformation seeks to improve the process of test data
generation and makes it more successful. Testability
transformation approaches have been applied on many
types of programs with encouraging results. For example,
in [17], testability transformation improved the
performance of Evolutionary Testing (ET) [18] for state-
based programs. Korel et al. [19] presented a testability
transformation mechanism that is based on data
dependencies analysis. In this approach a transformation
function is constructed for those program statements that
need to be considered during test data generation. Then, the
process of test data generation is performed on this
transformation function instead of the original program.
Although the testability approaches presented in [17] and
[19] work well for single program statements they cannot
be applied directly for programs with assertions because
assertion each assertion may be comprised of more than
one program statements as will be shown later in the next
section. In order for the approach presented by Korel et al.
[19] to be applied on programs with assertions, we need to
perform a testability transformation for each assertion
found in the program.

4. The Proposed Approach

The main objective of this paper is to present a testability
transformation mechanism for programs with assertions
that may makes assertion-based testing more cost-effective
and efficient when applied on programs with large number
of assertions. Given an original version of a program, Po,
with assertions, the proposed approach works as follows.

At the first stage, this approach performs a pre-processing
scan of Po during which all assertions are identified. At the
next stage the approach performs a testability
transformation process for each assertion identified at the
first stage. The results of this stage is that each assertions is
transformed into a set of nodes (program statements), as
will be explained later, in such a way that executing any of
these nodes is equivalent to the violation of this specific
assertion. Then, the proposed approach designates each
node as a target node and formulates a conditional branch
(p,q) and a real valued fitness function associated with this
branch [2] such that the execution of node p leads to the
execution of the target node.

At this stage the chaining approach presented by Ferguson
and Korel [16] is employed during the process of assertion-
based test data generation to change the program’s flow of
execution to lead to branch (p,q) such that target node is
executed. Because re-executing the original program, Po,
during the process of assertion-based test data generation
[9] is very costly during the attempt to execute target nodes,
in the fourth stage, the proposed approach applies the
testability transformation presented in [19] on each of the
target nodes as follows.

For each branch (p,q) that leads to the execution of a target
node, this testability transformation approach [19] uses data
dependency analysis [15][20] in order to identify other
program statements that may have influence on leading the
program flow towards the target node. There exists a data
dependency between two program nodes nj and nk with
respect to a variable v if the following three conditions are
satisfied: (1) v is assigned a valued at nj, (2) v is used at nk,
and (3) there exists a program’s execution path from node
nj to node nk where variable v is not modified.

For each of the target nodes identified in the previous stage,
the testability transformation approach [19] constructs a
data dependency sub-graph [19] and then based on this sub-
graph, only selected nodes of the original program, Po, is
included in a new code sub-routine called the
transformation function: TransFunc() [19]. At this stage,
the process of assertion-based test data generation is only
performed on TransFunc() in order to find program input
data to cause the execution of the associated target node
under consideration. By doing so, a huge amount of time is
saved during the assertion-based test data generation,
because re-executing the TransFunc() is much cheaper than
re-executing the whole original program Po in order to find
input program data to execute each target node.
Furthermore, it has been shown in [20] that using this
method of testability transformation empowers the process
of test data generation and makes it more efficient.

In order to clarify how the proposed approach works,
consider the following classification. Let A = {A1, A2, …,

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016

140

An} be a set of assertions found in an original version of a
program Po. For each assertion A ∈ A, a set of nodes N(A)
= {n1, n2, …, nq} where q ≥ 1, is identified during a
preprocessing stage of the program under test, where the
execution of any node nk ∈ N(A), 1≤k≤q, corresponds to
the violation of assertion A. In other words, an assertion A
is violated if and only if there exists a program input data x
for which at least one node nk ∈ N(A) is executed. For
example, consider the following sample assertion:
(*@ ((x≥y) or (x=z)) and ((z≠99) or (Full=False)) and (z≠0)
@*)

The set of nodes for this assertion is: N(A) = { n1, n2, n3 }
and the code generated is shown in Figure 2.

Figure 2. Code generated for a sample assertion A

In order for an assertion A to be violated the search process
attempts to generate a program input data x that may leads
to the execution of at least one of n1, n2, or n3.

5. Case Study

To demonstrate how our proposed approach works,
consider assertion A1 in the sample program of Figure 1. In
the preprocessing step, assertion A1 is transformed into the
following code:

p1 IF i <1 THEN
n11 write(‘Assertion A1 Violation!’);
p2 IF i > 40 THEN
n22 write(‘Assertion A1 Violation!’);

where nodes n11 and n22 are the constituents nodes for
assertion A1 such that the execution of either of these
nodes causes the violation of this assertion. Now, the
objective of assertion-based testing is to generate program
input data that causes the execution of at least one of these
nodes [9].

Figure 3. Testability transformation code generated for assertion A1 to
replace original program in Figure 1

In order to lead the program’s execution flow towards
nodes n11 and n22, nodes p1 and p2 are designated by the
proposed approach as problem nodes [19]. In order make
the process of assertion-based test data generation more
efficient, and to avoid re-executing the whole program, the
proposed approach applies data dependency based
testability transformation approach [19] on the problem
nodes p1 and p2. For example, the testability
transformation code generated for the purpose of generating
test data to violate assertion A1 through the execution of
node n11 is shown in Figure 3. Note that the code in Figure
3, only includes program statements that has data
dependencies [19] with the problem node p1 with respect to
variable i which is used at p1. Also, note that the fitness
function constructed for the problem node p1 is placed at
the return statement of TransFunc() [19] in Figure 3.
By applying this method of testability transformation, only
small part of the program code is executed during the
process of assertion-based testing which makes assertion-
based testing more efficient and suitable for programs with
large number of assertions. For example, only the code in
shown in Figure 3 is executed during the process applying
assertion-based testing on node n11 of assertion A1.

6. Conclusions and Future Work

In this paper, we presented a novel software testability
transformation for programs with assertions. The presented
approach builds upon previous methods of testability

 IF (x < y) THEN
 IF (x ≠ z) THEN

n1 Report_Violation;
 IF (z = 99) THEN

 IF (Full = True)
THEN

n2 Report_Violation;
 IF (z = 0) THEN

n3 Report Violation;

function TransFunc(in p_size, int st_ids[], int repts[]): real;
var k, j, i of integer;
var x, i, MAX: integer;
begin
 k:=1;
 while k <= p_size do begin
 case (st_ids[k]) of
 1: begin { node 1 }
 input(i, MAX, x);
 break;
 end;
 6: begin {node 6}
 i:= i+1;
 for j:=1 to repts[i]-1 do i:=i+1;
 break;
 end;
 13: begin { node 13 }
 i:=i-1;
 for j:=1 to repts[i]-1 do i:=i-11;
 break;
 end;
 end; { case }
 i:=i+1;
 end; {while}
 TransFunc:= (1-i); {return fitness function of problem
node}
end; { function }

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016

141

transformations and utilizes them for the purpose of making
assertion-based testing more efficient. The results of
applying the proposed approach on programs with large
number of assertions may save valuable testing resources
during the process of software testing which enhances rapid
development of software products. For our future research,
we intend to perform an experimental study to evaluate the
effectiveness of the proposed approach in various types of
commercial software which may contain large number of
assertions.

Acknowledgments

This research is partially supported by Deanship of
Scientific Research (DSR), University of Tabuk, Saudi
Arabia, under grant S-1436-0001.

References
[1] G. Myers, “The Art of Software Testing,” John Wiley &

Sons, New York, 1979.
[2] B. Korel, “Automated Test Data Generation,” IEEE

Transactions on Software Engineering, vol. 16, no. 8, 1990,
pp. 870-879.

[3] X. Xiaojun and S. Jinhua, "The Study on an Intelligent
General-Purpose Automated Software Testing Suite,"
Intelligent Computation Technology and Automation
(ICICTA) International Conference, May 2010, pp. 993-996.

[4] K. Karnavel, K. and J. Santhoshkumar, "Automated software
testing for application maintenance by using bee colony
optimization algorithms (BCO)," Information
Communication and Embedded Systems (ICICES)
International Conference, Feb. 2013, pp. 327-330.

[5] P. Srivastava, and K. Baby, "Automated Software Testing
Using Metahurestic Technique Based on an Ant Colony
Optimization," Electronic System Design (ISED)
International Symposium, Dec. 2010, pp. 235-240.

[6] P. Mitra, S. Chatterjee, and N. Ali, "Graphical analysis of
MC/DC using automated software testing," Electronics
Computer Technology (ICECT) 3rd International Conference,
April 2011, pp. 145-149.

[7] D. Rafi, K. Moses, K. Petersen, and M. Mantyla, "Benefits
and limitations of automated software testing: Systematic
literature review and practitioner survey," Automation of
Software Test (AST) 7th International Workshop, June 2012,
pp. 36-42.

[8] M. Harman, L. Hu, R. Hierons, J. Wegener, H. Sthamer, A.
Baresel, and M. Roper, "Testability transformation,"
Software Engineering, IEEE Transactions on, vol. 30, 2004,
pp. 3-16.

[9] B. Korel and A. Al-Yami, “Assertion-Oriented Automated
Test Data Generation,” Proc. 18th Intern. Conference on
Software Eng., Berlin, Germany, 1996, pp. 71-80.

[10] A. Alakeel and M .Mhashi,"Application of Intelligent
Assertion-Based Testing in String Matching Algorithms,"
American Journal of Scientific Research, No. 65, June 2012,
pp. 77-91.

[11] D. Rosenblum, "A Practical Approach to Programming With
Assertions," IEEE Trans. on Sofware Eng., vol. 21, no. 1,
January 1995.pp. 19-31.

[12] K. Shrestha and M. Rutherfor, "An Empirical Evaluation of
Assertions as Oracles," Proceedings of IEEE Inter.
Conference on Software Testing, Verification and Validation,
2011, pp. 110-119.

[13] S. Khalid, J. Zimmermann, D. Corney, and C. Fidge,
"Automatic Generation of Assertiosn to Detect Potential
Security Vulnerabilities in C Program That Use Union and
Pointer Types," Proceedings of Fourth Inter. Conference on
Network and System Security, 2010, pp. 351-356.

[14] A. Alakeel, “Intelligent Assertions Placement Scheme for
String Search Algorithms,” Proceedings of the Second
International Conference on Intelligent Systems and
Applications, Venice, Italy, April 2013, pp. 122-128.

[15] B. Korel, “Dynamic Method for Software Test Data
Generation,” Journal of Software Testing, Verification, and
Reliability, vol. 2, 1992, pp. 203-213.

[16] R. Ferguson, R. and B. Korel, “Chaining Approach for
Automated Test Data Generation,” ACM Tran. on Software
Eng. and Tethodology, vol. 5, no. 1, 1996, pp. 63-68.

[17] A. Kalaji , R. Hierons, and S. Swift, “A Testability
Transformation Approach for State-Based Programs,” In
IEEE 1st International Symposium on Search Based
Software, Windsor, UK , May 2009, pp. 85-88.

[18] P. Mcminn and M. Holcombo, “The State Problem for
Evolutionary Testing,” Proc. Genetic and Evolutionary
Computation Conference, 2003, pp. 2488-2498.

[19] B. Korel, M. Harman, S. Chung, and P. Apirukvorapinit,
“Data dependence based testability transformation in
automated test generation,” In 16th International Symposium
on Software Reliability Engineering (ISSRE 05), Chicago,
USA, Nov. 2005, pp. 245–254.

[20] M. Pezze and M. Young, "Software Testing and Analysis:
Process, Principles and Techniques," John Wiley & Sons,
2008.

[21] K. Arnold, J. Gosling, and D. Holmes, “The Java
programming language,” vol. 2. Reading: Addison-wesley,
1996.

[22] L. Wall, T. Christiansen and J. Orwant, "Programming Perl,",
3rd Ed., O'Reilly Media, 2000

