
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016

172

Manuscript received July 5, 2016
Manuscript revised July 20, 2016

Component-based Architecture Reconstruction by Patterns

Shahrouz Moavena*, Jafar Habibib, Alireza Parvizi mosaedc and Razie Alidoostid
a, b, c, d, Department of Software Engineering, Faculty of Computer Engineering, Sharif University of Technology, Tehran,

Iran

Summery
nowadays, software architecture has obtained such a significant
role as a foundation in software projects and processes that
promoting objectives of software teams and organizations
without it is impossible. Therefore, recognizing legacy
architectures, processes, and systems, and recovering them for
exploiting the benefits of clear and correct software architecture
is very important; additionally, exploitation and analysis tools
and expert systems should be used to construct architecture in the
best way. In this paper, a method is defined which not only uses
all existing information to reconstruct software architecture, but
also makes use of structural, behavioral and semantic patterns in
order to exploit their benefits in reconstructing architecture with
better adaptability and compatible with quality attributes. The
method by presenting some mechanisms and guidelines that
consider patterns, provides users the ability of using it in different
domains. Furthermore, the knowledge acquired from
different abstraction levels are collected and used to
establish knowledge trees and knowledge packages.
Keywords
Component, Software Reconstruction, Software Architecture,
Architectural Style, Quality Attribute, Knowledge Management

1. Introduction

Software architecture, as a basis for software system
development, represents a high-level abstraction of the
system and performs a significant role by acting as a glue
between every part of the software system [11].Software
architecture not only is applicable in software projects and
systems, but also is useful in and has important effects
on processes and organizations.
 These roles have become more considerable and efficient
due to the today’s complexity of software systems, projects,
and processes and enlargement of organizations. Moreover,
software architecture is an important tool for
satisfying quality attributes and achieving desired quality
for which there exist some architecture evaluation methods
that can be considered as important software quality
assurance techniques[4].
Documenting all architectural information during the
design phase of the software system and updating it in
order to reflect the current architecture of the system, is an
important activity that must be performed during the
software system development process in order to obtain
mentioned objectives.

However, in the real world, architectural information
becomes out-of-date and doesn’t reflect the current
architecture of the system [34]. This happens because the
changes occur in the software system after development or
even during implementation; which can happens
intentionally or unintentionally.
Changes to a software system during implementation and
maintenance can cause the architecture of a system to
deviate from its documented architecture [13]. Hence, the
difference between the conceptual architecture and
the implemented architecture occurs which can effect on
maintenance phase, even on the feedback
from implementation to change the design base on a fault
in the implementation [29].
The process of architecture reconstruction is a general
process which covers a wide range of domains in which
architecture has an important role and can effect on the
quality of activity ; it may be a project, system, process or
even organizations. In this process, experiences obtained
from the past must be considered in order to achieve high
quality results. Additionally, discovering and deciding
about the hidden architectural styles and the relation among
them, regardless of being homogenous or heterogeneous, is
an important issue in the software
architecture reconstruction which demands to be solved.
Several works have been performed in the architecture
reconstruction field and several tools and techniques exist
for identification and reconstruction of design patterns
which are fine-granular and near to the code; however they
can be improved and extended too. But to identify high-
level abstract structures of system, process, or organization
and reconstruct their architecture, extracting patterns form
code cannot solve the problem.
This problem, as is considered in the paper, needs
collection and integration of high-level abstract
information of the system and can be solved by taking
advantage of our previous works and integrating them with
Formal Concept Analysis (FCA) [1] to create a complete
process to cover the reconstruction problem. Additionally,
process, architectural, design, and managerial patterns
are exploited in the solution.
The important point that should be mentioned here is that
making use of either tools or human knowledge at each
levels of abstraction of the system will result in the
acquisition of new knowledge. The newly obtained
knowledge must be collected to establish new knowledge

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016 173

packages and knowledge trees which can be used in
future decisions.
The remainder of this paper is organized as follows. In
section two some related work is represented and discussed
briefly. The important roles that software architecture
performs in today’s systems are included in the third
section. The fourth section contains an introduction to
architecture reconstruction and some related concepts.
Our proposed method is represented in section six followed
by a case study and the conclusion in two last sections.

2. Related Work

In the context of pattern recognition a lot of researches
have been done, many valuable works have been carried
out, and a lot of tools have been developed. However, none
of them are general enough as they have a problem with
higher levels of granularity and abstract levels. Discovering
the relation between patterns and the way they interact, is
another drawback of the existing methods.
Extracting information from the source code is one of the
first steps in an architecture reconstruction process. The
basic idea in some works lies in taking advantage of call-
graphs. Generally, in software reverse engineering, call-
graphs are used to understand the program and visualize
behavior and structure of the code at different abstraction
levels. In the mentioned research, at first a call-graph is
constructed in the software by considering its source code
and then, the obtained result is compared with the
expected call-graph of the system to identify the
differences between existing and expected architectures.
This is because software architecture affects
quality attributes and reconstructing it requires more
than program comprehension and code level analysis [12].
Imagix [14] is a commercial tool which works on the C,
C++ and Java source code to reverse engineer and analyze
the code. By analyzing the data flow, the calculation trees
are constructed which present information about the
assignments leading to the current value of a
variable. Moreover, they track assignment
dependencies across functional boundaries and
through parameter passing.
In [31], by considering the source code, an initial graph is
established; this is done by taking advantage of a compiler.
The graph is the basis for creating another graph which
describes the design recovery process. Moreover, the
validation is made with respect to some well-known design
patterns such as Composite.
Moreover, some source code extraction tools exist for Java
code. UFJ [15] is a high quality commercial tool that is
used for reverse engineering of Java code and has an
integrated static call graph viewer that depicts
call dependencies between classes [12].

In [18], a tool is presented which is based on C++ code.
The meta-information and patterns are extracted from C++
header files and are stored as Prolog rules.
In addition, in order to query, manipulate, and extract
information about the source model automatically, some
reverse engineering tools have been developed. In [13], a
system, called IAPR, is described in which patterns are
discovered within software architectures. This is done
by implementing a heuristic form of sub-
graph isomorphism and matching patterns to
an architecture.
The method represented in [24], is used to extract source
model from lexical specifications by generating small and
easy-to-write specifications with few constraints and by
considering almost all information around an artifact.
Another work, takes advantage of Labeled Transition
System (LTS) to represent the software architecture
behavior and exploit some architectural tests. The set of
architectural test sequences is obtained by covering
abstracted views of the LTS description of the software
architecture behavior. The test sequences are then refined
into concrete tests and to be executed on the implemented
system [5]. Moreover, in order to reduce the possible
sequences of transitions to a limited number of test
sequences an observation function is used on the LTS.
However, establishing a relationship that maps high-level
test sequences on concrete and executable test cases is
very complicated. The problem arises especially in
the absence of a rigorous, formalized refinement process
from the software architecture specification down to the
source code[5].
In [32], a method has been proposed to determine software
architecture and its shared and variable parts in software
product line. The basic purpose of this method is an
evaluation of the potential of establishing software product
line; however it can be used for architecture reconstruction.
The architectural model of the system is achieved by
abstracting the implementation model extracted from the
existing codes. The architectural styles and patterns
are then discovered by adapting them with the architectural
model.
The method presented in [26], is used for design recovery
and understanding the program. Additionally, [26] provides
a tool to semi-automatically recognize instances of
design patterns and help to the presented method. It
takes advantage of an incremental algorithm for which the
related information such as the domain and context
knowledge should be provided. In order to detect the
patterns, at first a special form of ASG (annotated abstract
syntax graph) is constructed and then a pattern
neighborhood is defined with respect to the lattice by
taking advantage a sub-graph matching algorithm.
ISA [27] is a tool for automatic qualitative analysis of
software architecture in which architecture analysis and

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016 174

qualitative estimation of software are performed based on
the recognition of patterns from architectural
descriptions represented in the UML diagram.
In [17], a reverse engineering tool is represented which has
useful features for capturing certain architectural views in
UML notation. However it can only reverse engineer
UML semantics in some prepared situations.
The environment presented in [16] is used for reverse
engineering of design components based on the structural
descriptions of design patterns.
The tool presented in [7] detects design patterns in
Smalltalk environments by taking advantage of a cycle-
detection technique. In order to encode patterns no general
abstraction has proposed and a clearly generalized
approach to detect patterns has not demonstrated.
A method to improve and query design patterns based on
machine learning techniques has been proposed in [8]. This
method, takes advantage of the Columbus framework for
reverse engineering. It constructs architectural patterns
based on code analysis and creation of an Abstract
Semantic Graph; then the pattern description represented
in DPML, is used for structural adaptation of the patterns.
The weakness of Columbus is in determination of patterns
which are similar with each other structurally. However,
some efforts have been done to solve the problem
somehow, by exploiting decision tree C4.5 [30] and
neural networks [6].
In order to make tool interoperability easier, some
frameworks have been proposed [34],[33]. In [33] the
strategies for collapsing information while building
abstractions during architecture reconstruction have been
represented. Additionally, by identifying the situations in
which multi-collapsing is required understanding a system
or its particular aspects becomes easier. The reference
framework proposed in [28], can be used in classifying and
comparing existing techniques. Additionally, that makes it
possible to discover the problems in software
architecture reconstruction and find existing viewpoints.
In order to evaluate the accuracy of tools of reverse
engineering which are applied in architectural recovery and
address their usability a comparison has been performed
in [2].
In [25], a high-level structure of the system is specified by
the architect and then it must be mapped to the source code.
An open source tool has been developed to support the
method and specify the degree to which the high level
model agrees with or differs with the source code.
The method proposed in [13], pays attention to the higher
levels of abstraction in architecture reconstruction by
identifying architectural patterns of an existing system.
ARM, which stands for Architecture Reconstruction
Method, is a semi-automatic analysis method and codifies
heuristics for applying existing reverse engineering tools
to the problem of recognizing more abstract patterns in the

implementation [13]. However, the ARM can be criticized
from different aspects. The two presented case studies are
very simple and have a clear internal architecture; they are
not complete and are not capable of identifying high level
of the system. The proposed method has not extended after
that, while they have acknowledged that the solution is
applicable in just some specific problems.
Finally, we should mention two points. First, there are
some tools in the literature that have been superseded or
are only research prototypes[12]. Second, in a
comprehensive solution in this domain the quality
attributes and system and environmental specifications
must be considered; like what is done in architecture design.
To understand the problem domain and identify the
suitable styles and patterns, several dimensions must be
considered in which the code structure is just one of
the important dimensions.

3. Software Architecture Roles

Software architecture is considered as a matured branch in
the whole of the software engineering domain for which
variety of techniques and methods are applied to promote.
Software architecture works as a conceptual glue to
connect different phases of a project or even parts of
an organization or a process [11],[9]. Software architecture,
in addition to specify connections and roles, provides a
framework for communication of components and
stakeholders and models the risks, projects, processes, and
organizations in a suitable structure based on quality
attributes [4].
The complexity of systems and structures, causes the
architecture design and the reconstruction face with several
problems. In this domain, like the other matured domains,
some patterns created which are representing successful
solutions [10]. Making use of architectural patterns and,
following that, process patterns, which are originated
from the structure and architecture of processes, is one
of the most beneficial and most efficient solutions in the
fields of reconstruction and even construction of
architecture [10], [13]. Patterns perform a valuable role in
the field of reconstruction because we can never
completely identify architecture of legacy systems which
are complex and widespread. But the solution of taking
advantage of patterns and mapping the problem domain to
them is very suitable because selecting and making use
of patterns, even if has not done at the beginning of the
project and design phase, is implementable
in reconstruction and provides the maintenance team with
high capabilities and capacities.
Software architecture and its classic patterns and styles are
improving and advancing every day and constructing and
using a composition of them is widespread. The

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016 175

performance and coverage of architecture styles in complex
problems are unavoidable but bring us with a lot of
problems itself. Reconstructing architecture by means
of heterogeneous styles is considered as a valuable activity
in this domain because it gives the development team high
abilities and capabilities to model the system in the best
way [12]. However, existence of identification mechanisms
for discovering and identifying suitable composite patterns
for each system or subsystem, needs tools, methods, and
approaches which is possible just by integrating all the
existing knowledge.

4. Architecture Reconstruction

Software architecture reconstruction, also mentioned as
software architecture recovery, deals with the extraction
and analysis of a system’s architecture [13]. The origin of
software architecture reconstruction is in software
reverse engineering in which the focus is on
understanding the program and visualizing the structure
and behavior of code and acts at different levels
of abstraction [12]. Retrieving a documented architecture
for an existing system is one of the most important
objectives of software architecture reconstruction which is
categorized in reverse engineering activities [10].
Success of software architecture reconstruction activity
highly depends on the identification and extraction of
important and significant information related to the
architecture with respect to different aspects. Although this
can be performed somehow by considering documentations
of the software product, but it is not available every time in
every system and moreover quality of
the achieved/recovered architecture depends extremely on
the precision of existing documents; which in many cases
have not appropriate accuracy. On the other hand, in most
cases, the source code of the software is the only
trustworthy available resource.
The need for architecture reconstruction appears when
some changes are made to the architecture during software
implementation or maintenance and no effort is made to
maintain and update the architecture documents. Hence,
the current architecture may drift from the
expected, documented architecture. This will result
in prevention of exploiting from architecture benefits in
maintenance and making further changes to the system
which demands a good understanding of the software
architecture.
In the case of the need for changes in an existing system,
and maintenance in general, existence of useful design
documents is very important. Moreover, usefulness of
design documents can help in easily evaluating
the closeness and conformance between documents and the
code.

at higher levels of abstraction, and in order to find the
architecture of the system, code level analysis and program
comprehension are not enough [22]; in this context, finding
architectural styles and patterns and the relation among
them are of high importance. However, in spite of
several researches in the field of architecture reconstruction,
there is a little research on developing effective and
efficient methods for higher levels of abstraction in
architecture recovery [13].

5. Architecture Reconstruction Processes

As mentioned in the related work, in order to extract design
patterns from code, several advanced processes have been
constructed and variety of tools have been developed that
each one has a different proficiency with respect to
the objective of its creation. But they are not even capable
of identifying design patterns let alone performing action at
a higher level to identify architectural styles and, generally,
system architecture.
In this domain which is the main goal of this paper, much
work has not been taken and the existing researches are not
capable of being applied practically and even, in some
cases, are not complete theoretically and cannot
be represented or argued.
Generally, there exist two types of processes in architecture
recognition. First are bottom up processes which start from
code and low-level design and try to construct higher-level
abstraction with respect to the low-level information. The
other types of processes are top down and try to find a
software architecture by constructing a graph of the system
and then mapping between high-level model and low-level
design.
In this paper not only a combination of the two mentioned
methods are exploited in order to solve the problem, but
also other advanced techniques, such as FCA, are used to
identify heterogeneous compositions; the effort
which seems impossible but the fact is that absence
of integration of information, knowledge and
existing technologies makes this problem very
complicated. However, constructing a framework or a
method which provides a discipline for collecting
and integrating existing information and techniques
can help in solving such problems.
A fundamental concept about successful architects is that
they should have a widespread but shallow knowledge of
different sciences and techniques and use them in
architecture design. This means that when we want to
perform an action in reverse, we should take advantage of
the knowledge to obtain the basic model of the architecture
and efficient reconstruction results. In this context,
mapping simple solutions of other domains, such as data

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016 176

mining, expert systems, and neural networks, might help in
solving the problem.
The solution proposed in this paper, is based on four main
strategies. Additionally, by taking advantage of small
subsidiary solutions and techniques, it uses the context
information all together for identification and
reconstruction. Also, by exploiting a knowledge
management system, the knowledge acquired in different
levels can be stored and classified to construct a knowledge
tree for software architecture.
As mentioned, the proposed process consists of four types
of main components. First, are feature extraction tools;
these tools must be capable of extracting functional and
non-functional requirements of the system. Second, is
making use of FCA to identify the collaboration
among patterns. Third, is constructing a
hierarchical framework for knowledge management. And
fourth, is making use of a description language
which supports heterogeneous architectural styles and has
semantics in it.
Figure1 illustrate, at a high level view of reconstruction. It
is an extension of previous work of Decision Support
System Framework[20]. It uses the two layers of
Component Control which collaborates with concrete
components and Architecture Management which analyzes
feature and produces a new plan for reconstructing
architecture of the system. FCA component formalizes
relation of styles when they have been described by
standard language. So Architectural styles must be modeled
by the Description Language.
Finding the collaboration among different parts of the
system is an important phase in our approach. In order to
achieve the goal, we take advantage of FCA [1], which is
used for detecting classical design patterns.

Feature
Extraction
Feature

Extraction

DSSDSS

Reconstructing
Architecture

Reconstructing
Architecture

FCAFCADescription
language

Description
language

Component
Control

Architecture
Management

Fig 1. high level view of the Reconstruction Framework

FCA, by taking advantage of lattice theory, identifies
meaningful groupings of objects that have common
attributes. We will show how taking advantage of FCA
can help us in our hierarchical structure [22] to find the
relation between architectural patterns and the way they
interact.
In order to use FCA, the elements and properties of a
context should be defined. Elements are tuples of classes

from the analyzed application and properties are relations
inside one class tuple. After that, groupings based on the
common properties of the elements, named as concepts,
are performed. The set constitutes a concept lattice by
taking advantage of some algorithms [1]. For example Fig
2 is a sample class diagram and Fig 3 is its lattice [1].

A
{abstract}

X
{abstract}

B C

ZY

P

Fig 2. Example class diagram[1]

33

77

44 55

88

66

11 22

TopTop

BottomBottom

2 accesses 1
1 isAbstract
2 accesses 1
1 isAbstract

3 isSubclassOf 13 isSubclassOf 1

3 isAbstract
2 accesses 3
3 isAbstract
2 accesses 3

{A P X}{A P X}

{A P B}{A P B}

{Y X P}{Y X P}

1 isSubclassOf 2
2 isAbstract

1 isSubclassOf 2
2 isAbstract

3 accesses 23 accesses 2

1 accesses 21 accesses 2

3 isSubclassOf 23 isSubclassOf 2

{C A B}
{Z X Y}
{C A B}
{Z X Y}

{C A P}
{Z X P}
{C A P}
{Z X P}

Fig 3. Lattice of Fig 2 [1]

Any node of Lattice equal to a pattern and notes on node
represents some features of the pattern. For instance, node8
is a pattern that its instances are members of {{C A P}, {Z
X P}, {C A B}, {Z X Y}, {Y X P}} such that second class
is subset of first class and second class is an abstract class
in any member of the set. In addition, C pattern is
accessible by B pattern when features of B are a subset of
features of C[1].
As mentioned later, there are two up-down and bottom-up
reconstruction process which their activity diagrams are
illustrated in the Fig 4 quality attributes and functional
requirement extracted from source code by Feature
Extraction component.
The Component Control layer fetches collaboration
patterns and compare them with navigation patterns such as
Façade that is stored in the repository. Any collaboration
patterns match to a navigation pattern by some method
such as neighborhood analysis, mining pattern and identify
coding styles[1]. In result, navigation pattern is used to
measure the quality attributes of the system. In continue,
this layer compares the quality attribute with threshold

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016 177

function which expert system proposed and produce a
reconstruction plan when the quality attributes do not
satisfy the threshold function.

Detecting implicit collaboration patterns

Detecting implicit collaboration patterns Detecting implicit collaboration patterns

[Quality attribute satisfy the utility fucntion]

Detecting implicit collaboration patterns

[Quality attribute doesn't satisfy the utility fucntion]

Detecting implicit collaboration patterns

Fig 4. bottom-up architecture reconstruction process

Style composition is a useful method for creating the
reconstruction plan. In order to construct a hierarchical
composition style, we use the tree structure defined in [3].
In this structure, the nodes which are near the root,
i.e, exist in lower depths, are more general and might be
heterogeneous architectural styles. When we go through the
depth of the tree, each heterogeneous architectural style is
decomposed to its constructors; it is represented in Fig 5.
This figure represents that some styles such as style 2.1 and
2.2 can be embedded in another style such as style 2.
Quality of embedded style effects on the quality of its
parent with a weight named OD such as performance of
style 2.1 effects on performance of style2 with weight of
OD2.1.

System
Architecture

System
Architecture

Style 1Style 1
Style 2Style 2

Style 3Style 3

Style 2.1Style 2.1 Style 2.2Style 2.2
Style 3.1Style 3.1

OD3.1
OD2.2OD2.1

OD3
OD2

OD1

Fig 5. A view of hierarchical structure in the middle levels, contains
heterogeneous styles [3]

It is obvious that quality attributes are leafs of the tree, as
shown In Fig 6. To construct the tree, we use a bottom-

up fashion in this approach. By identifying the
quality attributes, the roots of the tree have
achieved. Moreover, we made use of FCA in the previous
step to find the relation among quality attributes
and grouping them to detect design patterns, but we cannot
detect the architectural patterns in the FCA. However, the
tree can be refined in this step.

Architecture
Styles

Architecture
Styles

Quality
attribute(1)

Quality
attribute(1)

Quality
attribute(2)

Quality
attribute(2)

Quality
attribute(3)

Quality
attribute(3)

Quality
attribute(4)

Quality
attribute(4)

Q1
Q2 Q3

Q4B1

B2 B3

B4

Fig 6. A view of hierarchical structure of a style [3]

Finally, Reconstructing Component deploys the created
style in the software architecture.
Fig 7 illustrates the top-down reconstruction process which
starts with a user query for changing the quality attribute.
Architecture Management layer creates a new style and
reconstruct the architecture as mentioned in bottom-up
process.

Change Quality attribute by user

Find suitable composition of styles

Reconstruct architecture with new style

Fig 7. top-down architecture reconstruction process

By coming back to the related work section, we understand
that Imagix and RMTool are two useful tools that can be
used for feature extraction. Imagix has a bottom-up
viewpoint while RMTool works top-down. By taking
advantage of these two types of approaches, extracting
features of a system will be easier as each one can
completes the other and their results can be used as
valuable information for each other and for taking the
final decision.
The tool developed in [20] to support a framework for
capturing and using architectural knowledge to improve the
architecture process can be used for architecture
reconstruction. The tool has a repository in which general
scenarios are stored and has an interface for capturing them.
The knowledge which exists in this tool can be integrated

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016 178

into packages in order to construct a knowledge tree.
Moreover, the knowledge acquired while constructing the
tree, can be added to the tool.
However, in order to detect architecture patterns, we need a
framework capable of making decision based on all of the
existing knowledge. In this context, we can take advantage
of our decision support system presented in [19],[21],[23].
In order to make appropriate and precise decisions,
we need to prepare all exiting information for the deciding
environment. The knowledge exists in the knowledge
management tool, the knowledge of the expert architect,
the relations between discovered attributes and the
knowledge of the context are important inputs of the
decision support system.
In the process of recovering software architecture an
important aspect is highlighted which is the semantics and
concepts of the architecture; from this perspective,
each architectural style and pattern, in order to
be constructed, has some conceptual reasons behind its
existential philosophy which can act as a very powerful
recognition factor. Several efforts have been taken in this
area; not for recognizing architecture based on semantic
but in order to make description languages capable
of representing semantic.
In the definition of each architectural style, Pahl and his
colleagues [28] in their laboratory proposed a modeling
language. The modeling language is used to integrate styles,
structures and behaviors into a coherent framework
and understand the relation between quality requirements
and conceptual architecture styles. By using this modeling
language, an architecture style ontology is defined which is
consist of components, connectors, roles, ports,
and configuration. In order to define an architectural style,
at first some basic notations must be defined.

6. Case Study

The composed method represented in this paper, which has
been designed in a pattern-oriented process and based on
architectural patterns, is used in the FlashDevelop project.
FlashDevelop is an open source project which created by
passionate Flash developers for flash developers. It is a .net
web development IDE for compiling and generating code,
project compilation and debugging and etc[35].
RMTool and Imagix, which represented in the related work
section, are used to extract the pattern from FlashDevelop.
Because of the limitation in time and some technical error
in mapping the FCA on it, the result of that is not
represented in this paper but the primary result was good
enough to understand the benefits and weaknesses of
our approach. We defined some relation among patterns
such as include, sequential, parallel and etc, and a utility
function for performance. This utility function must be

dependent on pattern relationship and is defined by expert
users. our utility function was longer than this paper, thus
we exhibit some part of our utility function pseudo code.
Function UtilityFunction(get a set of patterns)
Begin
 For any A and B patterns in set
 If A is subset of B then evaluate F1 function and add
to
 UtilityFunction value
 If A is parallel with B then evaluate F2 function and
add to
 UtilityFunction value
 <and other relationship>
end
Also we modeled primary design pattern, architectural
styles and relation among them with FCA and stored in the
repository. In the result any pattern is stored as same as the
graph is mentioned later. Also we developed a program
with C++ that searched the styles and created a tree of
styles with an evolutionary algorithm that its objective
function is the utility function.
To continue, due to design patterns of the repository had 3
or 4 elements, we filtered RMTool to extract only patterns
with 3 or 4 elements. Then we executed the RMTool on the
FlashDevelop and extracted design patterns and measured
the performance. Utility function got design patterns and
their relationships and measured the performance. The
result showed that quality of the architecture is satisfied
because performance was 21 whereas the threshold was 18.
Table 1 is some part of extracted design patterns and
illustrate that number of patterns with high performance
such as singleton, composition, the iterator is more than
patterns with low performance such as Factory Method,
Façade, Mediator.

Table 1. low and high performance patterns in FlashDevelop
high performance patterns low performance patterns
Pattern number pattern number
Singleton 205 Factory Method 32
Composition 167 Façade 56
Iterator 51 mediator 41

So, we added some interface between components
purposely and executed RMTool. The Result, Table 2,
shows that number of Façade, client-serve and proxy
patterns are increased.

Table 2. low and high performance patterns in changed sample
high performance
patterns

low performance patterns

Pattern number pattern number
Singleton 205 Factory Method 45
Composition 120 Façade 170
Iterator 51 mediator 41

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016 179

As we expected, the value of performance (by the value 12)
was lower that threshold performance (by the value 18). So
performance did not satisfied utility function.
DSS component searched in the style tree with our
heuristic algorithm and proposed some suitable composite
styles which satisfied utility function. We selected best
composite style which is illustrated in Fig 8 and is
composition of the Blacklist, Pipe-Filter and call-Rerun
styles with a depth of three. Note that depth of style tree
must be lower than 6 in our approach because we propose
that depth 6 is threshold between architectural styles and
design patterns.

Pipe-FilterPipe-Filter

BlacklistBlacklist Pipe-
Filter
Pipe-
Filter

Call-
Return
Call-

Return

Black-listBlack-list

Fig 8. selected pattern composition

Finally, results of deploying selected style on FlashDevelop
system represent that performance is 19. It means,
performance was satisfied. In this case study we store 30
design patterns and 10 architectural styles in the repository
due to we want to represent our reconstruction approach
but we can increase the accuracy of our approach by
automatic modeling and storing runtime detected patterns.

7. Conclusion

Quality of software is a very important aspect of software
whereas maintenance of software quality is noted as a
repetitive activity after software realization. Architecture
reconstruction is a useful method for resolving this
problem. The architecture is reconstructed in order to
exploit useful specifications which come with the structural
and documented architecture. These specifications
are highlighted when using architectural styles
and patterns; hence, an impossible process is
made possible.
In this paper, generally, taking advantage of pattern, either
in architecture or in process or in knowledge management,
has been considered. The defined structure, by integrating
behavioral information of different application domains
and taking advantage of some techniques, provides
the ability of detecting and discovering

heterogeneous structures. The technology mapped in this
domain (FCA) provides us with the ability to
reconstruct software architecture by considering the
tree structure constructed for architecture styles in line with
the information obtained from different parts.
As future work, the proposed processes will be applied in a
real project which creates an efficient practical evaluation
and makes us capable of completing processes with respect
to the obtained experiences.

References
[1] ARÉVALO, G., BUCHLI, F., and NIERSTRASZ, O., 2004.

Detecting implicit collaboration patterns IEEE, 122-131.
[2] ARMSTRONG, M.N. and TRUDEAU, C., 1998. Evaluating

architectural extractors IEEE, 30-39
[3] BABAR, M.A. and GORTON, I., 2007. A tool for managing

software architecture knowledge IEEE, 11-11
[4] BASS, L., CLEMENTS, P., and KAZMAN, R., 2003.

Software architecture in practice. Addison-Wesley
Professional.

[5] BERTOLINO, A., INVERARDI, P., and MUCCINI, H.,
2003. Formal methods in testing software architectures.
Formal methods for software architectures, 122-147.

[6] BISHOP, C.M., 1995. Neural networks for pattern
recognition.

[7] BROWN, K.G., 1996. Design reverse-engineering and
automated design pattern detection in Smalltalk North
Carolina State University.

[8] FERENC, R., BESZÉDES, Á., TARKIAINEN, M., and
GYIMÓTHY, T., 2002. Columbus-reverse engineering tool
and schema for C++ IEEE, 172-181.

[9] FIRESMITH, D.G., CAPELL, P., HAMMONS, C.B.,
LATIMER, D., and MERENDINO, T., 2008. The method
framework for engineering system architectures. Auerbach
Publications.

[10] GARLAN, D., 1996. Style-based refinement for software
architecture ACM, 72-75

[11] GARLAN, D., 2000. Software architecture: a roadmap ACM,
91-101

[12] GORTON, I. and ZHU, L., 2005. Tool support for just-in-
time architecture reconstruction and evaluation: an
experience report IEEE, 514-523.

[13] GUO, G.Y., ATLEE, J.M., and KAZMAN, R., 1999. A
software architecture reconstruction method Kluwer, BV,
15-34.

[14] HTTP://WWW.IMAGIX.COM, 2013.
[15] KAASTRA, M.D.A.K., C.J, 2003. Toward a

semantically complete Java fact extractor. In Department of
Computer Science, University of Waterloo.

[16] KELLER, R.K., SCHAUER, R., ROBITAILLE, S., and
PAGÉ, P., 1999. Pattern-based reverse-engineering of
design components IEEE, 226-235

[17] KOLLMANN, R., SELONEN, P., STROULIA, E., SYSTA,
T., and ZUNDORF, A., 2002. A study on the current state of
the art in tool-supported UML-based static reverse
engineering IEEE, 22-32

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.7, July 2016 180

[18] KRAMER, C. and PRECHELT, L., 1996. Design recovery
by automated search for structural design patterns in object-
oriented software IEEE, 208-215.

[19] MOAVEN, S., HABIBI, J., AHMADI, H., and KAMANDI,
A., 2009. Decision Support System Environment for
Software Architecture Style Selection. In Proceedings of the
21th conference on Software Engineering and
Knowledge Engineering SEKE'09 (Boston, USA2009),
Knowledge System Institute, 147-151.

[20] MOAVEN, S., HABIBI, J., AHMADI, H., and KAMANDI,
A., 2008. A decision support system for software
architecture-style selection IEEE, 213-220

[21] MOAVEN, S., HABIBI, J., AHMADI, H., and KAMANDI,
A., 2008. A Fuzzy Model for Solving Architecture Styles
Selection Multi-Criteria Problem IEEE, 388-393

[22] MOAVEN, S., KAMANDI, A., HABIBI, J., and AHMADI,
H., 2009. Toward a Framework for Evaluating
Heterogeneous Architecture Styles IEEE, 155-160.

[23] MÜLLER, H.A., JAHNKE, J.H., SMITH, D.B., STOREY,
M.-A., TILLEY, S.R., and WONG, K., 2000. Reverse
engineering: a roadmap ACM, 47-60

[24] MURPHY, G.C. and NOTKIN, D., 1996. Lightweight
lexical source model extraction. ACM Transactions on
Software Engineering and Methodology (TOSEM) 5, 3,
262-292.

[25] MURPHY, G.C., NOTKIN, D., and SULLIVAN, K., 1995.
Software reflexion models: Bridging the gap between source
and high-level models ACM, 18-28

[26] NIERE, J., SCHÄFER, W., WADSACK, J.P.,
WENDEHALS, L., and WELSH, J., 2002. Towards pattern-
based design recovery ACM, 338-348

[27] PAAKKI, J., KARHINEN, A., GUSTAFSSON, J.,
NENONEN, L., and VERKAMO, A.I., 2000. Software
metrics by architectural pattern mining, 325-332.

[28] PAHL, C., GIESECKE, S., and HASSELBRING, W., 2007.
An ontology-based approach for modelling architectural
styles. Software Architecture, 60-75.

[29] POLLET, D., DUCASSE, S., POYET, L., ALLOUI, I.,
CIMPAN, S., and VERJUS, H., 2007. Towards a process-
oriented software architecture reconstruction taxonomy
IEEE, 137-148

[30] QUINLAN, J.R., 1993. C4. 5: programs for machine
learning. Morgan kaufmann.

[31] SEEMANN, J. and VON GUDENBERG, J.W., 1998.
Pattern-based design recovery of Java software ACM, 10-16.

[32] STOERMER, C. and O'BRIEN, L., 2001. MAP-mining
architectures for product line evaluations IEEE, 35-44

[33] STOERMER, C., O'BRIEN, L., and VERHOEF, C., 2004.
Architectural views through collapsing strategies IEEE, 100-
110

[34] VAN DEURSEN, A., HOFMEISTER, C., KOSCHKE, R.,
MOONEN, L., and RIVA, C., 2004. Symphony: View-
driven software architecture reconstruction IEEE, 122-132

[35] http://www.flashdevelop.org/, 2013.

