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Summary: 
Bayesian inference for partly interval-censored data is 

considered when there are two or more causes of failure with 

possibility of being masked. Cox proportional hazard model is 

adopted to estimate the regression coefficients. Simulation data 

show that the developed model is feasible and easy to implement.  
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1. Introduction 

Partly interval-censored (PIC) data that resulted from the 

studies are the subjects which are inspected periodically. 

This type of data consists of interval-censored (IC) 

observations in addition to exact observations. Suppose, 

there are 𝑁  subjects under study where 𝑛  of them have 

exact failure time, and the rest 𝑚are only observed for the 

interval that includes the true failure time. Then for the 𝑖𝑡ℎ 

subject whose failure time is exact of the observed data 

is{(𝑇𝑖 , 𝑋𝑖)}𝑖=1
𝑛 , while for the 𝑖𝑡ℎ subject whose failure time 

is interval of the observed data is {(𝐿𝑖 , 𝑅𝑖 , 𝑋𝑖)}𝑖=1
𝑚  where  

𝐿𝑖 < 𝑅𝑖 . Here 𝑇𝑖  and 𝑋𝑖denote the exact failure time and 

the vector of the covariates correspond to the 𝑖𝑡ℎ subject, 

respectively.  𝐿𝑖  and 𝑅𝑖 are representing the lower and 

upper limits of the observed interval which include the 

true failure time. If the subject failed before the first 

inspection time, then it is considered as left-censored 

observation  (0 < 𝑇𝑖 < 𝑅𝑖) .  If the subject does not 

experience the event of interest until the last inspection 

time, then it is considered as right-censored 

observation (𝐿𝑖 < 𝑇𝑖 < ∞). Otherwise, the observation is 

interval-censored.  

Partly interval-censored data can be found in different 

fields such as, medical studies and reliability studies 

(Odell et al., 1992; and Lu & Meeker, 1993). In the 

statistical literature, many researchers discussed partly 

interval-censored data considering different situations. For 

instance, Huang (1999) discussed asymptotic properties of 

the Nonparametric Maximum Likelihood Estimator 

(NPMLE) of a distribution function based on partly 

interval-censored data. Kim (2003) studied the Maximum 

Likelihood Estimator (MLE) for the proportional hazards 

model considering two methods to estimate the variance-

covariance matrix of the MLE of the regression parameter. 

Zhao et al. (2008) presented a class of generalized log-

rank tests for partly interval-censored data and established 

their asymptotic properties. Elfaki et al. (2012) proposed 

Cox’s model with Weibull distribution using the 

Expectation-Maximization (EM) algorithm to compute the 

maximum likelihood estimator of the regression parameter 

and the cumulative hazard function. On the other hand, for 

competing risks data, various approaches have been 

proposed to study the regression models regarding cause-

specific hazard function. For example, Goetghebeur & 

Ryan (1995) proposed methods to estimate the regression 

coefficients for competing risks with missing causes of 

failure by assuming that the baseline cause-specific 

hazards for other risks are proportional to that for the 

cause of interest. Lu & Tsiatis (2001) estimated 

proportional hazards regression parameters using 

parametric models to model the probability that a missing 

cause is the one of interest. Gao & Tsiatis (2005) 

developed a method to assess the effect of covariates 

where the relationship between them and the cause-

specific hazard for the cause of interest are described 

using linear transformation model. Sen et al. (2010) 

introduced a semiparametric Bayesian approach for the 

regression analysis where the cause of failure was masked 

for some individuals. 

All the literature mentioned above are about partly 

interval-censored data and focus on the case when there is 

only one event of interest. Thus, it is chosen to study the 

case of competing risks when there are more than one 

causes of failure, which can possibly be masked, by 

employing the Cox’s proportional hazard model. The rest 

of this article are arranged as follows, section 2 introduces 

the likelihood construction under Cox proportional hazard 

model framework. Section 3 describes the simulation that 

was conducted to evaluate the developed model. Finally, a 

brief discussion is presented in section 4. 
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2. Cox Proportional Hazard (PH) Model and 

the Likelihood Function 

2.1 Cox Proportional Hazard Model 

Cox (PH) model is a popular mathematical model which is 

commonly used to assess the effect of risk factors 

(covariates) on the failure time through the hazard 

function. This model has been used extensively since it 

was introduced by Cox (1972). Let 𝑇 denotes time until 

the unit experience failure, and let 𝑋 denotes the observed 

vector of covariates. Then under the Cox’s proportional 

hazard model the hazard function can be expressed as, 

𝜆(𝑇|𝑋) = 𝜆0(𝑇)𝑒𝛽′𝑋                           (2.1) 

where 𝜆0 is an unspecified nonnegative function known as 

baseline hazard, and 𝛽  is the vector of regression 

parameters. Typically, both 𝛽  and 𝑋  are assumed to be 

constant over time. A key assumption in (2.1) is that the 

relative risks (or hazard ratios) are constant with time. The 

corresponding cumulative distribution function has the 

form as presented in (2.2). 

𝐹(𝑇|𝑋) = 1 − 𝑒−𝛬0(𝑇)𝑒𝛽′𝑋
                (2.2) 

Here, 𝛬0 represents the cumulative baseline hazard. 

2.2 Likelihood Function Formulation  

Suppose, N subjects were inspected until the event of 

interest occurred. Recalling the notations from section 1, 

there is 𝑛  exact observations and 𝑚  interval-censored 

observations which may include right-censored or left-

censored observations. Then the likelihood contribution of 

the𝑖𝑡ℎ subject from such type of data can be expressed as, 

𝐿 = ∏ 𝑓(𝑇𝑖|𝑋𝑖)

𝑛

𝑖=1

∏ [𝑆(𝐿𝑖|𝑋𝑖) − 𝑆(𝑅𝑖|𝑋𝑖)]

𝑚

𝑖=𝑛+1

 

Or 

𝐿 = ∏ 𝑓(𝑇𝑖|𝑋𝑖)𝑛
𝑖=1 ∏ [𝐹(𝑅𝑖|𝑋𝑖) − 𝐹(𝐿𝑖|𝑋𝑖)]𝑚

𝑖=𝑛+1 (2.3) 

Here 𝑓 , 𝑆 ,and 𝐹  represent the density, survival, and 

distribution functions, respectively. 

The likelihood function in (2.3) is suitable if there is only 

one cause of failure and it is always observed, however, it 

needs to be modified in case of competing risks. Usually, 

in the presence of competing risks with masking, the 

observed data correspond to the 𝑖𝑡ℎ subject consist of 

(𝑇𝑖 , 𝑆𝑖 , 𝑋𝑖) where 𝑇𝑖  is the failure time, 𝑆𝑖is the subset that 

includes the causes which might be responsible for the 

failure, and 𝑋𝑖 is the observed vector of covariates. The 

likelihood contribution result from such data built on 

𝑃(𝑇𝑖 , 𝑆𝑖|𝑋𝑖) (Kuo & Yang, 2000) can be expressed as, 

 

𝑃(𝑇𝑖 , 𝑆𝑖|𝑋𝑖) = 𝑃(𝑇𝑖 , 𝐶𝑖 = 𝑗|𝑋𝑖)𝑃(𝑆𝑖|𝑇𝑖 , 𝐶𝑖 = 𝑗, 𝑋𝑖) = 𝑓𝑗(𝑇𝑖|𝑋𝑖)𝑃(𝑆𝑖|𝑇𝑖 , 𝐶𝑖 = 𝑗, 𝑋𝑖)(2.4) 

Here, 𝑗 = (1, … , 𝐾) and 𝐶 denotes the true cause of failure, whereas 𝐾 represents the number of causes.  

Suppose there are 𝑛1,  𝑛2,  𝑛3  exact, right-censored, and interval-censored observations, respectively, of the 𝑁  subjects 

under study. Let,𝑄𝑖𝑗 = 𝑃(𝑆𝑖|𝑇𝑖 , 𝐶𝑖 = 𝑗, 𝑋𝑖)be the masking probability. Then considering the models (2.1), (2.2), and (2.3), 

the likelihood function for partly interval-censored data in the presence of competing risks with masked cause of failure can 

be written as follows. 

= ∏ ∑ 𝑄𝑖𝑗𝑓𝑗(𝑇𝑖|𝑋𝑖)
𝑗∈𝑆𝑖

𝑛1

𝑖=1
∏ 𝑆(𝐿𝑖|𝑋𝑖)

𝑛2

𝑖=𝑛1+1
∏ ∑ 𝑄𝑖𝑗[𝐹𝑗(𝑅𝑖|𝑋𝑖) − 𝐹𝑗(𝐿𝑖|𝑋𝑖)]

𝑗∈𝑆𝑖

𝑛3

𝑖=𝑛2+1
 

Or, 

𝐿 = ∏ ∑ 𝑄𝑖𝑗𝜆𝑗(𝑇𝑖|𝑋𝑖)𝑒− ∑ 𝛬0𝑗(𝑇𝑖)𝑒
𝛽𝑗
′𝑋𝑖𝐾

𝑗=1
𝑗∈𝑆𝑖

𝑛1
𝑖=1

∏ 𝑒− ∑ ∫ 𝛬0𝑗(𝑇𝑖)𝑒
𝛽𝑗
′𝑋𝑖𝑇𝑖

0
𝐾
𝑗=1𝑛2

𝑖=𝑛1+1 × ∏ ∑ 𝑄𝑖𝑗 [∫ 𝜆𝑗(𝑡|𝑋𝑖)𝑒− ∑ 𝛬0𝑗(𝑇𝑖)𝑒
𝛽𝑗
′𝑋𝑖𝐾

𝑗=1 𝑑𝑡
𝑅𝑖

0
−𝑗∈𝑆𝑖

𝑛3
𝑖=𝑛2+1

∫ 𝜆𝑗(𝑡|𝑋𝑖)𝑒− ∑ 𝛬0𝑗(𝑇𝑖)𝑒
𝛽𝑗
′𝑋𝑖𝐾

𝑗=1 𝑑𝑡
𝐿𝑖

0
](2.5) 

Since the full likelihood function was specified (i.e. Eq 

2.5), the Bayesian analysis can be developed assigning 

appropriate prior distributions to unknown parameters. 

MCMC technique is employed to implement the Bayesian 

approach as the full conditional posteriors distributions of 

the parameters are not in tractable form.  

3. Simulation Study 

In order to evaluate the proposed model performance, a 

simulation has been conducted to generate failure times 

following the cause-specific hazards-based simulation 

design which is proposed by Beyersmann et al. (2009). In 

this simulation, it was assumed that, a simple competing 

risks model with two causes of failure and that each 

failure time has independent Weibull distribution. 
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Different samples are generated with different sizes and 

masking percentages. The preliminary obtained results 

suggest that the proposed model is easy to implement and 

performs well. Tables 1, 2, and 3 show the posterior 

estimations of the regression coefficients, which are 

reasonably close to that estimated from the model with 

only right-censored (RC) data (i.e. Sen et al. (2010) 

model). Moreover, Figure1(a, b, c) compares the posterior 

cumulative baseline hazards of PIC model and RC model 

under different masking percentages, while Figure2(a, b) 

compares the posterior cumulative baseline hazards of 

three different percentages of interval-censored 

observations from PIC model and the posterior cumulative 

baseline hazards from RC model within same masking 

level. Obviously, there is a substantial consistency among 

the different estimated cumulative baseline hazards, 

nevertheless, this consistency can be affected by the 

number of the complete observations (i.e. with observed 

cause of failure and exact failure time). 

Table1: Posterior summaries of the regression coefficients from the two approaches(sample size 50). 

No. of masked units Right-Censored Data 

𝛽1                       𝛽2 

Partly Interval-Censored Data 

𝛽1                        𝛽2 

 9(23%) 0.7111 (0.7011) 2.5390 (0.6350) 0.0695 (0.7199) 1.9080 (0.5828) 

19(48%) 1.2060 (0.6623) 2.2850 (0.6187) 0.6966 (0.6168) 1.7380 (0.5892) 

33(83%) 2.2290 (0.6233) 1.4210 (0.6106) 1.5850 (0.6061) 0.9654 (0.5682) 

       Standard errors are given in parentheses.  

Table2: Posterior summaries of the regression coefficients from the two approaches(sample size 100). 

No. of masked units Right-Censored Data 

𝛽1                         𝛽2 

Partly Interval-Censored Data 

𝛽1                    𝛽2 

17(23%) 1.0280 (0.4122) 1.2190 (0.3509) 0.6372 (0.4032) 0.9197 (0.3502) 

36(49%) 1.0080 (0.4457) 1.2110 (0.3329) 0.7304 (0.4359) 0.8419 (0.3376) 

55(74%) 0.9003 (0.3733) 1.3790 (0.3836) 0.5650 (0.3747) 1.0340 (0.3852) 

       Standard errors are given in parentheses.  

Table3: Posterior summaries of the regression coefficients from the two approaches(sample size 150). 

No. of masked units Right-Censored Data 

𝛽1                     𝛽2 

Partly Interval-Censored Data 

𝛽1              𝛽2 

 54(46%) 0.5310 (0.1781) 0.1149 (0.2398) 0.4574 (0.1829) 0.0639 (0.2316) 

85(73%) 0.3265 (0.1996) 0.3766 (0.2137) 0.2544 (0.1970) 0.3046 (0.2155) 

105(90%) 0.2761 (0.2203) 0.4179 (0.1908) 0.1842 (0.2179) 0.3548 (0.1922) 

      Standard errors are given in parentheses. 

 

Figure1.a: Comparison of cumulative baseline hazards from the two 
models, PIC and RC, with 23% masked observations (simulated data 

with sample size 100). 

 

Figure1.b: Comparison of cumulative baseline hazards from the two 

models, PIC and RC, with 49% masked observations (simulated data 
with sample size 100). 



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.8, August 2016 28 

 

Figure1.c: Comparison of cumulative baseline hazards from the two 

models, PIC and RC, with 74% masked observations (simulated data 
with sample size 100). 

 

Figure2.a: Comparison of cumulative baseline hazards cause-1 of three 

different percentages of interval-censored (IC) observations from PIC 

model with the cumulative baseline hazard cause-1 from RC model. 

 

Figure2.b: Comparison of cumulative baseline hazards cause-2 of three 
different percentages of interval-censored (IC) observations from PIC 

model with the cumulative baseline hazard cause-2 from RC model. 

4. Conclusion 

A regression analysis for partly interval-censored data is 

studied in this paper when there are more than one causes 

of failure that might be masked. The Bayesian method is 

adopted to estimate the regression parameters and it is 

implemented using Markov Chain Monte Carlo techniques. 

The results obtained from the simulation data demonstrate 

that the developed model performs well and it is 

applicable. Further study will use real data set to analyze, 

based on the proposed model. 
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