
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.8, August 2016 

 

55 

Manuscript received August 5, 2016 

Manuscript revised August 20, 2016 

RSA Encryption Algorithm Optimization to Improve 

Performance and Security Level of Network Messages 

Fausto Meneses, Walter Fuertes, José 

Sancho, Santiago Salvador, Daniela Flores, 

Hernán Aules, Fidel Castro 

Jenny Torres Alba Miranda, Danilo Nuela 

   
Universidad de las Fuerzas Armadas 

Sangolquí, Ecuador 
Escuela Politécnica 

Nacional 

Quito, Ecuador 

Universidad Técnica de Ambato 

Ambato, Ecuador 

 

Summary 
Asymmetric cryptographic algorithms are a robust technology 

used to reduce security threats in the transmission of messages on 

the network. Nowadays, one of the disadvantages are the 

mathematical solutions because they require a greater amount of 

calculation that leads to the need for increased use of 

computational resources. This paper aims to optimize the RSA 

encryption algorithm and thus improve the security, integrity and 

availability of information. The results show the efficiency and 

functionality of the RSA algorithm in terms of information 

security. Also, we can see that time, memory, processor and 

network performance when performing encryption and 

decryption are lower than other RSA solutions, because 

calculations are performed on the client and server. 

Key words: 
RSA; RPC; performance; security; asymmetric encryption. 

1. Introduction 

Encryption and decryption of information has proven to be 

the best way to get confidentiality and integrity of data. 

Nevertheless, there is a big challenge since threats and 

vulnerabilities are increasing with the development of 

technologies [1]. In order to face this problem, the 

scientific community has emphasized their skills in finding 

an alternative to improve information security by ensuring 

the information availability. Nowadays, different 

algorithms have been promoted to provide security but at 

the same time, generates a higher cost and consumption of 

computational resources. One of these mechanisms is the 

RSA asymmetric encryption. RSA is the most widely used 

worldwide algorithm, which provides security through 

encryption of data that transit in the Web and ensures 

information confidentiality and authenticity [2]. This 

algorithm also known as public key algorithm, became 

very popular due to its simplicity in calculation. However, 

the security of the RSA algorithm depends on the size of 

the prime numbers used in factorization. It is affected by 

the increase of computational cost [3][4] related with 

prime factorization, which implies bigger key length to 

ensure security. The development of this work includes the 

study of modeling techniques in order to determine which 

one is feasible to represent the information model. These 

techniques include standard modeling languages such as 

Unified Modeling Language (UML); frameworks such as 

the Model-Driven Architecture (MDA); and network 

management, for example, the RSA model. Subsequently, 

the existing approaches for modeling encryption systems 

are studied. With these results, we designed a model for 

encryption and decryption of information based on RSA. 

Finally, for validation, in the Application Programming 

Interface (API) implementation we made a library that 

allows us to encrypt the message in the client side and 

send it together with public keys through the network. The 

data is retrieved on the server side and through the access 

to the database, private keys are recovered (decryption 

process). To optimize the security of the model, private 

keys are periodically updated through a mixing process. 

In order to measure the level of efficiency of the proposed 

model, another model was designed and implemented, 

called in this study Baseline RSA Model, which works 

with the factorization of 300 digit prime numbers. The 

main contribution of this research is the development of a 

mathematical and software optimized model that provides 

the following improvements: (1) the application of a 

mathematical model that combines modular and 

probabilistic calculation; (2) a matrix capable of 

generating encrypted messages with the same information 

value, but with different meanings; (3) a mixing process 

for updating private key; (4) the management of messages 

through a RPC; (5) the conversion of a deterministic basis 

project to a probabilistic project with the generation of 

random values; (6) the work with less complex structures 

reducing the consumption of time and resources; and (7) 

increases security by hiding private keys in the executable 

file.  

The remainder of this paper has been structured in the 

following way. Section II describes the works found in 

literature related with the research. Section III describes 

the definition and the statement of the problem. Section IV 

compares the baseline RSA model with the Optimized 

RSA model. Section V presents the analysis of the results 



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.8, August 2016 

 

56 

 

and the discussion. In Section VI, an analysis of security 

between baseline RSA and optimized RSA models is done. 

Lastly, Section VII finalizes the study with conclusions 

and future work lines. 

2. Related Work 

In the literature, there are different works that guarantee 

information security and increase performance efficiency, 

reducing the consumption of resources (memory, CPU 

time, encryption, and decryption time). For instance, the 

work proposed by Gupta and Sharma in [5], formulated an 

hybrid encryption algorithm based on the RSA algorithm 

and Diffie-Hellman key exchange algorithm, for 

increasing security regardless of the computing 

performance. Nagar in [6], presents a new method to 

exchange indexes that contain the values of public and 

private keys stored in a database. In a comparative analysis, 

Surbhi in [7] describes security threats in the transmission 

of e-mail over the Internet. This analysis includes a 

comparative study of different encryption algorithms and 

concludes choosing the best technique that deals with the 

problem of computational cost and security. Mahajan in 

[8], sets out a new solution using CUDA frameworks, 

which proposes a new algorithm that calculates the value 

of the module, processing small and large prime numbers. 

Shahzadi et al. [2] presents the evaluation of asymmetric 

encryption algorithms: RSA, ElGamal & Pallier, which 

compare these algorithms in terms of encryption and 

decryption time, memory use and performance. A 

comparative assessment in [9] and [10] is performed for 

different commonly used symmetric-key algorithms such 

as DES, AES and RSA considering several parameters 

such as, computation time and memory use. In [8], it is 

proposed a method for encrypting data using images, 

generating a different encrypted file each time it is used to 

encrypt the same message. In [11], the encryption is 

optimized through the Miller-Rabin algorithm for 

determining whether a given number is prime, reducing 

key generation time in any algorithm. Sinjan in [12] 

describes an implementation of RSA encryption algorithm 

in C. It consists of generating two random prime numbers 

and a prime number (n) also called Euler function. These 

three numbers are used to generate a public and private 

key. In some cases, this calculation takes a long time. In 

[2] a third prime number is used, in order to make a 

module n difficult to decompose. In [13] the extended 

Euclidean theory is applied, in order to obtain the keys to 

solve the transmission problem. Finally, in [14] and [15] 

the distribution of "n" is eliminated since the finding of its 

factors compromise the security of the algorithm. 

Although previous work are concerned with the problem 

of RSA performance, none of them emphasizes on how to 

improve the security level. Not even a generic solution 

was achieved since these solutions focus on high 

consumption of resources and software costs, without 

setting a software engineering process. Comparing these 

studies with our work, we have achieved an optimized 

RSA model that combines modular and probabilistic 

computation for encryption and decryption. 

3. Problem Statement 

During the study of the RSA algorithm, we have identified 

the following problems: a) the mathematical solutions of 

cryptographic algorithms require a large amount of 

calculation, which implies a higher consumption of 

computing resources, thus requiring greater bandwidth; b) 

in order to store information in a database, for example 

four bytes, encrypted fields of approximately 600 bytes are 

required; c) increasing threats and vulnerabilities, due to 

the development of technologies [16,17], result in the 

improvement of information security, which means higher 

cost and consumption of computational resources. This 

work defines a generic model that optimizes the RSA 

method for information encryption, combining modular 

and probabilistic calculation. This generic RSA model 

meets all the requirements and processes based on 

standard models accepted like cryptographic protocols. 

4. Comparison between the Optimized and 

the Baseline Model 

This section shows the comparison between the baseline 

algorithm and the optimized RSA model. 

4.1 Baseline RSA Model  

The baseline RSA model used in this work is based on the 

model proposed by R. Johnsonbaugh [18]. 

 

Public and private key generation: 

i.  Two prime numbers, p and q, are chosen. Each one 

must have at least 300 digits. 

ii.  Calculate z=p*q, where z is the module, which is 

public. For both, public and private keys. The result of 

this multiplication is considered the key length. The 

security of this model depends on this key, due to the 

impossibility of finding p and q. 

iii.  Calculate ɸ=(p-1)*(q-1), where ɸ is the Euler function. 

iv.  Choose an integer n such that mcd(n,ɸ)=1, where n is a 

prime number and public key. 

v.  Finally, calculate s, where 0<s<ɸ and n*s mod ɸ=1, 

used in the decryption process. 

 

Encryption process: 



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.8, August 2016 

 

57 

 

i.  A sends a message M to B. 

ii.  For each character of the message M, its position will 

search into a string called Alf (ASCII alphabet), the 

same that will be represented with a three digit number. 

iii.  These numbers are concatenated to form an integer a, 

where 0<a<z-1. 

iv.  The message is encrypted using the public key (z;n) 

and the integer a. So, c = a
n
 mod z. 

v.  The encrypted message c,z and n, are sent to the 

receiver. 

 

Decryption process: 

i.  The encrypted message c, z and n are received by B. 

ii.  The message c is decrypted using the private key (ɸ;s) 

using the formula d = c
s
 mod z, such that n*s mod ɸ = 1 

iii.  Resulting in d=a. Which transforms in the original 

message M. 

 

Example: Using the algorithm described above, we will 

perform the encryption and decryption process for the 

message Hello. The following values were considered: 

p:203956878356401977405765866929034577280193993

31434826309477264645328306272270127763293661606

31440881733123728826771238795387094001583065673

38328279154499698366071906766440037074217117805

69087279284814911202228633214487618337632651208

35748216479339929612499173198362193042742802438

03104015000563790123 

 

q:531872289054204184185084734375133399408303613

98213085664529946493095217860604584887712914782

03879964281755642282047858461412075324629363398

34139412401975338705794646595487324365194792822

18947309227399358058796457165967808448415260388

10941769955948133022842320060017521281689012935

60051833646881436219 

 

z=p*q:10847901175976939372717630845745705118586

82020282296481906670181023891548155144212725117

88818630907941383004277918921724359698326811100

79821228777715637385402516046241697020771301040

26843303779002492729208211964189944346895421954

44008546643909734553918562196237000260811736016

99583045009450660122318088368811836719361773293

95858107203182196602117107338082151740484847947

31011578459721161876052257146687991978315725043

74481352069146781952182540972542192428274064071

57677189238510364385098040691105414152480007206

06907056103122751808376882405235966768597369796

819161915929329975604623470108492326664937 

 

ɸ=(p-1)*(q-1): 

10847901175976939372717630845745705118586820202

82296481906670181023891548155144212725117888186

30907941383004277918921724359698326811100798212

28777715637385402516046241697020771301040268433

03779002492729208211964189944346895421954440085

46643909734553918562196237000260811736016995830

45009450660122318014785895095658745614208898450

65523415311626044142546884751019371005594896828

31333211096112168725062086504041204843134019133

60375884657661465294203386544924566877416240579

15624116245278819237232254192725553904697031025

01835262272692412213406592437962333835647493323

944496886794067260314259844881438596 

 

n: 29 

 

Alf:!#$%&'()*+,-./0123456789:;<=>?@ 

ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`abcdefgh

ijklmnopqrstuvwxyz{|}~•Ã‚â‚¬Ã‚Â�Ã‚â€šÃ‚Æ’Ã‚â€žÃ‚

â€¦Ã‚â€ Ã‚â€¡Ã‚Ë†Ã‚â€°Ã‚Å Ã‚â€¹Ã‚Å’Ã‚Â�Ã‚Å½Ã‚Â

Ã‚Â�Ã‚â€˜Ã‚â€™Ã‚â€œÃ‚â€�Ã‚â€¢Ã‚â€“Ã‚â€”Ã‚Ëœ

Ã‚â„¢Ã‚Å¡Ã‚â€ºÃ‚Å“Ã‚Â�Ã‚Å¾Ã‚Å¸Ã‚Â¡Ã‚Â¢Ã‚Â£Ã

‚Â¤Ã‚Â¥Ã‚Â¦Ã‚Â§Ã‚Â¨Ã‚Â©Ã‚ÂªÃ‚Â«Ã‚Â¬Ã‚ÂÃ‚Â

®Ã‚Â¯Ã‚Â°Ã‚Â±Ã‚Â²Ã‚Â³Ã‚Â´Ã‚ÂµÃ‚Â¶Ã‚Â·Ã‚Â¸Ã‚

Â¹Ã‚ÂºÃ‚Â»Ã‚Â¼Ã‚Â½Ã‚Â¾Ã‚Â¿Ãƒâ‚¬ÃƒÂ�Ãƒâ€š

ÃƒÆ’Ãƒâ€žÃƒâ€¦Ãƒâ€ Ãƒâ€¡ÃƒË†Ãƒâ€°ÃƒÅ Ãƒâ€¹Ãƒ

Å’ÃƒÂ�ÃƒÅ½ÃƒÂ�ÃƒÂ�Ãƒâ€˜Ãƒâ€™Ãƒâ€œÃƒâ€Ã

ƒâ€¢Ãƒâ€“Ãƒâ€”ÃƒËœÃƒâ„¢ÃƒÅ¡Ãƒâ€ºÃƒÅ“ÃƒÂ�Ãƒ

Å¾ÃƒÅ¸ÃƒÂ ÃƒÂ¡ÃƒÂ¢ÃƒÂ£ÃƒÂ¤ÃƒÂ¥ÃƒÂ¦ÃƒÂ§Ã

ƒÂ¨ÃƒÂ©ÃƒÂªÃƒÂ«ÃƒÂ¬ÃƒÂÃƒÂ®ÃƒÂ¯ÃƒÂ°ÃƒÂ

±ÃƒÂ²ÃƒÂ³ÃƒÂ´ÃƒÂµÃƒÂ¶ÃƒÂ·ÃƒÂ¸ÃƒÂ¹ÃƒÂºÃƒÂ

»ÃƒÂ¼ÃƒÂ½ÃƒÂ¾ 

 

 Encryption: 

For the message Hello, the sender calculates 

a=039068075075078 

Then, c = a
n
 mod z, being the result: 

14549175903481935273327257627482397794834294736

56018684682040088997992505764365408229999817830

14808074406251572201590306557613910014872312309

55501983433332406369957571139692142691981643327

83334035572338339144420896519767338982787802777

84741956555289156341832700552826584133667398599

57185236007882922095775984701737268075528588901

76177602286179199768824924572337769077745208050

2578270804595703808 

This value is sent to the receiver, together with the values n, 

p and q. 

 Decryption: 

Based on the received valued, the receiver calculates s: 

56109833668846238134746366443512267854759414842

18774906413811281158059731836952824440264938894



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.8, August 2016 

 

58 

 

70213489912091092684077884619129276609142059718

72988184331303806117480560501831575695035871205

36787943927909697648090637643173597010109172855

86089188282175440838946053449624888289743081881

63841986173046472490271871184441787659701198882

69948699887720917978690783194927781063421880146

44826953945407769267562516400213128498969064484

15737334436179992901051999370299483848704692650

80814394372131823640856487203752865024294988060

43975494513926270069344443644632761218866344779

02325975927965824300479230111088929 

Applying d = c
s
 mod z: 039068075075078, which means 

that d = a, producing the decrypted message Hello. 

4.2 Optimized RSA model 

Consists on introducing the following variants into the 

baseline model: 

a. Each character of the message has its own RSA value. 

b. The value n is randomly generated. 

c. To mix the characters in the message, a matrix (Cod) is 

used and the indexes of the rows in the matrix are 

randomly generated. Example: Assuming that we want to 

encrypt the message Hello; Alf and Cod are given by the 

table below, also indexes of the rows are generated in the 

order 3 1 and 2; then the encrypted message is generated 

as ooole. 

 

Fig. 1. Encryption table          

The above example is fairly simple. In practice, the array 

has m rows by 221 columns, where m is an integer 

between 1 and 221 (i.e. factorial). All rows represent 

chains mixed randomly. Therefore, the process of 

generating the Encryption table has another level of 

complexity. In consequence, it will not be analyzed in this 

study due to space limitations. 

Public and private key generation: 

i.  Two prime numbers are chosen, p and q, such that its 

product does not exceed the number of printable ASCII 

characters. 

ii.  Calculate z=p*q, where z is the module, (private). The 

result of this multiplication is considered the key length. 

iii.  Generate the mix of the message using the matrix Cod. 

The security of this system depends on this key and Alf, 

because they are updated periodically and the indexes 

of the rows are generated randomly. 

iv.  Calculate ɸ=(p-1)*(q-1), where ɸ is the Euler function. 

v.  Choose an integer n such that mcd (n,ɸ) = 1, where n is 

a prime number and the public key. 

vi.  Finally, the number s is calculated, where 0 <s <ɸ and     

n*s mod ɸ = 1, used in the decryption process. 

vii.  Repeat from step iii while there are characters available. 

 

Encryption process: 

i.  Capture the message (msj). 

ii.  Generate a random prime number between 4 and 9 

digits (n). 

iii.  Generate randomly the number of rows of the matrix 

Cod (nf between 0 and k-1). 

Generate randomly the array of indexes of the code (alt) 

of nf elements. 

Retrieve from the database p, q, k, Alf and Cod. 

iv.  For each character of the message (msj) perform: 

Calculate the position of the character in the alphabet 

(ps), formula (1). 

Apply formula (2) to calculate the basis of formula (3) 

(a). 

Apply formula (3) to get (x). 

Obtain from the alphabet, the character found at 

position x which is part of the encrypted message. 

v.  Next character of the message (msj). 

vi.  As final result, we have the encrypted message from 

the original message. (msj) to (msjc). 

vii.  Send to the receiver msjc, n, nf and alt. 

viii.  

Decryption process: 

i.  Receive the random number (n), the number of rows of 

Cod (nf), the array of indexes of the code (alt) and the 

encrypted message (msjc). 

ii.  Calculate the key (s) using formula (4) 

 Retrieve from the database p, q, k, Alf and Cod. 

iii.  For each character of the encrypted message (msjc): 

 Calculate the position of the character in the alphabet 

(a), formula (5). 

 Apply formula (6) to get (x). 

 Apply formula (7) to calculate the position (ps). 

 Obtain from the alphabet, the character found at 

position ps which is part of the decrypted message 

(original message). 

iv.  Next character of the encrypted message (msjc). 

v.  As final result, we have the decrypted message 

(original message) from the encrypted message. (msjc) 

to (msj). 

vi.  Display the encrypted message (msj). 

The mathematical algorithms proposed for encryption and 

decryption obeys to the following mathematical 

expressions: 

(1)  ps=Position(Alf,msji )  

(2) a=Position(Alf,Codalti mod k,ps) )   

(3) x=a
n
mod z  

(4) s=Calculates (n,Ф)  

(5) a=Position(Alf,msjci )   



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.8, August 2016 

 

59 

 

(6)  x=a
s
 mod z  

(7)  ps=Position(Codalti mod k, Alfx )   

Where:    

Alf  = Alphabet of the message 

Cod = Code for encrypt and decrypt messages (matrix of 

characters). Alf and Cod are retrieved from a database. 

i = 0,1,2,3,……, length of the message minus 1 

k = number of rows of the matrix Cod 

msj = original message 

msjc = encrypted message 

n = exponent of the bases between 4 and 9 digits; prime 

number randomly generated. 

nf = number of rows of the matrix Cod randomly generated 

(between 0 and k - 1). 

a = position of an element of msj in Alf. 

ps = value calculated in formula (1). 

alt = array of indexes randomly generated. 

z = p * q = length of Alf. p and q are prime numbers. 

Ф = (p-1) * (q-1) 

s = inverse of n mod Ф 

Position (text, car) = function that calculates the position of 

car within text, if not found, returns -1. 

Calculates (n, Ф) = function that calculates s such that c = 

a
n
 mod z and d = c

s
 mod z. 

msjc, n, nf and alt are public keys. 

p, q, k, Alf and Cod are private keys. 

 

Example: Using the algorithm described above, we will 

perform the encryption and decryption process for the 

message Hello. The following values were considered: 

Alf:Â �Â›ÃŸlÃ®LÃ¦Ã˜kÂ«qÃ±ÂƒVÃ�Ã‚8j5Ã¶}9sC_

Â ¤gÂ ẅÂ • 4yÃ #́Â –

Â§~Ã¡ÂœxÂ…Ã§ZaÂ‚Ã�Â’Â¸|Ã·Â´Ã‘UÃ³KÃ¢Â˜?•Ã °

SÃ’Ã™1`O.ÂªÃŒÂ¦ÃŽc@Â™{NÃ• >Ã ªÃ »Ã  ÃˆÂ£,$Ã‹

%XÂŠpÃ¼Ã¬Â“ Ã‰Â³Â‘Â„)ÂˆÂ²Âº^fzÃ…Â‹ÂŒÂ°Ã

šHo&GÂšEPÂ¢AÃœBÂ�mÂ”Â �DÃ²Ã€Ã¸Â�QÃ-

FÃº7Ã¤ÃžrÂ¶Â•Â¾;Â¬ÂŽbÂ¼vÃ�Âž3*Â»uÂ±=\Ã†Ã¹

Â®Â©IÂ‰ÂŸÃ•+[Â Ã“ÃµÃ„('0Ã›J:Ã¯Â†Ã¨<Âµ]Ã«!-

Â ¡TÂ ¹2Ã £MÂ —Ã ¥Ã —Ã –Â·edÂ¿"ÃŠÂ-

Â¥ÃƒÂ€Ã‡6/Â¯RnÃ�WhÂ½tYÂ‡Ã”Ã©i 

 

nf: 3 

 

Cod: 

 Row 1: 

Ã²Â¤Ã¥Â½|!ÂŒwaxroÃ¨Ã¶7ÃŸ;VÂ¥3JÃ£Â¿=SvÃŒ*

Â‰Â¼Â¢Â°Ã¤MWÂ±seÃ±Ã“Ã¬dlÂ„Â�ÂžD\Âœ%Ã´

nO#Â´Ã‚",Â²Â¡9Ã¹Ã¼•]Ã†}+Ã€Ã«2QFÃ»XjÃºÂ¶:0Ã

™ÂªfYÂ–

Â¸Ã³`Ã˜5Â¬Â…~1BÃ’Â¾Â·ÃˆUÃ¦/ÃªiÃ Â€Â•Â-

Â®ZuÂ“Ã°y$Ã©NmÂ‚_)Ã�Ã‡zPÂ«Â‡RÃ…Â”.ÂŽÃ„

Â‘?Ã�HÂ˜@Ã‘8GÃšÃ�cL >gÂ¹<ÃœÃŽÃ®Â†'Â�-

Ã›Âµ(qÃƒÃ¢Ã‰CTÂ—

hÃ µkÃ �Â¯Ã§ÂšÂ£Â©Ã·Ãž4Ã�ÂƒÂ¦Ã¡Ã¸Â¨Â�Â’Â‹^

ÂŸ[IÃŠÂ›Ã—Ã”Ã‹&ÂˆbAKÂ»Â pÃ Â™Â§Ã¯Ã–

Â �ÂºÃ•6Â³EÂ�{tÂŠ 

 Row 2: 

?IÃ³@Â‘Â¬Ã…Ã¨Âœ&}Â¢Â˜JnBÃž{sÃŽ9iyÃ‘ÃŒ^Â¨

ÂƒÂ¶%G_•5Ã  `QÃª'Ã¢Ã£rÂ¥Â«ÃŸjp"6Ã©wÂ©H2Â´

Ã¸ÂŽÃ»Ã˜Ã�eÃ¹Ã™Â³Ã€;TÃ†Ã¥ÃºC|Ã‹Y\]ÃšÂ¯DP<

Â›,fÃ¦ÂŒ#Ã›EÂ—Â Â‡Ã‰Ã’*Â†bÂ¦(Ã«d1ÃŠ[SÃ‡F- 

Â¸Â„Â�Â½oÃ�Â�LUXÂ•3Ã·ctÂ¤8Ã�+Ã•Â–

Â �Ã¼WÂ”k~z=Âˆ$Ãˆ)ÃÂžÃ–

Â¿VZÂ™Â‚Â�Â“Â£NÃ„Ã¶RÃ°Â±ÂŸÂªMmÂšÂ²Ã±Ã

�ÂµqÂ€Ã�Ã”Ã§Â°Â¹Â®Ã‚7Ã´Ã¡Ã—

Â  Ã¯ÃœAÃƒÂ�.lÂ¼Â¡4Ã®/Â‹vÂŠÂ…x!Ã²Ã¤uÃ¬:>h

ÂºÂ§ÃµÃ“KÂ·aÂ’Â¾0Â‰gOÂ» 

 Row 3: 

Ã¨Â±Âµ{ÂŽjÃ³vÂ¢Ã‹Â«tÂ¥gKÂšÂ¡^WÃ”Â»Ã–

EÃ“Â·]fÃ‘Â¼Ã¶kÂ¯IÃ‰q$Ã’oÃŽÂ�Â¶Â�Ã�+Â˜eÂ

„w~Ã-

cÃž*;?JÂ¨N0Â�ZÃ‚Â”ÂƒÂ…ÃƒÃ±Â´Ã¦)ÂŠÃœÃ¸#Âˆ,

Ã �4FÃµÃ�Â†VlHAÂ•Ã‡\sÃ€S&@:Ã• Â  UÂ§ÃšÃ®Ã

¢-Ã ¹Ã ¼ !Ã £Â —

/ÃˆÃ„uÂ¸nÂ’ÂºÂ¦Â¾Ã˜1Â°Â�ÂªMd3Â›ÂŒÂ³Ã¥<ryÂ–

"9ÂŸÂ®Â™(zÃ¡D.>PÃ¯8ChÃªÃŸipRÃ¬Â¬ÃŒbÂ‰Â

�OÃ…Ã›BÂ¿Ã»Ã amÂ Â£Â‚_ÃŠ`Ã™6=|Ã—

GLxÂ½Â¹Ã·ÂžQÃ†•}%Ã«Â€2Ã¤Ã°Ã²5Â‘Ã§7'XÃºÂ‹Y

Ã © Ã � [Â“Ã´Â©Â¤TÃ•Â²Â‡Âœ 

 

p: 13; q: 17; z=p*q: 221; ɸ=(p-1)*(q-1): 192   

 

 Encryption: 

The sender captures msj: Hello and generates n: 7799; alt: 

2 0 1 

For each value of i = 0, 1, 2, 3, 4 calculate: 

    ps = Position (Alf, M [i]): 

    110 196 3 3 111 

    a = Position (Alf, Cod [alt [i% 3]] [ps]) 

    169 218 72 64 92 

     x = a
n
 mod z (a, n, z): 

     169 75 149 165 105 

Encrypted message: msjc: Ã„N3[Ã… This last value, with 

the values of n and alt, are sent to the receiver. 

 Decryption: 

The receiver, receives the values of msjc, n and alt, and 

calculate s: 91 

For each value of i = 0, 1, 2, 3, 4 calculate: 

     a = Position (Alf, M.charAt (i)): 

     169 75 149 165 105 

     x = a 
n
 mod z (a, s, z1): 

     169 218 72 74 92 

     ps = Position (Cod [alt [i% 3]], Alf.charAt ((int) x)): 

     110 196 3 3 111 

Decrypted message: Hello 



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.8, August 2016 

 

60 

 

5. Results and Discussion 

5.1 Results Analysis 

All tests were performed into two host Dell Inspiron, Intel 

®  Core (TM) i5-4200 CPU @ 1.60 GHz, 4 GB of RAM, 

with Ubuntu Server 14.0, the Java development 

environment JDK, the NetBeans IDE 8.0 and the database 

engine MySQL 5.6. To evaluate the quality of the software, 

13 tests were performed, which consisted of varying the 

number of characters: 1,2,3,4,5,6,7,8,9,10,50,100 and 200 

ciphers in a chain. The variables evaluated were memory, 

processor, latency and statistical reporting of the network, 

encryption and decryption time; and security level of the 

system. In the development of the tests, in order to obtain 

measurements of the CPU and network performance, two 

free software tools were used: System Activity Report 

(SAR), used to measure memory and processor 

consumption, and even statistical reporting of the network; 

and My Trace Route (MTR) to measure network latency. 

These tests were taken in real time for the client and the 

server at the time to encrypt and decrypt the message. To 

calculate encryption and decryption time, a program was 

developed in Java. For this analysis, the results obtained 

from the baseline RSA model and the optimized RSA 

model were compared. The techniques used for this 

evaluation were: 

(i) Histograms of density: when comparing the medians 

of Fig. 2-a. Histogram of Baseline Time-Client (TBC) and 

Fig. 2-b Histogram of Optimized Time-Client (TOC), each 

one with 33.0ms and 1.00ms respectively, which 

corresponds to a rate of 8.94% and 9.09%; we can see that 

TOC>TBC (9.09%>8.94%) with a difference of 0.15% 

which represents the 99.85% of the observations, showing 

that the time was radically optimized. Furthermore, when 

comparing medians of Fig. 3-a Histogram of Baseline 

Time-Server (TBS) and Fig. 3-b Histogram of Optimized 

Time-Server (TOS), each one with 33090ms and 2.00ms 

respectively, corresponding to a percentage of 95.38% and 

5.88 % respectively; we can see that the TOS<TBS 

(5.88%<95.38%) with a difference of 89.5%. However, 

the decryption time was drastically optimized. Considering 

the maximum times of the optimized model (11ms) and 

the baseline model (369ms), we can see that the time used 

to send messages with the proposed method is 33 times 

faster than the baseline. Likewise, the same analysis was 

performed on the rest of the variables getting a positive 

response with an efficiency improvement from 80% to 

99%. 

  

Fig.  2-a.  Baseline Time-Client       Fig. 2-b. Optimized Time-Client  

(ii) Analysis of Variance (ANOVA): for this, a linear 

regression model was applied. As an example, the CPU 

Client usage (Fig. 4-a) and CPU Server usage (Fig. 4-b), as 

shown below. In Figs. 4-a and 4-b the results of linear 

regression were positive slopes (β1, β2) which means that 

had an increasing behavior. From Fig. 4-a the equation ① 

was obtained; and from Fig. 4-b the equation ②, obtaining 

an estimation of the regression lines: 

 

① CPU Usage-Optimized-Client = - 1.590 + 1.096 * CPU 

Usage-Baseline-Client 

② CPU Usage-Optimized-Server = 5.8168 + 0.6506 * 

CPU Usage-Baseline-Server 

  

Fig.  3-a. Baseline Time-Server     Fig. 3-b. Optimized Time-Server 

  

Fig. 4-a.  CPU-Client usage                       Fig. 4-b. CPU-Server usage 

 

It was necessary to determine whether the equations 

obtained were the best models for the data, for this reason, 

to value the adjustment of these ciphers in linear 

regression models of Fig 4-a and Fig. 4-b, the analysis of 

variance of an F factor (ANOVA) was performed, which 



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.8, August 2016 

 

61 

 

was used to perform a hypothesis test. This leads to the 

analysis for Fig. 4-a: (1) Null Hypothesis H0 β1=0; (2) 

Alternative Hypothesis H1 β1≠0; (3) Statistic Test is 

F=718.39, with a significance level of α=0.05. According 

to the distribution table Ft=4.84, we can deduce that the 

null hypothesis is rejected. Therefore, given the magnitude 

of the statistic test, we can deduce that the significance 

level of contrast is extremely low. Consequently, this 

study was optimal, concluding that the research is valid 

and reliable. On the other hand, in order to check the 

validity in the server side, we proceed with the same 

previous analysis but with Fig. 4-b: (1) Null hypothesis H0 

β2=0; (2) Alternative Hypothesis H1 β2 ≠ 0; (3) Statistic 

Test is F=23.23, with a significance level of α=0.05. 

According to the distribution table Ft=4.84, we can deduce 

that the null hypothesis is rejected. Consequently, we 

conclude that the dispersion of Y is extremely low 

compared with X, therefore, the study was optimal and 

that research is effective. 

(iii) Coefficient of determination (R
2
): this value depends 

on: (1) SCYY known as the sum of the squares around the 

mean of Y; and (2) SCR is designated as the sum of 

squares due to regression. In Fig. 4-a we get values of SCR 

= 65841 and SCYY=72806, obtaining a result of 

R2=SCR/SCYY=0.9043, which means that the 90.43% of 

the variability data is collected by the regression line. With 

this analysis we can deduce that the equation obtained is 

optimal for a good data model. This study was conducted 

with all the variables achieving a positive result, 

concluding that the research about RSA is integral and 

recommended. 

5.2 Discussion 

In the present study the optimization of RSA encryption 

algorithm is confirmed through a generic model, able to 

encrypt and decrypt information which has increased the 

efficiency and security of messages transmitted over the 

network. When comparing the results obtained with the 

baseline model with the optimized model, we detected 

differences concerning the mathematical model, the 

development tools and the algorithms used. The base 

project has basic features such as the use of large prime 

numbers p and q, which in this case were found on the 

Internet. Being public, it can attempt the security of this 

method. On the other hand, these numbers limit the 

message, because its length depends on the digits 

comprising p and q. However, the proposed project was 

radically optimized because it allows to send encrypted 

and decrypted messages whose length is limited to the 

width of the channel and the processor, thus ensuring that 

the restriction is not due to the algorithm but to the 

infrastructure. Finally, we can see that the optimized RSA 

model responds favorably to three technical and legal 

measures which prove the level of security: confidentiality, 

availability and integrity. Confidentiality was achieved by 

not disclosing the parameters that are essential for the 

encryption and decryption. For this, we used a database 

that is accessed via username and password, and 

specifying the computer that can connected to it according 

to an IP or a range of IPs. Integrity was achieved by 

generating the Dynamic Link Library (DLL) to which only 

the author of the new RSA encryption method will be 

allowed to manipulate and modify. Availability refers to 

the accessibility of the user to send messages that require a 

higher degree of security to destination. 

6. Analysis of security between Baseline RSA 

Model and Optimized RSA Model 

The main vulnerability of the baseline RSA model is that 

anyone can access to private keys (i.e. large prime 

numbers) when editing the executable code (i.e. jar), as 

shown in Figure 5. In the optimized RSA model it does not 

happen because private keys are encrypted. 

While the baseline RSA model generates encrypted 

messages completely asymmetric, the optimized RSA 

model is semi-asymmetric because it generates encrypted 

message consisting of 2-byte characters where 1 byte 

come from the original message and vice versa. Being 

considered the printable characters, the 255 of the ASCII 

table. 

 

Fig. 5. Fragment of executable code (jar). Baseline RSA Model  

The probability that the optimized RSA model is violated 

is inversely proportional to the function f (u,v,w). Where u 

is a function of the number of characters in the message, v 

is a function of the number of secret keys whose maximum 

value is the factorial number of 221 and w is a function of 

the power of the formula RSA (n). 



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.8, August 2016 

 

62 

 

7. Conclusions and Future Work 

This research focused on optimizing the RSA encryption 

algorithm. To achieve this, we designed and implemented 

a generic solution capable of encrypt and decrypt 

information, increasing efficiency and security of 

messages transmitted over the network. This solution 

included the review of the model, optimization of the 

mathematical expression model, which has improved the 

encryption method, and implementation of algorithms for 

secure transmission of messages on the network. We used 

Netbeans 8.0 which is free software that allowed the 

development of a new API with Java. Within this API we 

declared the method of the new RSA algorithm. The 

results show the functionality, security and usability of our 

study, but especially show quantitatively that the algorithm 

has been optimized.  

As future work we planned to complete this algorithm in a 

DLL multiplatform. 

Acknowledgments 

This work has been partially funded by Ecuador Contest of 

Research Projects in Advanced Network CEDIA CEPRA 

IX-2015-01-RSA, under the “RSA encrypted algorithm 

optimization to improve performance and security level of 

Web messages" project.  

 

References 
[1] X. Zhou and X. Tang,  “Research and implementation of 

RSA algorithm for encryption and decryption”, in 6th 

International Forum on Strategic Technology (IFOST), 

2011,1118-1121. 

[2] R. Patidar and R. Bhartiya, “Modified RSA cryptosystem 

based on offline storage and prime number” in: IEEE 

International Conference on Computational Intelligence and 

Computing Research (ICCIC), 2013, 1-6. 

[3] P.S. Yadav, P. Sharma and D.K. Yadav, “Implementation of 

RSA algorithm using Elliptic Curve algorithm for security 

and performance enhancement” in International Journal of 

Scientific & Technology Research 1(4), 2012, 102-105. 

[4] G. Singh and A. Supriya, “A study of encryption algorithms 

(RSA, DES, 3DES and AES) for information security” in 

International Journal of Computer Applications 67(19), 

2013, 33-38. 

[5] Q. Liu, Y. Li, T. Li and L. Hao “The research of the batch 

RSA decryption performance” in Journal of Computational 

Information Systems 7(3), 2011, 948-955. 

[6] ISCI, “Enhancing security features in RSA cryptosystem” 

in: Computers Informatics (ISCI), 2012 IEEE Symposium 

on. 2012, 214-217. 

[7] L. Dongjiang and W. Yandan, “An optimization algorithm 

of RSA key generation in embedded system” in Journal of 

Theoretical and Applied Information Technology 7(3), 2012, 

948-955. 

[8] S. Mahajan and M. Singh, “Analysis of RSA algorithm 

using GPU programming” CoRR abs/1407.1465, 2014. 

[9] M. Gadelha, C. Costa Filho and M. Costa, “Proposal of a 

cryptography method using gray scale digital images,” in 

International Conference for Internet Technology and 

Secured Transactions, 2012, 331-335. 

[10] H. J. Wang, “Key generation research of RSA public 

cryptosystem and matlab implement,” in IEEE International 

Conference on Sensor Network Security Technology and 

Privacy Communication System (SNS & PCS), 2012, 639-

642. 

[11] S. Nagar and S. Alshamma, “High speed implementation of 

RSA algorithm with modified keys exchange,” in 6th 

International Conference on Sciences of Electronics, 

Technologies of Information and Telecommunications 

(SETIT), 2012, 639,642. 

[12] R. Minni, K. Sultania, S. Mishra and D. Vincent “An 

algorithm to enhance security in RSA,” in Fourth 

International Conference on Computing, Communications 

and Networking Technologies (ICCCNT), 2013, 1-4. 

[13] L. Wang and Y. Zhang, “A new personal information 

protection approach based on rsa cryptography,” in IT in 

Medicine and Education (ITME), 2011 International 

Symposium on. Volume 1, 2011, 591-593. 

[14] P. Yellamma, C. Narasimham and V. Sreenivas “Data 

security in cloud using RSA,” in Computing, 

Communications and Networking Technologies (ICCCNT), 

2013, 1-6. 

[15] R. Dhakar, A. Gupta and P. Sharma, “Modified RSA 

encryption algorithm,” in Advanced Computing 

Communication Technologies (ACCT), 2012, 426-429. 

[16] S. Beniwal and E. Yadav, “An effective efficiency analysis 

of random key cryptography over RSA,” in Computing for 

Sustainable Global Development (INDIACom), 2015, 267-

271. 

[17] M. Rahman, I. Rokon and M. Rahman “Efficient hardware 

implementation of RSA cryptography,” in 3rd International 

Conference on Anti-counterfeiting, Security, and 

Identification in Communication, 2009, 316-319. 

[18] R. Johnsonbaugh, “Matemáticas discretas,” Pearson 

Educación, 2005. 

[19] J. Ramió, “Libro electrónico de seguridad Informática y 

Criptografía,” Manual docente de libre distribución, 

Universidad Politécnica de Madrid, 2006. 

[20] A.E. Cohen and K. Parhi, “Architecture optimizations for 

the RSA public key cryptosystem,” A tutorial. IEEE 

Circuits and Systems Magazine 11(4), 2012, 24-34. 

[21] A.J. Menezes, P.C. van Oorschot and S.A. Vanstone, 

“Handbook of applied cryptography,” CRC press, 1996. 


