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Summary 
Distributed system consists of multiple databases which are 
interconnected via a communication network. While these 
systems have long been used by organizations, researchers have 
always attempted to solve the problem of making coordination 
between databases with different structures. This problem may be 
solved by XML language which can be easily converted to any 
format. With the increased volume of distributed documents, 
optimal query processing has become crucially important. XML 
queries consist of a series of elements which are interconnected 
under a tree structure. Therefore, finding the pattern between 
query and document is the central core of query processing. 
While many methods have been proposed for query processing, 
they all have the problem of processing the nodes which are not 
involved in the final answer. Consequently, these methods tend 
to waste time by processing useless nodes. 
The present paper proposes a new method for query processing. 
This method processes the nodes which are definitely involved in 
final answer. In contrast to other methods, this method works 
with a lot of indexes and efficiently answers different kinds of 
query. We examined the efficiency of this method using famous 
databanks such as DBLP, TreeBank, XMark as well as balanced 
and unbalanced random databanks. We also tested simple query, 
single-branch query and multi-branch query with and without 
extraction point. The results indicated that the proposed method 
was more efficient than the existing popular methods in terms of 
the number of processed nodes, used memory and execution time. 
Key words: 
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guidance and guide index 

1. Introduction 

With the increased volume of heterogeneous documents, 
XML query processing has become crucially important. 
These documents have a tree structure. In other words, 
structure and content are close to each other in such 
documents. The following is an example of XML query: 
ɸ1: S ⁄ ⁄В [T=’Vɑlue’] 
ɸ1 query represents the structural relationship between S, 
B and T on the one hand and the value of T on the other. 
At present, old indexes such as Tree+B have acceptable 
efficiency in XML documents. But the problem of 
structural pattern matching in these queries has been 
addressed by many researchers. 

So far, different guides have been introduced for document 
structure, such as XML SCHEMA, DTD, STRUCTURAL 
SUMMARY and DATAGUIDE. These guides are used for 
query guidance [1-13]. Moreover, many path indexes such 
as Index k(A), Indexl, APEX, ToXin, Fabric DataGuide 
Strong and F&B have been introduced. These path indexes 
are used to index the paths and answer path queries more 
quickly [3-9]. Furthermore, there are many methods for 
answering structural queries such as holistic twig join and 
structural join. These methods do not make optimal use of 
guides and involve the nodes which are not present in final 
answer [14-21]. In answer to ɸ1 query by structural join 
method, for example, the query is converted to a number of 
binary links (S//B & /T). Also, a large volume of middle 
data is produced by decomposing the query into parent-
child or ancestor-descendant relationships. Holistic twig 
join attempts to remove this problem by not decomposing 
the query. This method is efficient for ancestor-descendant 
relationships but not for parent-child relationships. 
Moreover, this method processes all nodes present in ɸ1 
query. 
In the method proposed in [22], only leaf nodes are 
involved in the query (in ɸ1 of T node) and each node has 
a code. Ancestor information is obtained by encoding the 
code prefix of leaf node. This method compares the nodes 
blindly and without any guide, so it is not efficient for 
large documents. 
In the present paper, we aim to: 

• Process only leaf nodes which are present in the 
query. 
• Minimize the number of comparisons between leaf 
nodes, so that each comparison ideally produces one 
part of the answer. 

We are going to propose an optimal method for query 
processing. This method uses query guide and pattern 
matching guide and processes only those nodes which 
definitely produce some part of the final answer. 

2. Proposed Method 

The proposed method is a combination of path index and 
containment join methods. As shown in the Figure 1, this 
method has three steps (Figure 1).  
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Fig 1. Proposed Method 

2.1 Encoding 

We encoded the documents using Dewey decimal system 
[25]. In this system, if node U is nm child of node V, code 
number of node U would have the same code of node V as 
prefix followed by n. For example, if Dewey code is V=<1 
⁄3 ⁄7> and node U is the fifth child of node V, the code 
would be U=<1 ⁄3 ⁄7 ⁄5>. 

2.2 Document Guidance 

Query guide is basically like document schema. DG is 
highly correlated with DTD and XML Schema of the 
document, represents the schema of structural documents 
and the general relationships between its elements, and is 
scarcely correlated with the volume and bigness of 
document data. The structure and size of document 
guidance is normally unchanged or undergoes very few 
changes.  
DG volume is far smaller than the volume of real data. For 
example, TReeBank [27], DBLP [28] and Xmark [29] with 
the respective sizes of 130, 897 and 532 megabytes have a 
schema volume of 3, 4.2 and 2.8 kilobytes. 
DG of a document is scarcely correlated with the size of 
document data. In [26], DG has been tested for Sports and 
Synthetic banks using Strong Dataguide method which has 
a relatively high volume compared to other similar 
methods. These two banks were added by 30695 and 
375449 nodes respectively, but their DGs were added by 
only 2 and 12 nodes. 

2.3 Path Index 

YAPI [30] is the best choice for meeting the above-said 
two requirements and is the fastest and cheapest choice for 
answering single-branch queries. 

2.4 Connection Point 

If A and B are two branches of the query with the traveled 
paths of ɑ1 ⁄ɑ2 ⁄… ⁄ɑj ⁄ɑx1 ⁄… ⁄ɑn and ɑ1 ⁄ɑ2 ⁄… ⁄ɑj ⁄ɑx2 ⁄… 
⁄ɑm and ɑx1 ≠ ɑx2, then the connection point of the two 
branches is ɑ1 ⁄ɑ2 ⁄… ⁄ɑj. It should be noted that the 
symbol / between query elements does not refer to parent-
child relationship and may also be interpreted as /, //, *, 
etcetera (Figure 2). 

 

Fig.2 An example of connection node 

2.5 Decomposition 

If ɸ is a multi-branch query with n connection nodes and m 
branches, it is decomposed into single-branch queries of 
Sɸ1,….,Sɸm after breaking down. In this case, each Sɸi 
(from root to leaf) is one of the query branches and both 
Sɸi and Sɸj have the same prefix (from root to one of the 
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connection nodes). Total number of these connection 
nodes may vary. In ɸ2 query, for example, since point A is 
the connection node of two branches of A//B and A//C/D, 
so ɸ2 query is decomposed into two single-branch queries; 
i.e. A//B and A//C//D. 

ɸ2: А[. ⁄ ⁄В][. ⁄ ⁄C ⁄ ⁄D]; 

2.6 Solution 

In this step, we compared all single-branch queries with 
document DG. Since the document was encoded by Dewey 
method and lower nodes had heterogeneous information of 
upper nodes (the path traveled from the root), we only 
needed to keep query leaves for each branch. As the result, 
we obtained a list of DG points for each single-branch 
query. Figure 3 illustrates the address of these points from 
root to node. 

 

Fig. 3 An example of DG 

These points have absolute paths of ROOT ⁄A1 ⁄A2 ⁄B1 
and ROOT ⁄A1 ⁄B2 for A//B branch and ROOT ⁄A1 ⁄A2 
⁄C2 ⁄D1 and ROOT ⁄A1 ⁄B2 ⁄C1 ⁄D3 for A//C//D branch. 
 
Primary definition of guide Index: G1 is a three-column 
table with the first two columns being leaf nodes of each 
query branch in DG and the third column being the 
connection point between two nodes. Therefore, each 
record of this table represents an action called pattern 
action. 
Pattern Finding: In pattern finding, we compared two or 
more nodes in the documents in order to achieve a part of 
the answer. After the nodes were decomposed into single-
branch queries in step 1 and the leaf nodes of single-branch 
queries in DG were obtained, we had to obtain the 
connection node between the leaves. Running single-
branch queries on DG resulted in a list of nodes for each 
single-branch query. In this step, we had to make a paired 
comparison between the elements of each branch. If A and 
B were two members with the traveled paths of ɑ1 ⁄ɑ2 ⁄… 
⁄ɑj ⁄… ⁄ɑn and ɑ1 ⁄ɑ2 ⁄… ⁄ɑj ⁄… ⁄ɑm and ɑj was the 
connection node between two branches (i.e. if both groups 
had the same traveled path from root to connection node of 
the query), we would add a record together with 
connection node. 
The following represents the initial algorithm of GI 
production for a two-branch query. This is an initial code 
and is specific to two-branch queries. The algorithm for 

more complicated queries has been represented in the 
following paragraphs. 
 
Input: ɸ ɑs Query Pɑttern 
Output: GI ɑs Guide index 
1: Let А ɑnd В the two leɑves of ɸ 
2: Let CN  = Connection N between А ɑnd В 
3: Let AL = list of DG for mɑtch А brɑnch 
4: Let BL = list of DG for mɑtch В brɑnch 
5: for eɑch ɑn ∈ AL do 
6:       for eɑch bn ∈ BL do 
7:   for eɑch  CN1 in ɑn , CN2 in bn do 
8:                    if ɑn.Prefix(CN1) = bn.prefix(CN2) then 
9:                         GI.ɑddREC(ɑn, bn, CN1.level)) 
 
A and B are two leaf nodes of the query. Line 3 specifies 
the connection node of two branches. AL and BL specify 
the lists of A and B nodes. These nodes are the same nodes 
found for each query branch. 
Each record has three fields for producing final results. 
The first two columns have two nodes and the third column 
is the connection point level between two nodes. The real 
nodes of the document are arranged in the lists according 
to their Dewey codes. Now, we have to compare the lists 
of both nodes. If the two nodes have the same prefixes 
until connection point level, they are involved in the 
answer. This process continues until one of the two lists 
reaches the end. This action is called pattern matching. 
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Let’s consider the record of <B1, D,  2>. B1 and D1 are 
two nodes in DG. Let’s suppose that the following two lists 
represent these two nodes. Root level has been set on zero. 
B1-list = {1 ⁄3 ⁄1, 1 ⁄3 ⁄6,  1 ⁄7 ⁄1} 
D1-list = {1 ⁄2 ⁄2 ⁄1, 1 ⁄3 ⁄3 ⁄1, 1 ⁄3 ⁄5 ⁄7, 1 ⁄6 ⁄2 ⁄2, 1 ⁄7 ⁄1 ⁄2} 
Since level 2 is the connection point level between two 
nodes, only those elements with the same prefix up to level 
2 of Dewey code can have a successful pattern matching. 
The following list produces the output. 
OutputList = {(1 ⁄3 ⁄1, 1 ⁄3 ⁄3 ⁄1), (1 ⁄3 ⁄1, 1 ⁄3 ⁄5 ⁄7), (1 ⁄3 ⁄6, 
1 ⁄3 ⁄3 ⁄1), (1 ⁄3 ⁄6, 1 ⁄3 ⁄5 ⁄7), (1 ⁄7 ⁄1, 1 ⁄7 ⁄1 ⁄2)} 
L is the third field of the table and represents the 
connection point level. This is the level in which the 
elements of the two lists must be compared. 

 
while NOT(one of L1 or L2 reɑch the end) do 

           for eɑch ɑ in L1 , b in L2 thɑt 
      ɑ.prefix(L) = b.RprefixR(L) then  

       (ɑ, b)  output 
               else if N1.RprefixR(L) > N2.RprefixR(L) then 
            N2= L2.RNextR() 
               else 
            N1= L1.RNextR() 
 
The second and third lines represent the nodes which are 
equal until connection point level and are involved in 
pattern matching answer. In other words, these nodes have 
experienced a successful pattern action. For the nodes 
which are not equal to any node until this level, the list 
cursor of the smaller node has to prepare the next element 
for processing. 

3. Method Development 

3.1 Connection points with more than two sub-
branches 

For example, let’s consider ɸ3: 
ɸ3=  ⁄ ⁄А[. ⁄C][. ⁄D] ⁄В ; 

3.2 The second definition of guide index  

G1 is a M+1 column table for a connection point with M 
sub-branches. The first to Mm columns of the table are the 
branch leaves and the last column is the level shared by all 
nodes. 
For eɑch ɑ1∈ A1, ɑ2∈A2,…,.ɑn∈An  do 
         IF ɑ1.prefix(L)= ɑ2.prefix(L)=……= ɑn.prefix(L) then 
 Add( ɑ1,ɑ2,…,ɑn) to output 
        Else 
                Min(ɑ1,ɑ2,…ɑn).Next() 
 

These lines make a comparison between the list elements. 
The elements would be included in the final answer only if 
they have the same prefix up to this level. For each 
unsuccessful pattern, the smallest element must go to the 
next node. 

3.3 Connection points with more than two sub-
branches 

As the first change, a GI_model must be used instead of GI. 
Definition of GI_Model: A set of n GI for a query with n 
connection nodes which indicate the correlation between 
them.  
The Second change must be made in node processing order 
for producing index. You can see this change in the 
following pseudocode: 
GI1 GI 2… GI n 
Pɑttern_Mɑtching_Proc(GI 1,1 ) 
 
The above pseudocode acts in bottom-up fashion. In other 
words, it first processes the lower connection points in ɸ 
tree. Where a correlation exists between several GIs, the 
process is started from the first GI (second line). This 
pseudocode uses a recursive procedure called 
Pɑttern_Mɑtch_Proc which complies with processing 
order. 

3.4 Optimization 

As mentioned earlier, guide index is used as the guidance 
for processing documents. In other words, guide index 
prevents the processor from blind processing. Producing a 
guide index merely requires the document schema. The 
real processing action needs access to real nodes only in 
the third step. In other words, from each successful pattern 
action between the elements, we only consider its 
extraction point as the query answer. For example, node ɑ 
is the extraction point and the other three elements are 
query conditions and are merely used for testing the 
correctness of extraction points. 

3.5 Deletion of Repeated Nodes 

After comparing two nodes, we sometimes reach a node 
which has been previously produced. This means that the 
operator has not produced a new answer. In ɸ3 example,  
(b1 ∆ d3 ) U (b1 ∆ d1) may give repeated ɑ1 nodes 
because b1 acts independently in both comparisons. So we 
can write the expression thus: 
((( b1  – ( b1 ∆  d1 )) ∆  d3) 
 
This means that b1s can be compared with d3 only if they 
have not previously produced an answer by d1 comparison. 
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3.6 Deletion of useless patterns 

Sometimes we do not need to compare two nodes because 
the existence of one node confirms the existence of another. 
In (d3 ∆ b2), for example, the existence of d3 confirms the 
existence of d2. We can delete these cases from the graph 
and consider all d3s as semantic answer. On the other hand, 
where all d3s are considered as final answer, we delete all 
d3s from the graph in the algebraic expression of pattern 
matching guide. 

3.7 Merging several equations into one 

Sometimes we make only one comparison to reach two or 
more answers. In  (b1 ∆ d1 ), for example, we reach two 
nodes of ɑ1 and ɑ2 in each comparison.  

3.8 Order of queries with more than two sub-
branches 

Sometimes we compare three or more nodes to reach one 
answer and select the node which has an equivalent in all 
lists. In such cases, we can perform the intersection 
operator in the form of ((ɑ1 ∆ ɑ2 ) ….) ∆ ɑn) which will be 
ɑ1 < ɑ2 <……< ɑn in the order of node number in lists. 
Deletion of repeated extraction points: We can 
develop pattern matching guide so that it includes 
extraction points too. For example, since we searched ɑ in 
the previous query, we can change the pattern matching 
guide so that two numbers appear above each equation 
(output number and shared level number). This changes the 
definition of records in pattern matching guide to E=<n , 
m ,(L1 ,E1),….,(Ln ,En)>. 
NOT Operators 
In heterogeneous databanks, there exist many queries with 
NOT branch. For example, ɸ4 may be presented as 
follows: 
ɸ4:  А ⁄ ⁄В ⁄ ⁄[ NOT(.  ⁄ ⁄C ⁄ ⁄D)]; 
 
Single-Branch Queries: Single-branch queries are the 
queries which have a NOT operator. As mentioned earlier, 
these queries have positive and negative sections. 
Method: In this method, we first have to find the positive 
and negative leaves and then the negative leaves delete 
positive leaves. The rest of positive leaves will have a 
positive answer. This method has bottom-top fashion. In 
other words, we have to start from lower nodes towards 
upper nodes. Each node in the lower list deletes one node 
from the upper list. In such queries, we only have two 
nodes, with the lower nodes being negative leaves and the 
upper nodes being positive leaves. 
 
do while (ɑ AND b) 
      if       b.RprefixR(L) < ɑ.RprefixR(L) then  

             b=В.Next() 
      elseif  b.RprefixR(L) > ɑ.RprefixR(L) then 
             ɑ=А.Next() 
       else  
              Delete b from В 
       End if 
OUT_PUT= В 
Two-branch queries with NOT operator: Multi-branch 
queries are the queries which have multiple branches, with 
every two branches connecting in one point called 
connection point. 
Method: The method is like the previous one, with the 
difference that it only searches for positive leaves of the 
query. In this method, likewise, the answers are divided 
into two groups: 
• The answers which lack negative sections 
• The answers which must be checked for the lack of 
negative section 
For the second group of answers, we have to find the 
leaves of the negative section. Then, the leaves of negative 
section delete the leaves of positive section. The rest of 
positive leaves will be included in the answer. This method 
first lists all negative sections and then cuts the level 
shared by two branches from the number of negative nodes. 
After listing the positive sections, we have to delete the 
nodes which start from this number. 
Nested NOT operator: NOT operator usually operates in 
single-branch or multi-branch fashions. However, it rarely 
operates inside another NOT operator in one or more steps. 
For example, see the following query: 
ɸ6: А ⁄ ⁄В[NOT . ⁄ ⁄C ( NOT . ⁄ ⁄D)] 
Method: This method has a bottom-up fashion too. After 
listing the leaves of positive and negative sections, we start 
from the nodes in the lower lists and proceed to the nodes 
in upper lists. Each node (whether positive or negative) 
deletes a node from the upper list. The remained nodes in 
the highest list will be the final answer. 
 
N-U proc (ɑi , ɑi-1) 
      Do while (ɑi AND ɑi-1) 
              If  ɑi.prefix(Li,i-1) < ɑi-1.prefix(Li,i-1) 
                      ɑi=Ai.NextN 
               elseif    ɑi.prefix(Li,i-1) > ɑi-1.prefix(Li,i-1) 
                      if (i-1 = 1 )then  ⁄ ⁄ the highest level 
              output=ɑi-1  
       else  
                             N-U Proc(ɑi-1 , ɑi-2) 
                             ɑi-1=Ai-1.NextN 
                  end if 
       else  
                      Delete ɑi-1 from Ai-1 
                End if 
      END DO 
Output = A1 
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Useless Nodes 
Useless nodes are the nodes which do not give any answer 
or produce repeated answer. 
Jumping the nodes which are not involved in the 
final answer: The nodes not involved in the final answer 
are useless nodes and must be skipped. 
Jump: If node A is ɑ1 ⁄ɑ2 ⁄… ⁄ɑj ⁄.... ⁄ɑn and we want to 
jump the level C, the next node will be B on the condition 
that B is the smallest node to be bigger than A and has a 
different prefix form node A until level C. 
Result: So, it is better to have the expression of N.J(LCN) 
instead of N.next() in pseudocode lines. By LCN is meant 
the connection between two branches. 
Jumping the nodes which produce repeated answer: 
Jump: If node A is ɑ1 ⁄ɑ2 ⁄… ⁄ɑj ⁄.... ⁄ɑn and we want to 
jump the level C, the next node will be B on the condition 
that B is the smallest node to be bigger than A and has a 
different prefix form node A until level C. Therefore, we 
have to add the following code before FOR circle for each 
node of the list which has had a successful pattern action. 
IF  Li.Nj hɑs Successful mɑtching Process then  
  Li .J (LEtrɑction Point) 
EndIF 

4. Result 

In this part, we are going to evaluate the guide method. In 
doing so, we compared this method with two popular 
methods as mentioned in reference [21] as the 
representative of Twing group and reference [24] as the 
representative of TJfast group. First, we should explain the 
system selected for the purpose of comparison: 
The set of selected data: 
We used four datasets of TreeBank, DBLP and XMark, 
which are very popular in the world of XML (Table 1). 

Table 1: Specifications of Datasets 
 XMark DBLP Treebank 

Data size(MB) 582 130 82 
Nodes(million) 8 3.3 2.4 
Max/Avg depth 12/5 6/2.9 36/7.8 

RandomDataSet: To make this dataset, a schema with the 
depth of 12 and maximum number of 10 children for each 
node is randomly produced. The tags of this graph are the 
words ɑ, b, c, d, e, f. (Table 2).  

Table 2: Specifications of dataset random table 

 
 
 

Array of Inputs: Sometimes we randomly produce an 
array of inputs in order to run the method. The maximum 
number of these arrays is 100,000 and the length of Dewey 
code of each element is 5. We need some jumps in the 
levels 2, 3 and 4 of these Dewey codes. The maximum 
number of children of each node is assumed to be 9. 
Dewey Code Saving Method: In this method, an array 
of numbers (.\1.2.3.4") is divided by dot. Table 3 
represents the average volume of data maintenance for the 
tested datasets (Table 3). 

Table 3: Dewey code size 
 XM DBLP TB Rɑndom 

dɑtɑset 
Originɑl 

Dewey(MB) 
56.2 18.1 22.8 61.3 

 
Hardware environment: AMD Athlon 7750 dual core 2.7 
GHZ Processor; 2G Memory; 160G HDD ;Software 
environment: Windows 7, 32 bit. 
 
We test five queries with unique specifications using the 
mentioned two methods [13] and guide index (Table 4). 
Comparing guide index method with leaf method 
The number of called elements: In both methods, only 
ɸ leaves are processed, but there are two fundamental 
differences: 
• Leaf method first investigates whether a node meets the 
single-branch condition. In our method, all nodes which 
are accessed are a member of one of the query branches. 
• Leaf method attempts to reach the answer by direct 
comparison of the leaves of each branch and is likely to 
compare many leaves with no structural relationship 
between them. But our method only compares the leaves 
with structural relationship. Many nodes do not need any 
access because they do not have a counterpart in other 
branches. This difference is more noticeable in father-child 
queries. 
 
The size of main memory used: In leaf method, we 
need to save a number of nodes to compare two groups, 
because they might constitute a part of answer through 
comparison with another group. Leaf method attempts to 
reach the answer through direct and blind comparison of 
the nodes, while our method does not need to save any 
middle data because node processing manner and 
answering method are identified in GI. 
Execution time: As you can see in Table 4, the execution 
time in leaf method is longer than in guide index method, 
because leaf method needs to decode each input data and 
wastes time for each node. 
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Table 4: Results in comparison with [24] 
Exe Time(ms) Size of disk scanned (KB) No of elements Read (k) Query  

[24] GI [24] GI [24] GI 
254 387 1005 967 57 56 ⁄site⁄people⁄person⁄gender Q1 

11245 4005 6251 3154 595 510 ⁄S[.⁄⁄VP⁄IN]⁄⁄NP Q2 
2854 1674 2025 1997 195 101 ⁄S⁄VP⁄PP[IN]⁄NP⁄VBN Q3 
1874 951 425 117 44 32 ⁄⁄article[.⁄⁄sup]⁄⁄title⁄⁄sub Q4 
1628 847 674 114 35 24 ⁄⁄inproceedings⁄⁄title[.⁄⁄i]⁄⁄sup Q5 

 
Comparing guide index method with branch method 
Table 5 represents the queries. Reference [21], like other 
methods in its group, accesses all ɸTP nodes to answer the 
query. Compared to branch method, our method accesses 

more nodes for processing the query. However, it offers a 
better execution time than branch method because it 
doesn’t needs to convert the code to the name of elements. 

Table 5: Results of comparison with [21] 
Exe Time(ms) No of elements Read (k) Query  

[21] GI [21] GI 
20145 11457 22 8.5 ⁄⁄dblp⁄ɑrticle[ɑuthor]⁄[.⁄⁄title]⁄⁄yeɑr Q1: 

457 147 1.1 0.2 ⁄⁄people⁄⁄person[.⁄⁄ɑddress⁄zipcode]⁄profile⁄educɑtion Q2: 
13985 419 14 3 ⁄⁄S⁄⁄VP⁄PP[IN]⁄NP⁄VBN Q3: 

 
Random Data 
Single-Branch Queries: We executed eight single-
branch queries of A1, A2, …, A8 with the respective 
lengths of 2, 3 … and 9 using [21] and GI methods. All 
queries are partial and start with //. As you can see in the 
figure, the more the number of single-branch query nodes, 
the less the number of elements accessed in GI. Let’s 
assume that ɸ1 and ɸ2 are the queries with the respective 
lengths of N1 and N2. Since GI first executes the query on 
DG, less answers will be found in DG for ɸ2. and 
consequently less nodes are accessed in the document. 
Multi-branch queries: We compared the queries of A1, 
A2,…, A4 with 2, 3, 4 and 5 branches using Gi and [24] 
methods. In both methods, the increased number of 
branches resulted in the increased number of accesses, but 
the growth rate of GI method was far less than [24] (Table). 
 
Optimization of guide index: In this part, we tested the 
queries with specified extraction points and compared GI 
and OptimalGI methods with a final number of answer data. 
The criterion was the number of comparisons made for 
reaching the answer. The right column indicates the 
number of real extraction points (Table 6). 
 
 
 
 
 
 
 
 

Table 5: Single-branch and multi-branch queries 
No of elements Read (mill)  

[24] [21] GI 
--- 1.9 1 S1 

--- 1.12.2 0.9 S2 
--- 142.3 0.4 S3 
--- 2.2 0.3 S4 

--- 3.4 0.23 S5 

--- 3.9 0.22 S6 

--- 4.7 0.11 S7 

--- 5.6 0.08 S8 

1.5 --- 0.9 M1 

2.8 --- 1.2 M2 

4.2 --- 2.1 M3 

6.3 --- 2.8 M4 

Table 6: The number of called nodes 
 GI OptimɑlGI ETRACTION POINT 

ɸ1 6807 4251 1800 
ɸ2 32567 23156 11205 
ɸ3 483989 234801 125098 

 
NOT Queries: In this part, we tested our method with 
PathStack [16] and TwingStackList [31] methods in terms 
of NOT queries. In doing so, we executed six ɸTP with 
distinct structures and specifications on this dataset (Table 
7). 
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Table 7: NOT queries with extraction point 
1.1.1.1 Number of ETRACTION POINT 1.1.1.2  GI 1.1.1.3 [31] 1.1.1.4 [16] 1.1.1.5  

12,300 28,900 63,200 63,200 
ɸ(ɑ):  

8,050 20,000 111,798 132,221 

ɸ(b):   

211 28,200 84,993 115,001 

ɸ(c):  

5,912 87,769 114,992 173,291 

ɸ(d):  

890 17,900 93,075 100,251 

ɸ(e):  

51 9,000 183,700 215,011 

ɸ(f):  
 
In (ɑ) query, the difference between the numbers of 
processed nodes is explained by query processing on DG. 
All the three methods must check two lists of A and B, but 
they differ in how to process the lists. Our method jumps 
the nodes which produce repeated answer. In (b), (c) and 
(f) queries, only a NOT operator has been used. But our 
method checks only two lists in (b) query and three lists in 
(c) and (f) queries in order to reach the answer. 
Consequently, our method processes less nodes than two 
other methods do. This advantage is explained by TJFast 
which only searches the leaves (compared with the other 

two groups which search positive queries). This difference 
is not significant in (d) query. The only difference between 
our method and the other two methods is that our method 
has a bottom-up fashion, in which many of C nodes are 
destroyed by lower negative A and E nodes and 
consequently a smaller linkage is made between A and C. 
The same is true in (e) query. 
We compared the queries represented in Table 8 in terms 
of execution time using three datasets of TreeBank, DBLP 
and XMark. 

Table 8: Execution time in NOT queries 
1.1.1.6 Exe Time (s) 1.1.1.7  1.1.1.8  

1.1.1.9 [31] 1.1.1.10 [16] 1.1.1.11 GI 
5 4 2  ⁄ ⁄ɑrticle[. ⁄ ⁄sup] ⁄ ⁄T[NOT. ⁄ ⁄sub] ɸ(1): 

10 3 2.2  ⁄ ⁄ɑrticle[NOT(. ⁄ ⁄sup)] ⁄ ⁄T[NOT. ⁄ ⁄sub] ɸ(2): 
28 23 11  ⁄ ⁄Text[NOT(. ⁄bold)] ⁄emph[. ⁄keyword] ɸ(3): 
51 29 21  ⁄ ⁄Text[NOT(. ⁄bold)] ⁄emph[NOT(. ⁄keyword)] ɸ(4): 
32 29 14  ⁄ ⁄ S ⁄VP ⁄PP[. ⁄IN] ⁄NP[NOT(. ⁄VBN)] ɸ(5): 
62 42 25  ⁄ ⁄ S ⁄VP[NOT(. ⁄PP[. ⁄IN] ⁄NP(NOT[. ⁄VBN]))] ɸ(6): 
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As you can see in the queries (1) and (2), our method does 
not differ significantly with the other two method, which is 
explained by the simple structure of DBLP. But the 
difference is more significant in queries 2-6, particularly in 
the queries 3 and 5 where nested NOT operators have not 
been used. 
 
The impact of jumping the useless nodes in guide 
index method 
We compared the original GI with new GI. The advantage 
of new GI over original GI is explained by the fact that the 
former jumps the useless nodes.  The new GI indexes the 
query leaves by B+Tree method but the original GI 
processes the nodes in sequential manner. Table 9 contains 
the results for six queries executed with these two versions: 

The first four queries have AND branch. In AND queries, 
the majority of useless nodes are not involved in the final 
answer. This is particularly seen in the queries with a large 
number of leaves which produce fewer answers (see the 
number of useless nodes processed for ɸ3 and ɸ4 for 
example). On the other hand, in the queries where the 
number of extraction points is more than the number of 
branches, there are more useless nodes which produce 
repeated answer (see ɸ1 query for example). In the queries 
with OR operator, there are obviously more useless nodes 
which produce repeated answer. But in NOT queries, there 
exist more useless nodes which are not involved in the 
final answer and are fruitlessly processed, because each 
negative leaf deletes one positive leaf. In ɸ6 query, for 
example, each leaf (e) deletes a leaf (b). These leaves 
deleted are not involved in the final answer and it is very 
likely that several leaves (e) delete one leaf (b). 

 
Optimization of document schema: We performed 
optimization for these six queries based on random 
document schema.  Table 10 represents the results. ɸ1 and 

ɸ5 queries have simpler conditions and produce more 
answers. Here, it is assumed here extraction points of the 
query are specified (Table 10). 

Table 10: Optimization on document schema 
1.1.1.12 EXP  

 1.1.1.13 Optimal 1.1.1.14 NGI 1.1.1.15 GI 
3201 11745 35871 ɑ[.⁄⁄b][.⁄⁄e] Q1: 
511 1452 7335 ɑ[.⁄⁄b⁄c][.⁄⁄e] Q2: 
501 957 10023 ɑ[.⁄⁄b][.⁄⁄c]⁄e Q3: 
56 175 6367 ɑ[.⁄⁄b⁄c][.⁄ɑ]⁄e Q4: 

10032 12478 123898 ɑ[.⁄⁄b O .⁄⁄c] Q5: 
32167 42571 74241 ɑ⁄⁄b[Not (.⁄⁄e)] Q6: 

Execution Time: We executed the query using both versions. Table 11 contains the results. In new GI version, we didn’t 
consider the time of optimization on document schema. 

Table 11: Execution time with optimization of document schema 

1.1.1.16 NGI 1.1.1.17 GI 1.1.1.18  
2221 3854 ɑ[.⁄⁄b][.⁄⁄e] Q1: 
954 1245 ɑ[.⁄⁄b⁄c][.⁄⁄e] Q2: 
415 957 ɑ[.⁄⁄b][.⁄⁄c]⁄e Q3: 
275 712 ɑ[.⁄⁄b⁄c][.⁄ɑ]⁄e Q4: 

3004 6217 ɑ[.⁄⁄b O .⁄⁄c] Q5: 

2745 5412 ɑ⁄⁄b[Not (.⁄⁄e)] Q6: 

Queries: We selected four queries of Table 12 for test. 
Each of these queries has unique specifications. Query (ɑ) 
is based on father-child relationship and queries (b) and (c) 

are based on ancestor-descendant relationship. Query (b) 
has been selected in a way that a short distance exists 
between CN point and the leaves. But the query (b) has 
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been selected in a way that a long distance exists between 
CN point and the leaves. Query (d) is a three-branch query 
with AND operator between the branches. 
Balanced random dataset: Balanced dataset is the one in 
which each node has a fixed number of children. The tree 

of this dataset is an isosceles triangle. The number of 
nodes in each level is obtained by the following equation: 

I= ɑ* (I-1) 
Where, I is level number and ɑ is the number of children of 
each node which are fixed in the tree. 

Table 12: Balanced dataset 
1.1.1.19 [13] 1.1.1.20 NGI 1.1.1.21 GI 1.1.1.22 No EXP 
28473 19475 38457 a/*/b[/c] Q1: 
98452 72145 125485 a//b//c[//d] Q2: 
58417 22694 78451 a//e[//b//c//d] Q3: 
29746 59729 99416 a//b[//c][//d] Q4: 

Unbalanced random dataset: This dataset is defined in a 
way that the left side of the tree has more weight. For 
example, if a, b and c are three sibling nodes with a being 
in the left side, b being in the middle and c being in the 
right side, the following relationship exists between the 
children of each node: 

ɑ>b>c 
The same is true for all nodes of the tree. In other words, 
the lower part of each node tree in the left side is bigger 
than the lower part of each node tree in the right side 
(Table 13). 

Table 13: Unbalanced dataset 
1.1.1.23 [13] 1.1.1.24 NGI 1.1.1.25 GI 1.1.1.26 No EXP 

19421 14251 19457 a/*/b[/c] Q1: 
78451 59417 81247 a//b//c[//d] Q2: 
44157 22485 49328 a//e[//b//c//d] Q3: 
28471 38451 68241 a//b[//c][//d] Q4: 

 
Random dataset with many children and few similar 
tags: refers to a tree in which each node has many children 
with different tags and very few children with similar tags. 

Such trees have very complicated schemas. If we want to 
make the schema less complicated, the volume will exceed 
the standard level. These trees are fat in the waist (Table 
14). 

Table 14: Random dataset with many children and few similar tags 
1.1.1.27 [13] 1.1.1.28 NGI 1.1.1.29 GI 1.1.1.30 No EXP 

19457 16547 19241 a/*/b[/c] Q1: 
94218 69417 78555 a//b//c[//d] Q2: 
48753 32417 46218 a//e[//b//c//d] Q3: 
41579 51488 54198 a//b[//c][//d] Q4: 

Random dataset with many similar children: refers to 
a tree in which each node has many tags with abundant 
similar tags. This tree has a very simple schema and low 

volume. Such trees are fat in their lower part and in their 
leaves (Table 15). 

Table 15: Random dataset with many similar children 
1.1.1.31 [13] 1.1.1.32 NGI 1.1.1.33 GI 1.1.1.34 No EXP 
22451 14257 38411 a/*/b[/c] Q1: 
78416 46874 124575 a//b//c[//d] Q2: 
45241 22485 78459 a//e[//b//c//d] Q3: 
23477 42699 101698 a//b[//c][//d] Q4: 

5. Conclusion 

In this paper, we explained the methods and languages 
used for query processing, classified the existing methods, 

and explored the advantages and disadvantages of each 
method. As an improvement on earlier methods, we 
proposed the guide index method which has three steps as 
follows: 
1. First step: simplification of the query and reduction of 
search domain 
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2. Second step: production of guide index as the guidance 
for query processor 
3. Third step: processing document nodes based on the 
guide index produced in the previous step 
In doing so, we used the datasets of TreeBank, DBLP and 
XMark and selected Dewey system for data saving. We 
developed this method to be efficient for multi-branch and 
complicated queries as well. Then we expressed the 
method in the form of algebraic expressions and optimized 
it using the expressions and concept of extraction points. 
Next, we attempted to develop this method for the queries 
with NOT operator. The results indicated that the proposed 
method was more efficient and flexible than other methods. 
In the process of optimization, we faced useless nodes. 
Useless nodes are those nodes which produce no answer or 
repeated answer. By using an index, we managed to jump 
these nodes and significantly reduce the number of 
processed nodes. In the next step, we introduced a level 
index to increase the efficiency and jump more useless 
nodes. 
GI method was found to be significantly more efficient 
than branch and leaf methods in three main parameters: 
5.1 The number of called elements:  
Thanks to GI, the proposed method only compares the 
leaves with a structural relationship. Many nodes don’t 
need any access because they lack a counterpart in other 
branches. This difference is more significant in parent-
child queries. 
5.2 The size of main memory used:  
In other method, we need to save a number of nodes to 
compare two groups, because they might constitute a part 
of answer through comparison with another group. Leaf 
method attempts to reach the answer through direct and 
blind comparison of the nodes, while the proposed method 
doesn’t need to save any middle data because node 
processing manner and answering method are identified in 
GI. 
5.3 Execution time:  
The execution time in other methods is longer than in 
guide index method, because other methods blindly 
searches and decodes each input data and wastes time for 
each node. 
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