
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.9, September 2016

33

Manuscript received September 5, 2016
Manuscript revised September 20, 2016

Query Acceleration by Preprocessing Heterogeneous Documents
in Distributed Systems

Farhad Moghimifar

Information Security Institute, Queensland University of Technology, Brisbane, Australia (+61) 487673084

Summary
Distributed system consists of multiple databases which are
interconnected via a communication network. While these
systems have long been used by organizations, researchers have
always attempted to solve the problem of making coordination
between databases with different structures. This problem may be
solved by XML language which can be easily converted to any
format. With the increased volume of distributed documents,
optimal query processing has become crucially important. XML
queries consist of a series of elements which are interconnected
under a tree structure. Therefore, finding the pattern between
query and document is the central core of query processing.
While many methods have been proposed for query processing,
they all have the problem of processing the nodes which are not
involved in the final answer. Consequently, these methods tend
to waste time by processing useless nodes.
The present paper proposes a new method for query processing.
This method processes the nodes which are definitely involved in
final answer. In contrast to other methods, this method works
with a lot of indexes and efficiently answers different kinds of
query. We examined the efficiency of this method using famous
databanks such as DBLP, TreeBank, XMark as well as balanced
and unbalanced random databanks. We also tested simple query,
single-branch query and multi-branch query with and without
extraction point. The results indicated that the proposed method
was more efficient than the existing popular methods in terms of
the number of processed nodes, used memory and execution time.
Key words:
 Distributed database, query, optimal processing, document
guidance and guide index

1. Introduction

With the increased volume of heterogeneous documents,
XML query processing has become crucially important.
These documents have a tree structure. In other words,
structure and content are close to each other in such
documents. The following is an example of XML query:
ɸ1: S ⁄ ⁄В [T=’Vɑlue’]
ɸ1 query represents the structural relationship between S,
B and T on the one hand and the value of T on the other.
At present, old indexes such as Tree+B have acceptable
efficiency in XML documents. But the problem of
structural pattern matching in these queries has been
addressed by many researchers.

So far, different guides have been introduced for document
structure, such as XML SCHEMA, DTD, STRUCTURAL
SUMMARY and DATAGUIDE. These guides are used for
query guidance [1-13]. Moreover, many path indexes such
as Index k(A), Indexl, APEX, ToXin, Fabric DataGuide
Strong and F&B have been introduced. These path indexes
are used to index the paths and answer path queries more
quickly [3-9]. Furthermore, there are many methods for
answering structural queries such as holistic twig join and
structural join. These methods do not make optimal use of
guides and involve the nodes which are not present in final
answer [14-21]. In answer to ɸ1 query by structural join
method, for example, the query is converted to a number of
binary links (S//B & /T). Also, a large volume of middle
data is produced by decomposing the query into parent-
child or ancestor-descendant relationships. Holistic twig
join attempts to remove this problem by not decomposing
the query. This method is efficient for ancestor-descendant
relationships but not for parent-child relationships.
Moreover, this method processes all nodes present in ɸ1
query.
In the method proposed in [22], only leaf nodes are
involved in the query (in ɸ1 of T node) and each node has
a code. Ancestor information is obtained by encoding the
code prefix of leaf node. This method compares the nodes
blindly and without any guide, so it is not efficient for
large documents.
In the present paper, we aim to:

• Process only leaf nodes which are present in the
query.
• Minimize the number of comparisons between leaf
nodes, so that each comparison ideally produces one
part of the answer.

We are going to propose an optimal method for query
processing. This method uses query guide and pattern
matching guide and processes only those nodes which
definitely produce some part of the final answer.

2. Proposed Method

The proposed method is a combination of path index and
containment join methods. As shown in the Figure 1, this
method has three steps (Figure 1).

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.9, September 2016 34

Fig 1. Proposed Method

2.1 Encoding

We encoded the documents using Dewey decimal system
[25]. In this system, if node U is nm child of node V, code
number of node U would have the same code of node V as
prefix followed by n. For example, if Dewey code is V=<1
⁄3 ⁄7> and node U is the fifth child of node V, the code
would be U=<1 ⁄3 ⁄7 ⁄5>.

2.2 Document Guidance

Query guide is basically like document schema. DG is
highly correlated with DTD and XML Schema of the
document, represents the schema of structural documents
and the general relationships between its elements, and is
scarcely correlated with the volume and bigness of
document data. The structure and size of document
guidance is normally unchanged or undergoes very few
changes.
DG volume is far smaller than the volume of real data. For
example, TReeBank [27], DBLP [28] and Xmark [29] with
the respective sizes of 130, 897 and 532 megabytes have a
schema volume of 3, 4.2 and 2.8 kilobytes.
DG of a document is scarcely correlated with the size of
document data. In [26], DG has been tested for Sports and
Synthetic banks using Strong Dataguide method which has
a relatively high volume compared to other similar
methods. These two banks were added by 30695 and
375449 nodes respectively, but their DGs were added by
only 2 and 12 nodes.

2.3 Path Index

YAPI [30] is the best choice for meeting the above-said
two requirements and is the fastest and cheapest choice for
answering single-branch queries.

2.4 Connection Point

If A and B are two branches of the query with the traveled
paths of ɑ1 ⁄ɑ2 ⁄… ⁄ɑj ⁄ɑx1 ⁄… ⁄ɑn and ɑ1 ⁄ɑ2 ⁄… ⁄ɑj ⁄ɑx2 ⁄…
⁄ɑm and ɑx1 ≠ ɑx2, then the connection point of the two
branches is ɑ1 ⁄ɑ2 ⁄… ⁄ɑj. It should be noted that the
symbol / between query elements does not refer to parent-
child relationship and may also be interpreted as /, //, *,
etcetera (Figure 2).

Fig.2 An example of connection node

2.5 Decomposition

If ɸ is a multi-branch query with n connection nodes and m
branches, it is decomposed into single-branch queries of
Sɸ1,….,Sɸm after breaking down. In this case, each Sɸi
(from root to leaf) is one of the query branches and both
Sɸi and Sɸj have the same prefix (from root to one of the

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.9, September 2016

35

connection nodes). Total number of these connection
nodes may vary. In ɸ2 query, for example, since point A is
the connection node of two branches of A//B and A//C/D,
so ɸ2 query is decomposed into two single-branch queries;
i.e. A//B and A//C//D.

ɸ2: А[. ⁄ ⁄В][. ⁄ ⁄C ⁄ ⁄D];

2.6 Solution

In this step, we compared all single-branch queries with
document DG. Since the document was encoded by Dewey
method and lower nodes had heterogeneous information of
upper nodes (the path traveled from the root), we only
needed to keep query leaves for each branch. As the result,
we obtained a list of DG points for each single-branch
query. Figure 3 illustrates the address of these points from
root to node.

Fig. 3 An example of DG

These points have absolute paths of ROOT ⁄A1 ⁄A2 ⁄B1
and ROOT ⁄A1 ⁄B2 for A//B branch and ROOT ⁄A1 ⁄A2
⁄C2 ⁄D1 and ROOT ⁄A1 ⁄B2 ⁄C1 ⁄D3 for A//C//D branch.

Primary definition of guide Index: G1 is a three-column
table with the first two columns being leaf nodes of each
query branch in DG and the third column being the
connection point between two nodes. Therefore, each
record of this table represents an action called pattern
action.
Pattern Finding: In pattern finding, we compared two or
more nodes in the documents in order to achieve a part of
the answer. After the nodes were decomposed into single-
branch queries in step 1 and the leaf nodes of single-branch
queries in DG were obtained, we had to obtain the
connection node between the leaves. Running single-
branch queries on DG resulted in a list of nodes for each
single-branch query. In this step, we had to make a paired
comparison between the elements of each branch. If A and
B were two members with the traveled paths of ɑ1 ⁄ɑ2 ⁄…
⁄ɑj ⁄… ⁄ɑn and ɑ1 ⁄ɑ2 ⁄… ⁄ɑj ⁄… ⁄ɑm and ɑj was the
connection node between two branches (i.e. if both groups
had the same traveled path from root to connection node of
the query), we would add a record together with
connection node.
The following represents the initial algorithm of GI
production for a two-branch query. This is an initial code
and is specific to two-branch queries. The algorithm for

more complicated queries has been represented in the
following paragraphs.

Input: ɸ ɑs Query Pɑttern
Output: GI ɑs Guide index
1: Let А ɑnd В the two leɑves of ɸ
2: Let CN = Connection N between А ɑnd В
3: Let AL = list of DG for mɑtch А brɑnch
4: Let BL = list of DG for mɑtch В brɑnch
5: for eɑch ɑn ∈ AL do
6: for eɑch bn ∈ BL do
7: for eɑch CN1 in ɑn , CN2 in bn do
8: if ɑn.Prefix(CN1) = bn.prefix(CN2) then
9: GI.ɑddREC(ɑn, bn, CN1.level))

A and B are two leaf nodes of the query. Line 3 specifies
the connection node of two branches. AL and BL specify
the lists of A and B nodes. These nodes are the same nodes
found for each query branch.
Each record has three fields for producing final results.
The first two columns have two nodes and the third column
is the connection point level between two nodes. The real
nodes of the document are arranged in the lists according
to their Dewey codes. Now, we have to compare the lists
of both nodes. If the two nodes have the same prefixes
until connection point level, they are involved in the
answer. This process continues until one of the two lists
reaches the end. This action is called pattern matching.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.9, September 2016 36

Let’s consider the record of <B1, D, 2>. B1 and D1 are
two nodes in DG. Let’s suppose that the following two lists
represent these two nodes. Root level has been set on zero.
B1-list = {1 ⁄3 ⁄1, 1 ⁄3 ⁄6, 1 ⁄7 ⁄1}
D1-list = {1 ⁄2 ⁄2 ⁄1, 1 ⁄3 ⁄3 ⁄1, 1 ⁄3 ⁄5 ⁄7, 1 ⁄6 ⁄2 ⁄2, 1 ⁄7 ⁄1 ⁄2}
Since level 2 is the connection point level between two
nodes, only those elements with the same prefix up to level
2 of Dewey code can have a successful pattern matching.
The following list produces the output.
OutputList = {(1 ⁄3 ⁄1, 1 ⁄3 ⁄3 ⁄1), (1 ⁄3 ⁄1, 1 ⁄3 ⁄5 ⁄7), (1 ⁄3 ⁄6,
1 ⁄3 ⁄3 ⁄1), (1 ⁄3 ⁄6, 1 ⁄3 ⁄5 ⁄7), (1 ⁄7 ⁄1, 1 ⁄7 ⁄1 ⁄2)}
L is the third field of the table and represents the
connection point level. This is the level in which the
elements of the two lists must be compared.

while NOT(one of L1 or L2 reɑch the end) do

 for eɑch ɑ in L1 , b in L2 thɑt
 ɑ.prefix(L) = b.RprefixR(L) then

 (ɑ, b)  output
 else if N1.RprefixR(L) > N2.RprefixR(L) then
 N2= L2.RNextR()
 else
 N1= L1.RNextR()

The second and third lines represent the nodes which are
equal until connection point level and are involved in
pattern matching answer. In other words, these nodes have
experienced a successful pattern action. For the nodes
which are not equal to any node until this level, the list
cursor of the smaller node has to prepare the next element
for processing.

3. Method Development

3.1 Connection points with more than two sub-
branches

For example, let’s consider ɸ3:
ɸ3= ⁄ ⁄А[. ⁄C][. ⁄D] ⁄В ;

3.2 The second definition of guide index

G1 is a M+1 column table for a connection point with M
sub-branches. The first to Mm columns of the table are the
branch leaves and the last column is the level shared by all
nodes.
For eɑch ɑ1∈ A1, ɑ2∈A2,…,.ɑn∈An do
 IF ɑ1.prefix(L)= ɑ2.prefix(L)=……= ɑn.prefix(L) then
 Add(ɑ1,ɑ2,…,ɑn) to output
 Else
 Min(ɑ1,ɑ2,…ɑn).Next()

These lines make a comparison between the list elements.
The elements would be included in the final answer only if
they have the same prefix up to this level. For each
unsuccessful pattern, the smallest element must go to the
next node.

3.3 Connection points with more than two sub-
branches

As the first change, a GI_model must be used instead of GI.
Definition of GI_Model: A set of n GI for a query with n
connection nodes which indicate the correlation between
them.
The Second change must be made in node processing order
for producing index. You can see this change in the
following pseudocode:
GI1 GI 2… GI n
Pɑttern_Mɑtching_Proc(GI 1,1)

The above pseudocode acts in bottom-up fashion. In other
words, it first processes the lower connection points in ɸ
tree. Where a correlation exists between several GIs, the
process is started from the first GI (second line). This
pseudocode uses a recursive procedure called
Pɑttern_Mɑtch_Proc which complies with processing
order.

3.4 Optimization

As mentioned earlier, guide index is used as the guidance
for processing documents. In other words, guide index
prevents the processor from blind processing. Producing a
guide index merely requires the document schema. The
real processing action needs access to real nodes only in
the third step. In other words, from each successful pattern
action between the elements, we only consider its
extraction point as the query answer. For example, node ɑ
is the extraction point and the other three elements are
query conditions and are merely used for testing the
correctness of extraction points.

3.5 Deletion of Repeated Nodes

After comparing two nodes, we sometimes reach a node
which has been previously produced. This means that the
operator has not produced a new answer. In ɸ3 example,
(b1 ∆ d3) U (b1 ∆ d1) may give repeated ɑ1 nodes
because b1 acts independently in both comparisons. So we
can write the expression thus:
(((b1 – (b1 ∆ d1)) ∆ d3)

This means that b1s can be compared with d3 only if they
have not previously produced an answer by d1 comparison.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.9, September 2016

37

3.6 Deletion of useless patterns

Sometimes we do not need to compare two nodes because
the existence of one node confirms the existence of another.
In (d3 ∆ b2), for example, the existence of d3 confirms the
existence of d2. We can delete these cases from the graph
and consider all d3s as semantic answer. On the other hand,
where all d3s are considered as final answer, we delete all
d3s from the graph in the algebraic expression of pattern
matching guide.

3.7 Merging several equations into one

Sometimes we make only one comparison to reach two or
more answers. In (b1 ∆ d1), for example, we reach two
nodes of ɑ1 and ɑ2 in each comparison.

3.8 Order of queries with more than two sub-
branches

Sometimes we compare three or more nodes to reach one
answer and select the node which has an equivalent in all
lists. In such cases, we can perform the intersection
operator in the form of ((ɑ1 ∆ ɑ2) ….) ∆ ɑn) which will be
ɑ1 < ɑ2 <……< ɑn in the order of node number in lists.
Deletion of repeated extraction points: We can
develop pattern matching guide so that it includes
extraction points too. For example, since we searched ɑ in
the previous query, we can change the pattern matching
guide so that two numbers appear above each equation
(output number and shared level number). This changes the
definition of records in pattern matching guide to E=<n ,
m ,(L1 ,E1),….,(Ln ,En)>.
NOT Operators
In heterogeneous databanks, there exist many queries with
NOT branch. For example, ɸ4 may be presented as
follows:
ɸ4: А ⁄ ⁄В ⁄ ⁄[NOT(. ⁄ ⁄C ⁄ ⁄D)];

Single-Branch Queries: Single-branch queries are the
queries which have a NOT operator. As mentioned earlier,
these queries have positive and negative sections.
Method: In this method, we first have to find the positive
and negative leaves and then the negative leaves delete
positive leaves. The rest of positive leaves will have a
positive answer. This method has bottom-top fashion. In
other words, we have to start from lower nodes towards
upper nodes. Each node in the lower list deletes one node
from the upper list. In such queries, we only have two
nodes, with the lower nodes being negative leaves and the
upper nodes being positive leaves.

do while (ɑ AND b)
 if b.RprefixR(L) < ɑ.RprefixR(L) then

 b=В.Next()
 elseif b.RprefixR(L) > ɑ.RprefixR(L) then
 ɑ=А.Next()
 else
 Delete b from В
 End if
OUT_PUT= В
Two-branch queries with NOT operator: Multi-branch
queries are the queries which have multiple branches, with
every two branches connecting in one point called
connection point.
Method: The method is like the previous one, with the
difference that it only searches for positive leaves of the
query. In this method, likewise, the answers are divided
into two groups:
• The answers which lack negative sections
• The answers which must be checked for the lack of
negative section
For the second group of answers, we have to find the
leaves of the negative section. Then, the leaves of negative
section delete the leaves of positive section. The rest of
positive leaves will be included in the answer. This method
first lists all negative sections and then cuts the level
shared by two branches from the number of negative nodes.
After listing the positive sections, we have to delete the
nodes which start from this number.
Nested NOT operator: NOT operator usually operates in
single-branch or multi-branch fashions. However, it rarely
operates inside another NOT operator in one or more steps.
For example, see the following query:
ɸ6: А ⁄ ⁄В[NOT . ⁄ ⁄C (NOT . ⁄ ⁄D)]
Method: This method has a bottom-up fashion too. After
listing the leaves of positive and negative sections, we start
from the nodes in the lower lists and proceed to the nodes
in upper lists. Each node (whether positive or negative)
deletes a node from the upper list. The remained nodes in
the highest list will be the final answer.

N-U proc (ɑi , ɑi-1)
 Do while (ɑi AND ɑi-1)
 If ɑi.prefix(Li,i-1) < ɑi-1.prefix(Li,i-1)
 ɑi=Ai.NextN
 elseif ɑi.prefix(Li,i-1) > ɑi-1.prefix(Li,i-1)
 if (i-1 = 1)then ⁄ ⁄ the highest level
 output=ɑi-1
 else
 N-U Proc(ɑi-1 , ɑi-2)
 ɑi-1=Ai-1.NextN
 end if
 else
 Delete ɑi-1 from Ai-1
 End if
 END DO
Output = A1

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.9, September 2016 38

Useless Nodes
Useless nodes are the nodes which do not give any answer
or produce repeated answer.
Jumping the nodes which are not involved in the
final answer: The nodes not involved in the final answer
are useless nodes and must be skipped.
Jump: If node A is ɑ1 ⁄ɑ2 ⁄… ⁄ɑj ⁄.... ⁄ɑn and we want to
jump the level C, the next node will be B on the condition
that B is the smallest node to be bigger than A and has a
different prefix form node A until level C.
Result: So, it is better to have the expression of N.J(LCN)
instead of N.next() in pseudocode lines. By LCN is meant
the connection between two branches.
Jumping the nodes which produce repeated answer:
Jump: If node A is ɑ1 ⁄ɑ2 ⁄… ⁄ɑj ⁄.... ⁄ɑn and we want to
jump the level C, the next node will be B on the condition
that B is the smallest node to be bigger than A and has a
different prefix form node A until level C. Therefore, we
have to add the following code before FOR circle for each
node of the list which has had a successful pattern action.
IF Li.Nj hɑs Successful mɑtching Process then
 Li .J (LEtrɑction Point)
EndIF

4. Result

In this part, we are going to evaluate the guide method. In
doing so, we compared this method with two popular
methods as mentioned in reference [21] as the
representative of Twing group and reference [24] as the
representative of TJfast group. First, we should explain the
system selected for the purpose of comparison:
The set of selected data:
We used four datasets of TreeBank, DBLP and XMark,
which are very popular in the world of XML (Table 1).

Table 1: Specifications of Datasets
 XMark DBLP Treebank

Data size(MB) 582 130 82
Nodes(million) 8 3.3 2.4
Max/Avg depth 12/5 6/2.9 36/7.8

RandomDataSet: To make this dataset, a schema with the
depth of 12 and maximum number of 10 children for each
node is randomly produced. The tags of this graph are the
words ɑ, b, c, d, e, f. (Table 2).

Table 2: Specifications of dataset random table

Array of Inputs: Sometimes we randomly produce an
array of inputs in order to run the method. The maximum
number of these arrays is 100,000 and the length of Dewey
code of each element is 5. We need some jumps in the
levels 2, 3 and 4 of these Dewey codes. The maximum
number of children of each node is assumed to be 9.
Dewey Code Saving Method: In this method, an array
of numbers (.\1.2.3.4") is divided by dot. Table 3
represents the average volume of data maintenance for the
tested datasets (Table 3).

Table 3: Dewey code size
 XM DBLP TB Rɑndom

dɑtɑset
Originɑl

Dewey(MB)
56.2 18.1 22.8 61.3

Hardware environment: AMD Athlon 7750 dual core 2.7
GHZ Processor; 2G Memory; 160G HDD ;Software
environment: Windows 7, 32 bit.

We test five queries with unique specifications using the
mentioned two methods [13] and guide index (Table 4).
Comparing guide index method with leaf method
The number of called elements: In both methods, only
ɸ leaves are processed, but there are two fundamental
differences:
• Leaf method first investigates whether a node meets the
single-branch condition. In our method, all nodes which
are accessed are a member of one of the query branches.
• Leaf method attempts to reach the answer by direct
comparison of the leaves of each branch and is likely to
compare many leaves with no structural relationship
between them. But our method only compares the leaves
with structural relationship. Many nodes do not need any
access because they do not have a counterpart in other
branches. This difference is more noticeable in father-child
queries.

The size of main memory used: In leaf method, we
need to save a number of nodes to compare two groups,
because they might constitute a part of answer through
comparison with another group. Leaf method attempts to
reach the answer through direct and blind comparison of
the nodes, while our method does not need to save any
middle data because node processing manner and
answering method are identified in GI.
Execution time: As you can see in Table 4, the execution
time in leaf method is longer than in guide index method,
because leaf method needs to decode each input data and
wastes time for each node.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.9, September 2016

39

Table 4: Results in comparison with [24]
Exe Time(ms) Size of disk scanned (KB) No of elements Read (k) Query

[24] GI [24] GI [24] GI
254 387 1005 967 57 56 ⁄site⁄people⁄person⁄gender Q1

11245 4005 6251 3154 595 510 ⁄S[.⁄⁄VP⁄IN]⁄⁄NP Q2
2854 1674 2025 1997 195 101 ⁄S⁄VP⁄PP[IN]⁄NP⁄VBN Q3
1874 951 425 117 44 32 ⁄⁄article[.⁄⁄sup]⁄⁄title⁄⁄sub Q4
1628 847 674 114 35 24 ⁄⁄inproceedings⁄⁄title[.⁄⁄i]⁄⁄sup Q5

Comparing guide index method with branch method
Table 5 represents the queries. Reference [21], like other
methods in its group, accesses all ɸTP nodes to answer the
query. Compared to branch method, our method accesses

more nodes for processing the query. However, it offers a
better execution time than branch method because it
doesn’t needs to convert the code to the name of elements.

Table 5: Results of comparison with [21]
Exe Time(ms) No of elements Read (k) Query

[21] GI [21] GI
20145 11457 22 8.5 ⁄⁄dblp⁄ɑrticle[ɑuthor]⁄[.⁄⁄title]⁄⁄yeɑr Q1:

457 147 1.1 0.2 ⁄⁄people⁄⁄person[.⁄⁄ɑddress⁄zipcode]⁄profile⁄educɑtion Q2:
13985 419 14 3 ⁄⁄S⁄⁄VP⁄PP[IN]⁄NP⁄VBN Q3:

Random Data
Single-Branch Queries: We executed eight single-
branch queries of A1, A2, …, A8 with the respective
lengths of 2, 3 … and 9 using [21] and GI methods. All
queries are partial and start with //. As you can see in the
figure, the more the number of single-branch query nodes,
the less the number of elements accessed in GI. Let’s
assume that ɸ1 and ɸ2 are the queries with the respective
lengths of N1 and N2. Since GI first executes the query on
DG, less answers will be found in DG for ɸ2. and
consequently less nodes are accessed in the document.
Multi-branch queries: We compared the queries of A1,
A2,…, A4 with 2, 3, 4 and 5 branches using Gi and [24]
methods. In both methods, the increased number of
branches resulted in the increased number of accesses, but
the growth rate of GI method was far less than [24] (Table).

Optimization of guide index: In this part, we tested the
queries with specified extraction points and compared GI
and OptimalGI methods with a final number of answer data.
The criterion was the number of comparisons made for
reaching the answer. The right column indicates the
number of real extraction points (Table 6).

Table 5: Single-branch and multi-branch queries
No of elements Read (mill)

[24] [21] GI
--- 1.9 1 S1

--- 1.12.2 0.9 S2
--- 142.3 0.4 S3
--- 2.2 0.3 S4

--- 3.4 0.23 S5

--- 3.9 0.22 S6

--- 4.7 0.11 S7

--- 5.6 0.08 S8

1.5 --- 0.9 M1

2.8 --- 1.2 M2

4.2 --- 2.1 M3

6.3 --- 2.8 M4

Table 6: The number of called nodes
 GI OptimɑlGI ETRACTION POINT

ɸ1 6807 4251 1800
ɸ2 32567 23156 11205
ɸ3 483989 234801 125098

NOT Queries: In this part, we tested our method with
PathStack [16] and TwingStackList [31] methods in terms
of NOT queries. In doing so, we executed six ɸTP with
distinct structures and specifications on this dataset (Table
7).

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.9, September 2016 40

Table 7: NOT queries with extraction point
1.1.1.1 Number of ETRACTION POINT 1.1.1.2 GI 1.1.1.3 [31] 1.1.1.4 [16] 1.1.1.5

12,300 28,900 63,200 63,200
ɸ(ɑ):

8,050 20,000 111,798 132,221

ɸ(b):

211 28,200 84,993 115,001

ɸ(c):

5,912 87,769 114,992 173,291

ɸ(d):

890 17,900 93,075 100,251

ɸ(e):

51 9,000 183,700 215,011

ɸ(f):

In (ɑ) query, the difference between the numbers of
processed nodes is explained by query processing on DG.
All the three methods must check two lists of A and B, but
they differ in how to process the lists. Our method jumps
the nodes which produce repeated answer. In (b), (c) and
(f) queries, only a NOT operator has been used. But our
method checks only two lists in (b) query and three lists in
(c) and (f) queries in order to reach the answer.
Consequently, our method processes less nodes than two
other methods do. This advantage is explained by TJFast
which only searches the leaves (compared with the other

two groups which search positive queries). This difference
is not significant in (d) query. The only difference between
our method and the other two methods is that our method
has a bottom-up fashion, in which many of C nodes are
destroyed by lower negative A and E nodes and
consequently a smaller linkage is made between A and C.
The same is true in (e) query.
We compared the queries represented in Table 8 in terms
of execution time using three datasets of TreeBank, DBLP
and XMark.

Table 8: Execution time in NOT queries
1.1.1.6 Exe Time (s) 1.1.1.7 1.1.1.8

1.1.1.9 [31] 1.1.1.10 [16] 1.1.1.11 GI
5 4 2 ⁄ ⁄ɑrticle[. ⁄ ⁄sup] ⁄ ⁄T[NOT. ⁄ ⁄sub] ɸ(1):

10 3 2.2 ⁄ ⁄ɑrticle[NOT(. ⁄ ⁄sup)] ⁄ ⁄T[NOT. ⁄ ⁄sub] ɸ(2):
28 23 11 ⁄ ⁄Text[NOT(. ⁄bold)] ⁄emph[. ⁄keyword] ɸ(3):
51 29 21 ⁄ ⁄Text[NOT(. ⁄bold)] ⁄emph[NOT(. ⁄keyword)] ɸ(4):
32 29 14 ⁄ ⁄ S ⁄VP ⁄PP[. ⁄IN] ⁄NP[NOT(. ⁄VBN)] ɸ(5):
62 42 25 ⁄ ⁄ S ⁄VP[NOT(. ⁄PP[. ⁄IN] ⁄NP(NOT[. ⁄VBN]))] ɸ(6):

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.9, September 2016

41

As you can see in the queries (1) and (2), our method does
not differ significantly with the other two method, which is
explained by the simple structure of DBLP. But the
difference is more significant in queries 2-6, particularly in
the queries 3 and 5 where nested NOT operators have not
been used.

The impact of jumping the useless nodes in guide
index method
We compared the original GI with new GI. The advantage
of new GI over original GI is explained by the fact that the
former jumps the useless nodes. The new GI indexes the
query leaves by B+Tree method but the original GI
processes the nodes in sequential manner. Table 9 contains
the results for six queries executed with these two versions:

The first four queries have AND branch. In AND queries,
the majority of useless nodes are not involved in the final
answer. This is particularly seen in the queries with a large
number of leaves which produce fewer answers (see the
number of useless nodes processed for ɸ3 and ɸ4 for
example). On the other hand, in the queries where the
number of extraction points is more than the number of
branches, there are more useless nodes which produce
repeated answer (see ɸ1 query for example). In the queries
with OR operator, there are obviously more useless nodes
which produce repeated answer. But in NOT queries, there
exist more useless nodes which are not involved in the
final answer and are fruitlessly processed, because each
negative leaf deletes one positive leaf. In ɸ6 query, for
example, each leaf (e) deletes a leaf (b). These leaves
deleted are not involved in the final answer and it is very
likely that several leaves (e) delete one leaf (b).

Optimization of document schema: We performed
optimization for these six queries based on random
document schema. Table 10 represents the results. ɸ1 and

ɸ5 queries have simpler conditions and produce more
answers. Here, it is assumed here extraction points of the
query are specified (Table 10).

Table 10: Optimization on document schema
1.1.1.12 EXP

 1.1.1.13 Optimal 1.1.1.14 NGI 1.1.1.15 GI
3201 11745 35871 ɑ[.⁄⁄b][.⁄⁄e] Q1:
511 1452 7335 ɑ[.⁄⁄b⁄c][.⁄⁄e] Q2:
501 957 10023 ɑ[.⁄⁄b][.⁄⁄c]⁄e Q3:
56 175 6367 ɑ[.⁄⁄b⁄c][.⁄ɑ]⁄e Q4:

10032 12478 123898 ɑ[.⁄⁄b O .⁄⁄c] Q5:
32167 42571 74241 ɑ⁄⁄b[Not (.⁄⁄e)] Q6:

Execution Time: We executed the query using both versions. Table 11 contains the results. In new GI version, we didn’t
consider the time of optimization on document schema.

Table 11: Execution time with optimization of document schema

1.1.1.16 NGI 1.1.1.17 GI 1.1.1.18
2221 3854 ɑ[.⁄⁄b][.⁄⁄e] Q1:
954 1245 ɑ[.⁄⁄b⁄c][.⁄⁄e] Q2:
415 957 ɑ[.⁄⁄b][.⁄⁄c]⁄e Q3:
275 712 ɑ[.⁄⁄b⁄c][.⁄ɑ]⁄e Q4:

3004 6217 ɑ[.⁄⁄b O .⁄⁄c] Q5:

2745 5412 ɑ⁄⁄b[Not (.⁄⁄e)] Q6:

Queries: We selected four queries of Table 12 for test.
Each of these queries has unique specifications. Query (ɑ)
is based on father-child relationship and queries (b) and (c)

are based on ancestor-descendant relationship. Query (b)
has been selected in a way that a short distance exists
between CN point and the leaves. But the query (b) has

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.9, September 2016 42

been selected in a way that a long distance exists between
CN point and the leaves. Query (d) is a three-branch query
with AND operator between the branches.
Balanced random dataset: Balanced dataset is the one in
which each node has a fixed number of children. The tree

of this dataset is an isosceles triangle. The number of
nodes in each level is obtained by the following equation:

I= ɑ* (I-1)
Where, I is level number and ɑ is the number of children of
each node which are fixed in the tree.

Table 12: Balanced dataset
1.1.1.19 [13] 1.1.1.20 NGI 1.1.1.21 GI 1.1.1.22 No EXP
28473 19475 38457 a/*/b[/c] Q1:
98452 72145 125485 a//b//c[//d] Q2:
58417 22694 78451 a//e[//b//c//d] Q3:
29746 59729 99416 a//b[//c][//d] Q4:

Unbalanced random dataset: This dataset is defined in a
way that the left side of the tree has more weight. For
example, if a, b and c are three sibling nodes with a being
in the left side, b being in the middle and c being in the
right side, the following relationship exists between the
children of each node:

ɑ>b>c
The same is true for all nodes of the tree. In other words,
the lower part of each node tree in the left side is bigger
than the lower part of each node tree in the right side
(Table 13).

Table 13: Unbalanced dataset
1.1.1.23 [13] 1.1.1.24 NGI 1.1.1.25 GI 1.1.1.26 No EXP

19421 14251 19457 a/*/b[/c] Q1:
78451 59417 81247 a//b//c[//d] Q2:
44157 22485 49328 a//e[//b//c//d] Q3:
28471 38451 68241 a//b[//c][//d] Q4:

Random dataset with many children and few similar
tags: refers to a tree in which each node has many children
with different tags and very few children with similar tags.

Such trees have very complicated schemas. If we want to
make the schema less complicated, the volume will exceed
the standard level. These trees are fat in the waist (Table
14).

Table 14: Random dataset with many children and few similar tags
1.1.1.27 [13] 1.1.1.28 NGI 1.1.1.29 GI 1.1.1.30 No EXP

19457 16547 19241 a/*/b[/c] Q1:
94218 69417 78555 a//b//c[//d] Q2:
48753 32417 46218 a//e[//b//c//d] Q3:
41579 51488 54198 a//b[//c][//d] Q4:

Random dataset with many similar children: refers to
a tree in which each node has many tags with abundant
similar tags. This tree has a very simple schema and low

volume. Such trees are fat in their lower part and in their
leaves (Table 15).

Table 15: Random dataset with many similar children
1.1.1.31 [13] 1.1.1.32 NGI 1.1.1.33 GI 1.1.1.34 No EXP
22451 14257 38411 a/*/b[/c] Q1:
78416 46874 124575 a//b//c[//d] Q2:
45241 22485 78459 a//e[//b//c//d] Q3:
23477 42699 101698 a//b[//c][//d] Q4:

5. Conclusion

In this paper, we explained the methods and languages
used for query processing, classified the existing methods,

and explored the advantages and disadvantages of each
method. As an improvement on earlier methods, we
proposed the guide index method which has three steps as
follows:
1. First step: simplification of the query and reduction of
search domain

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.9, September 2016

43

2. Second step: production of guide index as the guidance
for query processor
3. Third step: processing document nodes based on the
guide index produced in the previous step
In doing so, we used the datasets of TreeBank, DBLP and
XMark and selected Dewey system for data saving. We
developed this method to be efficient for multi-branch and
complicated queries as well. Then we expressed the
method in the form of algebraic expressions and optimized
it using the expressions and concept of extraction points.
Next, we attempted to develop this method for the queries
with NOT operator. The results indicated that the proposed
method was more efficient and flexible than other methods.
In the process of optimization, we faced useless nodes.
Useless nodes are those nodes which produce no answer or
repeated answer. By using an index, we managed to jump
these nodes and significantly reduce the number of
processed nodes. In the next step, we introduced a level
index to increase the efficiency and jump more useless
nodes.
GI method was found to be significantly more efficient
than branch and leaf methods in three main parameters:
5.1 The number of called elements:
Thanks to GI, the proposed method only compares the
leaves with a structural relationship. Many nodes don’t
need any access because they lack a counterpart in other
branches. This difference is more significant in parent-
child queries.
5.2 The size of main memory used:
In other method, we need to save a number of nodes to
compare two groups, because they might constitute a part
of answer through comparison with another group. Leaf
method attempts to reach the answer through direct and
blind comparison of the nodes, while the proposed method
doesn’t need to save any middle data because node
processing manner and answering method are identified in
GI.
5.3 Execution time:
The execution time in other methods is longer than in
guide index method, because other methods blindly
searches and decodes each input data and wastes time for
each node.

References
[1] Garofalakis, Minos, Aristides Gionis, Rajeev Rastogi,

Sridhar Seshadri, and Kyuseok Shim. "XTRACT: a system
for extracting document type descriptors from XML
documents." In ACM SIGMOD Record, vol. 29, no. 2, pp.
165-176. ACM, 2000

[2] Nestorov, Svetlozar, Jeffrey Ullman, Janet Wiener, and
Sudarashan Chawathe. "Representative objects: Concise
representations of semistructured, hierarchical data." In Data
Engineering, 1997. Proceedings. 13th International
Conference on, pp. 79-90. IEEE, 1997

[3] Goldman, Roy, and Jennifer Widom. "Dataguides: Enabling
query formulation and optimization in semistructured
databases." (1997)

[4] Milo, Tova, and Dan Suciu. "Index structures for path
expressions." In International Conference on Database
Theory, pp. 277-295. Springer Berlin Heidelberg, 1999

[5] Cooper, Brian F., Neal Sample, Michael J. Franklin, Gisli R.
Hjaltason, and Moshe Shadmon. "A fast index for
semistructured data." In VLDB, vol. 1, pp. 341-350. 2001

[6] Rizzolo, Flavio, and Alberto O. Mendelzon. "Indexing
XML Data with ToXin." In WebDB, vol. 1, pp. 49-54. 2001

[7] Kaushik, Raghav, Pradeep Shenoy, Philip Bohannon, and
Ehud Gudes. "Exploiting local similarity for indexing paths
in graph-structured data." In Data Engineering, 2002.
Proceedings. 18th International Conference on, pp. 129-140.
IEEE, 2002

[8] Chung, Chin-Wan, Jun-Ki Min, and Kyuseok Shim.
"APEX: An adaptive path index for XML data." In
Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pp. 121-132. ACM,
2002

[9] Kaushik, Raghav, Philip Bohannon, Jeffrey F. Naughton,
and Henry F. Korth. "Covering indexes for branching path
queries." In Proceedings of the 2002 ACM SIGMOD
international conference on Management of data, pp. 133-
144. ACM, 2002

[10] Ley, Michael. "DBLP computer science bibliography."
(2005)

[11] Liu, Peng, Weiwei Sun, Jian Zhang, and Baihua Zheng. "An
automaton-based index scheme supporting twig queries for
on-demand XML data broadcast." Journal of Parallel and
Distributed Computing 86 (2015): 82-97.

[12] Chamarthy, Ravi Chandra. "Self-parsing XML documents
to improve XML processing." U.S. Patent 9,087,140, issued
July 21, 2015

[13] Xiaoping, Ye, Lin Yanchong, Chen Zhaoying, Zheng
Fanqing, and Peng Peng. "A Temporal XML Index:
Txmlsindex." Journal of South China Normal University
(Natural Science Edition) 1 (2015): 020

[14] Wu, Yuqing, Jignesh M. Patel, and H. V. Jagadish.
"Structural join order selection for XML query
optimization." In Data Engineering, 2003. Proceedings.
19th International Conference on, pp. 443-454. IEEE, 2003

[15] Bruno, Nicolas, Nick Koudas, and Divesh Srivastava.
"Holistic twig joins: optimal XML pattern matching." In
Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pp. 310-321. ACM,
2002

[16] Jiang, Haifeng, Wei Wang, Hongjun Lu, and Jeffrey Xu Yu.
"Holistic twig joins on indexed XML documents." In
Proceedings of the 29th international conference on Very
large data bases-Volume 29, pp. 273-284. VLDB
Endowment, 2003

[17] Kaushik, Raghav, Rajasekar Krishnamurthy, Jeffrey F.
Naughton, and Raghu Ramakrishnan. "On the integration of
structure indexes and inverted lists." In Proceedings of the
2004 ACM SIGMOD international conference on
Management of data, pp. 779-790. ACM, 2004

[18] Yang, Beverly, Marcus Fontoura, Eugene Shekita, Sridhar
Rajagopalan, and Kevin Beyer. "Virtual cursors for XML

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.9, September 2016 44

joins." In Proceedings of the thirteenth ACM international
conference on Information and knowledge management, pp.
523-532. ACM, 2004

[19] Pamila, JC Miraclin Joyce, and Divya Rajagopal. "Intra and
Inter XML Query Answering Using Holistic Boolean Twig
Pattern Matching." Asian Journal of Information
Technology 15, no. 4 (2016): 756-764

[20] Shnaiderman, Lila, and Oded Shmueli. "Multi-Core
Processing of XML Twig Patterns." IEEE Transactions on
Knowledge and Data Engineering 27, no. 4 (2015): 1057-
1070

[21] Kung, Yi-Wei, Hsu-Kuang Chang, and Chung-Nan Lee. "A
novel twig-join swift using SST-based representation for
efficient retrieval of internet XML." Journal of Web
Engineering 14, no. 3-4 (2015): 234-250

[22] Lu, Jiaheng, Tok Wang Ling, Chee-Yong Chan, and Ting
Chen. "From region encoding to extended dewey: On
efficient processing of XML twig pattern matching." In
Proceedings of the 31st international conference on Very
large data bases, pp. 193-204. VLDB Endowment, 2005

[23] Zhi-xian, Tang, Feng Jun, Xu Li-ming, and Shi Ya-qing. "A
Bottom-up Algorithm for XML Twig Queries."
International Journal of Database Theory and Application 8,
no. 4 (2015): 49-58.

[24] Kung, Yi-Wei, Hsu-Kuang Chang, and Chung-Nan Lee. "A
refined twig-join swift query algorithm for diversification
issues of XML." Journal of Information Science (2015):
0165551515601004

[25] Anderson, Dewey C., and David J. Anderson. "System and
method for retrieving information from a database using an
index of XML tags and metafiles." U.S. Patent 6,510,434,
issued January 21, 2003

[26] Papadimos, Vassilis, and David Maier. "Distributed queries
without distributed state." In WebDB, pp. 95-100. 2002

[27] Braumandl, Reinhard, Markus Keidl, Alfons Kemper,
Donald Kossmann, Stefan Seltzsam, and Konrad Stocker.
"Objectglobe: Open distributed query processing services
on the internet." IEEE Data Eng. Bull. 24, no. 1 (2001): 64-
70

[28] Jim, Trevor, and Dan Suciu. "Dynamically distributed query
evaluation." In Proceedings of the twentieth ACM
SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, pp. 28-39. ACM, 2001

[29] Smiljanic, Marko, Henk Blanken, Maurice Keulen, and
Willem Jonker. "Distributed XML database systems."
(2002): 1-43

[30] Wu, Yuqing, Jignesh M. Patel, and H. V. Jagadish.
"Structural join order selection for XML query
optimization." In Data Engineering, 2003. Proceedings.
19th International Conference on, pp. 443-454. IEEE, 2003

[31] Camillo, Sandro Daniel, Carlos Alberto Heuser, and
Ronaldo dos Santos Mello. "Querying heterogeneous XML
sources through a conceptual schema." In International
Conference on Conceptual Modeling, pp. 186-199. Springer
Berlin Heidelberg, 2003

	1.1.1.1 Number of ETRACTION POINT
	1.1.1.3 [31]
	1.1.1.4 [16]
	1.1.1.2 GI
	1.1.1.6 Exe Time (s)
	1.1.1.9 [31]
	1.1.1.10 [16]
	1.1.1.11 GI
	1.1.1.12 EXP
	1.1.1.13 Optimal
	1.1.1.14 NGI
	1.1.1.15 GI
	1.1.1.16 NGI
	1.1.1.17 GI
	1.1.1.19 [13]
	1.1.1.20 NGI
	1.1.1.21 GI
	1.1.1.22 No EXP
	1.1.1.23 [13]
	1.1.1.24 NGI
	1.1.1.25 GI
	1.1.1.26 No EXP
	1.1.1.27 [13]
	1.1.1.28 NGI
	1.1.1.29 GI
	1.1.1.30 No EXP
	1.1.1.31 [13]
	1.1.1.32 NGI
	1.1.1.33 GI
	1.1.1.34 No EXP

