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Summary 
Sampling based planning algorithm such as RRT and RRT* 
are extensively used in recent years for path planning of 
mobile robots. They are probabilistic complete algorithms and 
have natural support for solving high dimensional complex 
problems. RRT*-Smart is an extension of RRT* with faster 
convergence as compared to its predecessors. This paper 
provides an analytical review of the three algorithms. Impact 
of different parameters on algorithm’s performance is also 
evaluated. Moreover, a performance comparison for different 
optimality criteria such as path cost, run time and total 
number of nodes in tree is performed through simulation 
based experiments. Further, the comparative analysis is 
concluded with future research directions.  
Key words: 
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1. Introduction 

Path Planning for mobile robots has many useful 
applications in autonomous cars [1], Unmanned Aerial 
Vehicles (UAVs) [2], industrial forklifts [3], surveillance 
operations and planetary space missions [4, 5]. Path 
planning algorithms aim to find a collision free path from 
an initial state to a goal state with optimal or near optimal 
path cost. Sampling Based Planning (SBP) algorithms have 
been extensively used for path planning of mobile robots in 
recent years [5, 6] . SBP algorithms are known to provide 
quick solutions for complex and high dimensional 
problems using randomized sampling in search space [6, 7]. 
However SBPs are probabilistic complete, i.e., a solution 
will be provided, if one exists, given infinite runtime [6, 7]. 
Lavelle [8] proposed Rapidly exploring Random Tree 
(RRT) [8, 9], which is a well-known SBP algorithm. RRT 
supports dynamic environment and non-holonomic 
constraints for car like robots [9] very well. Lavelle 
applied it successfully to problems comprising of up to 
twelve degrees of freedom with both holonomic and non-
holonomic constraints. However, path generated by RRT 
was not optimal. Karaman and Frazzoli [5] proposed a 
variation of RRT called RRT* with proven asymptotically 
optimal property. RRT* improved path quality by 
introducing major features of tree rewiring and best 
neighbor search. However, it obtained asymptotic 

optimality at the cost of execution time and slower path 
convergence rate. Nasir et al.  presented RRT* Smart [10] 
with main focus on improving convergence rate of RRT*. 
Two major features introduced by RRT*-Smart called 
intelligent sampling and path optimization improved path 
cost and convergence rate.  
RRT and RRT* have numerous successful applications in 
robotics. Significant body of research has addressed the 
problem of optimal path planning using RRT* in recent 
years. These methodologies have gained tremendous 
success in solving single-query high dimensional complex 
problems. This paper presents a simulation based 
experimental comparison of the aforementioned algorithms 
in an environment cluttered with obstacles. Effect of 
different parameters on the performance of these 
approaches is discussed. Further, limitations and future 
directions for improvement are also suggested. 
Next section describes the methodology of RRT, RRT* 
and RRT*-Smart path planning approaches. Experimental 
results along with comparative analysis are presented in 
Section 3. Section 4 discusses future recommendations, 
followed by conclusion in the last section. 

2. Algorithms Overview 

2.1 Problem Definition  

RRT, RRT*, and RRT*-Smart operate in a configuration 
space, which is set of all possible transformations that 

could be applied to the robot [4, 11]. Let the given state 
space be denoted by a set NR ∈⊂ nZ n ,  where n  

represents the dimension of the given search space. The 
area of the search space which is occupied by obstacles is 

represented by ZZobs ⊂  and region free from obstacles is 

represented by obsfree ZZZ /= . freegoal Zz ⊂  represents 

goal and freeinit Zz ⊂  represents starting point. initz  and 

goalz are provided to planner as inputs. The problem is to 

find a collision free path between initial initz  and goal 
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goalz  states in freeZ , in least possible time R∈t , with 
minimum path cost. 

Problem 1 (Feasible Path Solution): Find a path 
],,0[: sfσ if one exists in ZZ free ⊂  such that  

freeinitf Zz ⊂=)0(σ  and goalf zs ∈)(σ and report 
failure if no such path exists. 

Problem 2 (Optimal Path Solution): Find an optimal path 
],0[:* sfσ  which connects initz and goalz in v, such 

ZZ free ⊂ such that the cost of the path f*σ  is minimum, 

}.:)({min)( * fCC ffsf ∑∈= σσσ σ  

Problem 3 (Convergence to Optimal Solution): Find an 
optimal path ],0[:* sfσ  in ZZ free ⊂ in the least 

possible time R∈t . 

2.2 RRT 

RRT constructs a tree using random sampling in search 
space. The tree start from an initial state say initz  and 

expands to find a path towards goal state say goalz . The 
tree gradually expands as the iteration continue. During 
each iteration, a random state say randz  is selected from 

configuration space Z . If random sample randz  lies in 

obstacle free region, then a nearest node say nearestz  is 

searched in tree according to a defined metric ρ . If randz  

is accessible to nearestz  according to predefined step size, 

then tree is expanded by connecting randz  and nearestz . 

Otherwise, it returns a new node newz  by using a steering 

function, thus expands tree by connecting newz  with 

nearestz . A Boolean collision checking process is 
performed to ensure collision free connection between tree 
nodes newz  and nearestz . When an initial path is found even 
then the process continues until a predefined time period 
expires or fixed number of iterations are executed. Node 
expansion process is described in Figure 1. RRT algorithm 
is presented in Table 1.  
 
 
 
 
 
 

Table 1: RRT Algorithm. 
Algorithm 1. 

Ƭ = (V, E) ← RRT( zinit) 
1 Ƭ ← InitializeTree(); 

2 Ƭ ← InsertNode(Ø, zinit, Ƭ); 
3 for i=0 to i=N do 

4 zrand ← Sample(i); 
5 znearest ← Nearest(Ƭ, zrand); 

6 (znew, Unew) ← Steer (znearest, zrand); 
7 if Obstaclefree(znew) then 

8 Ƭ ← InsertNode(zmin, znew, Ƭ); 
9 return Ƭ 

 
 

 

Figure 1: Tree expansion process. 

Further detail of some major functions is described as the 
following:-  
 

Sample: This function generates a random positon zrand 
from search space in obstacle free region freeZ . 

Nearest: This function returns the nearest node from Ƭ = (V, 
E) to zrand according to a cost function. 

Steer: This function provides a control input u [0, T] which 
drives the system from z(0)= zrand  to z(T)= znearest along 
the path z:[0,T] → Z giving znew at a distance Δq from 

znearest towards zrand where Δq is the incremental distance. 

CollisionCheck: This function is used to check collision 
detection of a tree branch and returns true if it lies in 

obstacle free region, i.e., whether a path z:[0, T] lies in the 
Zfree for all t=0 to t=T. 

Near: This function returns the nearby nodes in tree 
defined by (1). 

InsertNode: This function adds a node znew to V in the tree 
Ƭ = (V, E) to connect node zmin as its parent.  
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2.3 RRT*  

 

  Figure 2: Near neighbour search and rewiring operations in RRT*.  

RRT* inherits all the properties of RRT and works similar 
to RRT. However, it introduced two promising features 
called near neighbor search and rewiring tree operations 
[5]. Near neighbor operations finds the best parent node 
for the new node before its insertion in tree. This process is 
performed within the area of a ball of radius defined by 

d

n
nk

1
)log(






= γ  ,                               (1)                                                              

where d is the search space dimension and γ is the planning 
constant based on environment. Rewiring operation 
rebuilds the tree within this radius of area k to maintain the 
tree with minimal cost between tree connections as shown 
in Figure 2 [12]. Space exploration and improvement of 
path quality is shown in Figure 3. As the number of 
iterations increase, RRT* improves its path cost gradually 
due to its asymptotic quality, whereas RRT does not 
improves its jaggy and suboptimal path. 
 

 

Figure 3: Dense space exploration and path refinement in RRT* in 
comparison to RRT [5]. 

Due to increased efficiency to get less jagged and shorter 
path, features of rewiring and neighbor search are being 
adapted in recent revisions of RRT*. However, these 
operations have an efficiency trade-off. Though, it 
improved path cost but on the other hand it also slowed 
down convergence rate of RRT*. The details of the two 
new features introduced in RRT* are as follows:- 

Rewire: This function checks if the cost to the nodes in 
znear is less through znew as compared to their older costs, 
then its parent is changed to znew. 

ChooseParent:  This function selects the best parent znew 
from the nearby nodes.  
RRT* algorithm is described in Table 2.  

Table 2: RRT Algorithms 
Algorithm 2.  
Ƭ = (V, E) ← RRT*( zini) 
1 Ƭ ← InitializeTree(); 
2 Ƭ ← InsertNode(Ø, zinit, Ƭ); 
3 for i=0 to i=N do 
4 zrand ← Sample(i); 
5 znearest ← Nearest(Ƭ, zrand); 
6 (znew, Unew) ← Steer (znearest, zrand); 
7 if Obstaclefree(znew) then 
8      znear ← Near(Ƭ, znew, |V|); 
9      zmin ← Chooseparent (znear, znearest, znew); 
10    Ƭ ← InsertNode(zmin, znew, Ƭ); 
11    Ƭ ← Rewire (Ƭ, znear, zmin, znew); 
12 return Ƭ 
 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016 

 

23 

 

2.4 RRT*-Smart 

RRT*-Smart is an extended version of RRT* and executes 
similar to RRT*, however it performs a path optimization 
process when an initial path is found. This optimization 
process removes redundant nodes from the initial path 
found. Moreover, it also identifies beacon nodes for path 
improvement. Second major feature introduced by RRT*-
Smart is intelligent sampling. This sampling is different 
from random sampling because it is biased towards beacon 
nodes of optimized path. It uses a Biasing Radius to set 
radius for intelligent exploration around selected beacons. 
As soon as RRT*-Smart finds a shorter path, it performs 
path optimization process again to generate new beacon 
nodes. Thus, RRT*-Smart accelerates the path 
convergence and improves path cost. Further, it uses a 
Biasing Ratio to intelligently select either of Uniform 
Sampling or Intelligent Sampling. RRT*-Smart exhibits 
better path convergence than RRT*, as shown in Figure 4. 
However, its Biasing Ratio is either manually set by 
programmer or can be automated using  

,* B
z

nioBiasingRat
free














=                           (2) 

where B is again a programmer dependent constant. 
However, Biasing Ratio has a trade-off between rate of 
convergence and rate of exploration of search space.  

 

Figure 4: Convergence at iteration n = 4200 [10]. 

RRT*-Smart algorithm is described in Table 3. 

3. Experiments and Simulation Results 

In this section, analysis of three algorithms RRT, RRT*, 
RRT* Smart is presented. To evaluate their performance a 
simulation environment is developed using 64-bit 
MATLAB version 15. The operating system used is 64-bit 
Windows 8.1 Pro. Test cases of simulation are executed on 
a PC with an Intel i7-4790 CPU @ 3.60 GHz and 8GB 

internal RAM. Three different types of experiments are 
performed as described Plater in this section. Purpose of 
simulation experiments in this section is as follows:-  

Table 3: RRT*-Smart Algorithm. 
Algorithm 3. 
 Ƭ = (V,E) ← RRT*-Smart(zini) 
1 Ƭ ← InitializeTree(); 
2 Ƭ ← InsertNode(Ø, zinit, Ƭ); 
3 for i=0 to i=N do 
4 if i=n+b, n+2b, n+3b…. then 
5       zrand ← Sample(i, zbeacons);  
6 else 
7       zrand ← Sample(i); 
8 znearest ← Nearest(Ƭ, zrand); 
9 (znew, Unew, Tnew) ← Steer (znearest, zrand); 
10 if Obstaclefree(znew) then 
11     znear ← Near(Ƭ, znew, |V|); 
12     zmin ← Chooseparent (znear, znearest, znew);  
13     Ƭ ← InsertNode(zmin, znew, Ƭ); 
14     Ƭ ← Rewire (Ƭ, Znear, Zmin, Znew); 
15 if InitialPathFound then  
16     n ←  i; 
17     (Ƭ, directcost) ← PathOptimization(Ƭ, zinit, 
zgoal); 
18 if (directcostnew < directcostold) then 
19     Zbeacons ← PathOptimization(Ƭ, Zinit, Zgoal); 
20 return Ƭ 
 To highlight the RRT* sensitivity with rewiring 

radius obtained using different values of γ, as 
defined by (1). 

 To highlight the sensitivity of smart heuristics of 
Biasing Ration and Biasing Radius in RRT*-
Smart, defined by (2).  

 To highlight performance difference between 
RRT, RRT* and RRT*-Smart with respect to 
different performance parameters e.g. path cost, 
runt time, and as well as tree density. 

 
In these experiments the path cost is calculated in terms of 
Euclidean distance defined by 

2
12

2
12 )()( yyxxd −+−=∆                                   (3) 

3.1. Effect of γ on RRT* Performance 

Experiments were carried out for 10 different trials with 
3000 iterations and different γ values.  Simulation results 
showed that increased value of γ increases rewiring radius 
which in turn effects the convergence and path cost as well.  
Figure 5 shows path cost and average execution time 
analysis with γ values of 20, 10 and 5. It is evident that 
with increase of γ value, path cost and execution time are 
decreased. 
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  Figure 5: Comparison of different γ values on performance of RRT*. 

3.2. Effect of Biasing Radius on RRT*-Smart 
Performance 

Search space exploration in RRT*-Smart is heavily 
effected by its Biasing Radius heuristic. An increased 
value of Biasing Radius increases the exploration around 
beacon as shown in Figure 6. A suitable range of Biasing 
Radius is adjusted to get the minimum path cost with 
maximum exploration of best nodes which varies for 
different environment maps.  

 

Figure 6: Effect of Biasing Radius in RRT*-Smart. 

Convergence rate and path cost of RRT*-Smart is also 
very sensitive to Biasing Ratio. Figure 7 shows the average 
number of nodes and average path cost for 10 independent 
runs with fixed 2000 iterations. This experiment was 

repeated three time using different values of constant B in 
Biasing Ratio from (2), as shown in Figure 7. This constant 
B requires fine tuning to identify the suitable range of 
value according to the application needs. Suitable value is 
the one which could balance the trade-off between uniform 
exploration and intelligent exploration in search space. 

 

Figure 7: Impact of Biasing Ratio in RRT*-Smart. 

3.3. Performance Comparison  

Figure 8 shows results of one sample run executed with 
8000 iterations for three different environment maps. 
Results show that RRT* and RRT*-Smart improve initial 
path as compared to RRT remarkably. However, they both 
take more execution time than basic RRT. This is due to 
the fact that RRT* and RRT*-Smart use two additional 
operations than RRT i.e., rewiring tree and best neighbor 
search. These two features improve the path cost to 
generate less jaggy and shorter path. On the other hand, 
these features also slow down the convergence rate and 
increase computational time. Further, RRT*-Smart 
evidently takes less time than RRT*. Its optimization 
operation and intelligent sampling operation converge it 
quickly to shorter path in less number of iterations than 
RRT*.  
Analysis of results in Figure 8 also showed that RRT*-
Smart converges quickly than both other approaches. 
However, it also suffers from large number of nodes like 
RRT and RRT*. Because switching to intelligent sampling 
in RRT*-Smart also generates denser tree in identified 
beacons area, as shown in Figure 8. In all these approaches, 
tree gets populated with such nodes which do not 
contribute in the final solution. They merely increase the 
tree density and memory requirements consequently 
effecting computational time. Developing operations to 
limit tree nodes to maximum useful nodes could increase 
the efficiency of these approaches. 
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Figure 8: Path quality comparison of three algorithms with 8000 iterations in a sample run. 
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Figure 9: Average Run Time and Path Cost Comparison with 8000 
iterations in 10 trial runs. 

Path cost, run time and tree density plots after numerical 
analysis of executing all three algorithms on obstacle 
cluttered map are shown in Figure 9. The plots 
demonstrate that RRT*-Smart generates shorter path with 
less path cost than RRT and RRT* for 10 different runs of 
8000 iterations. Second fact that is evident from the 
evaluation of execution time trend is that RRT has 
significantly less time than both other algorithms.  Because 
RRT* and RRT*-Smart offer near neighbor search and 
rewiring operations, which increase execution time per 

iterations than basic RRT. However, they generate 
significantly shorter paths with much less path cost than 
basic RRT as shown in Figure 8 and in Figure 9. Third, the 
exploration of search space and nodes expansion in tree is 
also linked with memory requirements and computational 
resources. RRT*-Smart expands tree rapidly as compared 
to RRT and RRT* because of its intelligent sampling and 
path optimization processes. Hence it generates shorter 
path in reasonable time using less dense tree thus saving 
the computational resources. Table 4 presents the 
comparative summary of three approaches for different 
performance parameters. 

Table 4: Summary of Comparative Analysis 

Parameter RRT RRT* RRT*-
Smart 

Path Cost (m) 56 50 41 
Run Time 

(Sec) 150 621 210 

Tree Density 
(number of 

nodes in tree) 
2954 2972 2000 

Completeness Probabilistic Probabilistic Probabilistic 

Optimality Non-
optimal 

Asymptotic 
Optimal 

Asymptotic 
Optimal 

4. Conclusion  

Cutting-edge research has evidenced that RRT and RRT* 
based approaches are successful for high dimensional 
complex problems. The analysis of these approaches have 
shown that they confront issues of optimality and large 
number of nodes in search space. They improve path 
quality at the cost of computational efficiency. This 
performance trade-off could lead to more difficulty while 
dealing with high dimensions, high degrees of freedom and 
non-holonomic constraints. We plan to grow search tree 
more intelligently with improved computational efficiency 
for high dimensional complex problem using wheeled 
mobile robots. Future work in this direction is a thriving 
area of research. 
 
References 
[1] X. Lan, and S. Di Cairano, "Continuous Curvature Path 

Planning for Autonomous Vehicle Maneuvers Using RRT*", 
presented at the European Control Conference (ECC), 2015. 

[2] D. Alejo, J. A. Cobano, G. Heredia, J. R. Martínez-De Dios, 
and A. Ollero, "Efficient Trajectory Planning for WSN Data 
Collection with Multiple UAVs", in Cooperative Robots 
and Sensor Networks. vol. 604, ed: Springer International 
Publishing, 2015, pp. 53-75. 

[3] S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller, 
"Anytime Motion Planning using the RRT*", presented at 



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016 

 

27 

 

the IEEE International Conference on Robotics and 
Automation (ICRA) 2011. 

[4] S. M. Lavalle, Planning Algorithms: Cambridge University 
Press, 2006. 

[5] S. Karaman, and E. Frazzoli, "Sampling-based Algorithms 
for Optimal Motion Planning", The International Journal of 
Robotics Research, vol. 30, pp. 846-894, 2011. 

[6] M. Elbanhawi, and M. Simic, "Sampling-Based Robot 
Motion Planning: A Review survey", IEEE Access, vol. 2, 
pp. 56-77, 2014. 

[7] S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller, 
"Anytime Motion Planning using the RRT∗", presented at 
the IEEE International Conference on Robotics and 
Automation (ICRA) 2011. 

[8] S. M. Lavalle, "Rapidly-Exploring Random Trees: A New 
Tool for Path Planning", 1998. 

[9] J. J. Kuffner, and S. M. Lavalle, "RRT-Connect: An 
Efficient Approach to Single-Query Path Planning", in 
Proceedings of IEEE International Conference on Robotics 
and Automation, 2000, pp. 1-7. 

[10] J. Nasir et al., "RRT*-SMART: A Rapid Convergence 
Implementation of RRT*", International Journal of 
Advanced Robotic Systems, vol. 10, pp. 1-12, 2013. 

[11] Y. K. Hwang, "Gross Motion Planning-A Survey", ACM 
Computing Surveys, vol. 24, pp. 219-291, 1992. 

[12] J. W. Loeve, "Finding Time-Optimal Trajectories for the 
Resonating Arm using the RRT* Algorithm", Master of 
Science, Faculty Mechanical, Maritime and Materials 
Engineering, Delft University of Technology, Delft, 2012. 

 
Biographies 

Iram Noreen received BSCS from The 
University of Lahore and MSCS from 
Lahore College for Women University, 
Lahore with distinction. Her research 
interests are image processing, computer 
graphics and robotics. Presently, she is 
associated with COMSATS Institute of 
Information Technology, Lahore as PhD 
scholar in Department of Computer 

Science. 
 

Amna Khan completed her BSCS and 
MSCS from University of Engineering & 
Technology, Lahore. Currently, she is a 
Ph.D. scholar at COMSATS Institute of 
Information Technology, Lahore. Her 
research interest includes computer 
graphics, geometric modeling and robotics 
 
 

 
Zulfiqar Habib earned his PhD degree in 
Computer Science in 2004 from 
Kagoshima University Japan followed by 
the award of Postdoctoral fellowship of 
two years by Japan Society for the 
Promotion of Science. Currently, he is 
holding position of full Professor at the 
Department of Computer Science, 

COMSATS Institute of Information Technology (CIIT), Lahore, 
Pakistan. He has established a laboratory for research in Vision, 
Image, Graphics (VIG), and Robotics at CIIT, and is working as 
the In-Charge of the Center for Research in VIG-Robotics 
founded by him in 2011. Habib has achieved various awards in 
education and research including Farogh-e-Taleem Gold Medal 
for the best performance in field of education, two Research 
Productivity Awards by Ministry of Science & Technology, 
Pakistan and three graduate merit fellowships by Japanese and 
German Governments. He is an associate editor of the 
International Open Transportation Journal, reviewer of many 
famous journals and is organizer of various international 
conferences. Habib’s teaching & research interests broadly span 
the areas of Computer Graphics, including Computer Aided 
Geometric Design, Data Visualization, Geometric Modeling, 
Reverse Engineering of Images, Path Planning, Robotics, 
Computer Vision, and Digital Image Processing. He has 
published a large number of highly cited research papers in 
impact factor journals, supervising master and PhD students, and 
actively involved in funding projects. 


	RRT
	RRT*
	RRT*-Smart

	Parameter

