
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

20

Manuscript received October 5, 2016
Manuscript revised October 20, 2016

A Comparison of RRT, RRT* and RRT*-Smart Path Planning
Algorithms

Iram Noreen1, Amna Khan2, Zulfiqar Habib3

Department of Computer Science, COMSATS Institute of Information Technology, Lahore.

Summary
Sampling based planning algorithm such as RRT and RRT*
are extensively used in recent years for path planning of
mobile robots. They are probabilistic complete algorithms and
have natural support for solving high dimensional complex
problems. RRT*-Smart is an extension of RRT* with faster
convergence as compared to its predecessors. This paper
provides an analytical review of the three algorithms. Impact
of different parameters on algorithm’s performance is also
evaluated. Moreover, a performance comparison for different
optimality criteria such as path cost, run time and total
number of nodes in tree is performed through simulation
based experiments. Further, the comparative analysis is
concluded with future research directions.
Key words:
Path Planning, RRT, RRT*, mobile robots, Comparison, Review.

1. Introduction

Path Planning for mobile robots has many useful
applications in autonomous cars [1], Unmanned Aerial
Vehicles (UAVs) [2], industrial forklifts [3], surveillance
operations and planetary space missions [4, 5]. Path
planning algorithms aim to find a collision free path from
an initial state to a goal state with optimal or near optimal
path cost. Sampling Based Planning (SBP) algorithms have
been extensively used for path planning of mobile robots in
recent years [5, 6] . SBP algorithms are known to provide
quick solutions for complex and high dimensional
problems using randomized sampling in search space [6, 7].
However SBPs are probabilistic complete, i.e., a solution
will be provided, if one exists, given infinite runtime [6, 7].
Lavelle [8] proposed Rapidly exploring Random Tree
(RRT) [8, 9], which is a well-known SBP algorithm. RRT
supports dynamic environment and non-holonomic
constraints for car like robots [9] very well. Lavelle
applied it successfully to problems comprising of up to
twelve degrees of freedom with both holonomic and non-
holonomic constraints. However, path generated by RRT
was not optimal. Karaman and Frazzoli [5] proposed a
variation of RRT called RRT* with proven asymptotically
optimal property. RRT* improved path quality by
introducing major features of tree rewiring and best
neighbor search. However, it obtained asymptotic

optimality at the cost of execution time and slower path
convergence rate. Nasir et al. presented RRT* Smart [10]
with main focus on improving convergence rate of RRT*.
Two major features introduced by RRT*-Smart called
intelligent sampling and path optimization improved path
cost and convergence rate.
RRT and RRT* have numerous successful applications in
robotics. Significant body of research has addressed the
problem of optimal path planning using RRT* in recent
years. These methodologies have gained tremendous
success in solving single-query high dimensional complex
problems. This paper presents a simulation based
experimental comparison of the aforementioned algorithms
in an environment cluttered with obstacles. Effect of
different parameters on the performance of these
approaches is discussed. Further, limitations and future
directions for improvement are also suggested.
Next section describes the methodology of RRT, RRT*
and RRT*-Smart path planning approaches. Experimental
results along with comparative analysis are presented in
Section 3. Section 4 discusses future recommendations,
followed by conclusion in the last section.

2. Algorithms Overview

2.1 Problem Definition

RRT, RRT*, and RRT*-Smart operate in a configuration
space, which is set of all possible transformations that

could be applied to the robot [4, 11]. Let the given state
space be denoted by a set NR ∈⊂ nZ n , where n

represents the dimension of the given search space. The
area of the search space which is occupied by obstacles is

represented by ZZobs ⊂ and region free from obstacles is

represented by obsfree ZZZ /= . freegoal Zz ⊂ represents

goal and freeinit Zz ⊂ represents starting point. initz and

goalz are provided to planner as inputs. The problem is to

find a collision free path between initial initz and goal

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

21

goalz states in freeZ , in least possible time R∈t , with
minimum path cost.

Problem 1 (Feasible Path Solution): Find a path
],,0[: sfσ if one exists in ZZ free ⊂ such that

freeinitf Zz ⊂=)0(σ and goalf zs ∈)(σ and report
failure if no such path exists.

Problem 2 (Optimal Path Solution): Find an optimal path
],0[:* sfσ which connects initz and goalz in v, such

ZZ free ⊂ such that the cost of the path f*σ is minimum,

}.:)({min)(* fCC ffsf ∑∈= σσσ σ

Problem 3 (Convergence to Optimal Solution): Find an
optimal path],0[:* sfσ in ZZ free ⊂ in the least

possible time R∈t .

2.2 RRT

RRT constructs a tree using random sampling in search
space. The tree start from an initial state say initz and

expands to find a path towards goal state say goalz . The
tree gradually expands as the iteration continue. During
each iteration, a random state say randz is selected from

configuration space Z . If random sample randz lies in

obstacle free region, then a nearest node say nearestz is

searched in tree according to a defined metric ρ . If randz

is accessible to nearestz according to predefined step size,

then tree is expanded by connecting randz and nearestz .

Otherwise, it returns a new node newz by using a steering

function, thus expands tree by connecting newz with

nearestz . A Boolean collision checking process is
performed to ensure collision free connection between tree
nodes newz and nearestz . When an initial path is found even
then the process continues until a predefined time period
expires or fixed number of iterations are executed. Node
expansion process is described in Figure 1. RRT algorithm
is presented in Table 1.

Table 1: RRT Algorithm.
Algorithm 1.

Ƭ = (V, E) ← RRT(zinit)
1 Ƭ ← InitializeTree();

2 Ƭ ← InsertNode(Ø, zinit, Ƭ);
3 for i=0 to i=N do

4 zrand ← Sample(i);
5 znearest ← Nearest(Ƭ, zrand);

6 (znew, Unew) ← Steer (znearest, zrand);
7 if Obstaclefree(znew) then

8 Ƭ ← InsertNode(zmin, znew, Ƭ);
9 return Ƭ

Figure 1: Tree expansion process.

Further detail of some major functions is described as the
following:-

Sample: This function generates a random positon zrand
from search space in obstacle free region freeZ .

Nearest: This function returns the nearest node from Ƭ = (V,
E) to zrand according to a cost function.

Steer: This function provides a control input u [0, T] which
drives the system from z(0)= zrand to z(T)= znearest along
the path z:[0,T] → Z giving znew at a distance Δq from

znearest towards zrand where Δq is the incremental distance.

CollisionCheck: This function is used to check collision
detection of a tree branch and returns true if it lies in

obstacle free region, i.e., whether a path z:[0, T] lies in the
Zfree for all t=0 to t=T.

Near: This function returns the nearby nodes in tree
defined by (1).

InsertNode: This function adds a node znew to V in the tree
Ƭ = (V, E) to connect node zmin as its parent.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

22

2.3 RRT*

 Figure 2: Near neighbour search and rewiring operations in RRT*.

RRT* inherits all the properties of RRT and works similar
to RRT. However, it introduced two promising features
called near neighbor search and rewiring tree operations
[5]. Near neighbor operations finds the best parent node
for the new node before its insertion in tree. This process is
performed within the area of a ball of radius defined by

d

n
nk

1
)log(

= γ , (1)

where d is the search space dimension and γ is the planning
constant based on environment. Rewiring operation
rebuilds the tree within this radius of area k to maintain the
tree with minimal cost between tree connections as shown
in Figure 2 [12]. Space exploration and improvement of
path quality is shown in Figure 3. As the number of
iterations increase, RRT* improves its path cost gradually
due to its asymptotic quality, whereas RRT does not
improves its jaggy and suboptimal path.

Figure 3: Dense space exploration and path refinement in RRT* in
comparison to RRT [5].

Due to increased efficiency to get less jagged and shorter
path, features of rewiring and neighbor search are being
adapted in recent revisions of RRT*. However, these
operations have an efficiency trade-off. Though, it
improved path cost but on the other hand it also slowed
down convergence rate of RRT*. The details of the two
new features introduced in RRT* are as follows:-

Rewire: This function checks if the cost to the nodes in
znear is less through znew as compared to their older costs,
then its parent is changed to znew.

ChooseParent: This function selects the best parent znew
from the nearby nodes.
RRT* algorithm is described in Table 2.

Table 2: RRT Algorithms
Algorithm 2.
Ƭ = (V, E) ← RRT*(zini)
1 Ƭ ← InitializeTree();
2 Ƭ ← InsertNode(Ø, zinit, Ƭ);
3 for i=0 to i=N do
4 zrand ← Sample(i);
5 znearest ← Nearest(Ƭ, zrand);
6 (znew, Unew) ← Steer (znearest, zrand);
7 if Obstaclefree(znew) then
8 znear ← Near(Ƭ, znew, |V|);
9 zmin ← Chooseparent (znear, znearest, znew);
10 Ƭ ← InsertNode(zmin, znew, Ƭ);
11 Ƭ ← Rewire (Ƭ, znear, zmin, znew);
12 return Ƭ

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

23

2.4 RRT*-Smart

RRT*-Smart is an extended version of RRT* and executes
similar to RRT*, however it performs a path optimization
process when an initial path is found. This optimization
process removes redundant nodes from the initial path
found. Moreover, it also identifies beacon nodes for path
improvement. Second major feature introduced by RRT*-
Smart is intelligent sampling. This sampling is different
from random sampling because it is biased towards beacon
nodes of optimized path. It uses a Biasing Radius to set
radius for intelligent exploration around selected beacons.
As soon as RRT*-Smart finds a shorter path, it performs
path optimization process again to generate new beacon
nodes. Thus, RRT*-Smart accelerates the path
convergence and improves path cost. Further, it uses a
Biasing Ratio to intelligently select either of Uniform
Sampling or Intelligent Sampling. RRT*-Smart exhibits
better path convergence than RRT*, as shown in Figure 4.
However, its Biasing Ratio is either manually set by
programmer or can be automated using

,* B
z

nioBiasingRat
free

= (2)

where B is again a programmer dependent constant.
However, Biasing Ratio has a trade-off between rate of
convergence and rate of exploration of search space.

Figure 4: Convergence at iteration n = 4200 [10].

RRT*-Smart algorithm is described in Table 3.

3. Experiments and Simulation Results

In this section, analysis of three algorithms RRT, RRT*,
RRT* Smart is presented. To evaluate their performance a
simulation environment is developed using 64-bit
MATLAB version 15. The operating system used is 64-bit
Windows 8.1 Pro. Test cases of simulation are executed on
a PC with an Intel i7-4790 CPU @ 3.60 GHz and 8GB

internal RAM. Three different types of experiments are
performed as described Plater in this section. Purpose of
simulation experiments in this section is as follows:-

Table 3: RRT*-Smart Algorithm.
Algorithm 3.
 Ƭ = (V,E) ← RRT*-Smart(zini)
1 Ƭ ← InitializeTree();
2 Ƭ ← InsertNode(Ø, zinit, Ƭ);
3 for i=0 to i=N do
4 if i=n+b, n+2b, n+3b…. then
5 zrand ← Sample(i, zbeacons);
6 else
7 zrand ← Sample(i);
8 znearest ← Nearest(Ƭ, zrand);
9 (znew, Unew, Tnew) ← Steer (znearest, zrand);
10 if Obstaclefree(znew) then
11 znear ← Near(Ƭ, znew, |V|);
12 zmin ← Chooseparent (znear, znearest, znew);
13 Ƭ ← InsertNode(zmin, znew, Ƭ);
14 Ƭ ← Rewire (Ƭ, Znear, Zmin, Znew);
15 if InitialPathFound then
16 n ← i;
17 (Ƭ, directcost) ← PathOptimization(Ƭ, zinit,
zgoal);
18 if (directcostnew < directcostold) then
19 Zbeacons ← PathOptimization(Ƭ, Zinit, Zgoal);
20 return Ƭ
 To highlight the RRT* sensitivity with rewiring

radius obtained using different values of γ, as
defined by (1).

 To highlight the sensitivity of smart heuristics of
Biasing Ration and Biasing Radius in RRT*-
Smart, defined by (2).

 To highlight performance difference between
RRT, RRT* and RRT*-Smart with respect to
different performance parameters e.g. path cost,
runt time, and as well as tree density.

In these experiments the path cost is calculated in terms of
Euclidean distance defined by

2
12

2
12)()(yyxxd −+−=∆ (3)

3.1. Effect of γ on RRT* Performance

Experiments were carried out for 10 different trials with
3000 iterations and different γ values. Simulation results
showed that increased value of γ increases rewiring radius
which in turn effects the convergence and path cost as well.
Figure 5 shows path cost and average execution time
analysis with γ values of 20, 10 and 5. It is evident that
with increase of γ value, path cost and execution time are
decreased.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

24

 Figure 5: Comparison of different γ values on performance of RRT*.

3.2. Effect of Biasing Radius on RRT*-Smart
Performance

Search space exploration in RRT*-Smart is heavily
effected by its Biasing Radius heuristic. An increased
value of Biasing Radius increases the exploration around
beacon as shown in Figure 6. A suitable range of Biasing
Radius is adjusted to get the minimum path cost with
maximum exploration of best nodes which varies for
different environment maps.

Figure 6: Effect of Biasing Radius in RRT*-Smart.

Convergence rate and path cost of RRT*-Smart is also
very sensitive to Biasing Ratio. Figure 7 shows the average
number of nodes and average path cost for 10 independent
runs with fixed 2000 iterations. This experiment was

repeated three time using different values of constant B in
Biasing Ratio from (2), as shown in Figure 7. This constant
B requires fine tuning to identify the suitable range of
value according to the application needs. Suitable value is
the one which could balance the trade-off between uniform
exploration and intelligent exploration in search space.

Figure 7: Impact of Biasing Ratio in RRT*-Smart.

3.3. Performance Comparison

Figure 8 shows results of one sample run executed with
8000 iterations for three different environment maps.
Results show that RRT* and RRT*-Smart improve initial
path as compared to RRT remarkably. However, they both
take more execution time than basic RRT. This is due to
the fact that RRT* and RRT*-Smart use two additional
operations than RRT i.e., rewiring tree and best neighbor
search. These two features improve the path cost to
generate less jaggy and shorter path. On the other hand,
these features also slow down the convergence rate and
increase computational time. Further, RRT*-Smart
evidently takes less time than RRT*. Its optimization
operation and intelligent sampling operation converge it
quickly to shorter path in less number of iterations than
RRT*.
Analysis of results in Figure 8 also showed that RRT*-
Smart converges quickly than both other approaches.
However, it also suffers from large number of nodes like
RRT and RRT*. Because switching to intelligent sampling
in RRT*-Smart also generates denser tree in identified
beacons area, as shown in Figure 8. In all these approaches,
tree gets populated with such nodes which do not
contribute in the final solution. They merely increase the
tree density and memory requirements consequently
effecting computational time. Developing operations to
limit tree nodes to maximum useful nodes could increase
the efficiency of these approaches.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

25

Figure 8: Path quality comparison of three algorithms with 8000 iterations in a sample run.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

26

Figure 9: Average Run Time and Path Cost Comparison with 8000
iterations in 10 trial runs.

Path cost, run time and tree density plots after numerical
analysis of executing all three algorithms on obstacle
cluttered map are shown in Figure 9. The plots
demonstrate that RRT*-Smart generates shorter path with
less path cost than RRT and RRT* for 10 different runs of
8000 iterations. Second fact that is evident from the
evaluation of execution time trend is that RRT has
significantly less time than both other algorithms. Because
RRT* and RRT*-Smart offer near neighbor search and
rewiring operations, which increase execution time per

iterations than basic RRT. However, they generate
significantly shorter paths with much less path cost than
basic RRT as shown in Figure 8 and in Figure 9. Third, the
exploration of search space and nodes expansion in tree is
also linked with memory requirements and computational
resources. RRT*-Smart expands tree rapidly as compared
to RRT and RRT* because of its intelligent sampling and
path optimization processes. Hence it generates shorter
path in reasonable time using less dense tree thus saving
the computational resources. Table 4 presents the
comparative summary of three approaches for different
performance parameters.

Table 4: Summary of Comparative Analysis

Parameter RRT RRT* RRT*-
Smart

Path Cost (m) 56 50 41
Run Time

(Sec) 150 621 210

Tree Density
(number of

nodes in tree)
2954 2972 2000

Completeness Probabilistic Probabilistic Probabilistic

Optimality Non-
optimal

Asymptotic
Optimal

Asymptotic
Optimal

4. Conclusion

Cutting-edge research has evidenced that RRT and RRT*
based approaches are successful for high dimensional
complex problems. The analysis of these approaches have
shown that they confront issues of optimality and large
number of nodes in search space. They improve path
quality at the cost of computational efficiency. This
performance trade-off could lead to more difficulty while
dealing with high dimensions, high degrees of freedom and
non-holonomic constraints. We plan to grow search tree
more intelligently with improved computational efficiency
for high dimensional complex problem using wheeled
mobile robots. Future work in this direction is a thriving
area of research.

References
[1] X. Lan, and S. Di Cairano, "Continuous Curvature Path

Planning for Autonomous Vehicle Maneuvers Using RRT*",
presented at the European Control Conference (ECC), 2015.

[2] D. Alejo, J. A. Cobano, G. Heredia, J. R. Martínez-De Dios,
and A. Ollero, "Efficient Trajectory Planning for WSN Data
Collection with Multiple UAVs", in Cooperative Robots
and Sensor Networks. vol. 604, ed: Springer International
Publishing, 2015, pp. 53-75.

[3] S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller,
"Anytime Motion Planning using the RRT*", presented at

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

27

the IEEE International Conference on Robotics and
Automation (ICRA) 2011.

[4] S. M. Lavalle, Planning Algorithms: Cambridge University
Press, 2006.

[5] S. Karaman, and E. Frazzoli, "Sampling-based Algorithms
for Optimal Motion Planning", The International Journal of
Robotics Research, vol. 30, pp. 846-894, 2011.

[6] M. Elbanhawi, and M. Simic, "Sampling-Based Robot
Motion Planning: A Review survey", IEEE Access, vol. 2,
pp. 56-77, 2014.

[7] S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller,
"Anytime Motion Planning using the RRT∗", presented at
the IEEE International Conference on Robotics and
Automation (ICRA) 2011.

[8] S. M. Lavalle, "Rapidly-Exploring Random Trees: A New
Tool for Path Planning", 1998.

[9] J. J. Kuffner, and S. M. Lavalle, "RRT-Connect: An
Efficient Approach to Single-Query Path Planning", in
Proceedings of IEEE International Conference on Robotics
and Automation, 2000, pp. 1-7.

[10] J. Nasir et al., "RRT*-SMART: A Rapid Convergence
Implementation of RRT*", International Journal of
Advanced Robotic Systems, vol. 10, pp. 1-12, 2013.

[11] Y. K. Hwang, "Gross Motion Planning-A Survey", ACM
Computing Surveys, vol. 24, pp. 219-291, 1992.

[12] J. W. Loeve, "Finding Time-Optimal Trajectories for the
Resonating Arm using the RRT* Algorithm", Master of
Science, Faculty Mechanical, Maritime and Materials
Engineering, Delft University of Technology, Delft, 2012.

Biographies

Iram Noreen received BSCS from The
University of Lahore and MSCS from
Lahore College for Women University,
Lahore with distinction. Her research
interests are image processing, computer
graphics and robotics. Presently, she is
associated with COMSATS Institute of
Information Technology, Lahore as PhD
scholar in Department of Computer

Science.

Amna Khan completed her BSCS and
MSCS from University of Engineering &
Technology, Lahore. Currently, she is a
Ph.D. scholar at COMSATS Institute of
Information Technology, Lahore. Her
research interest includes computer
graphics, geometric modeling and robotics

Zulfiqar Habib earned his PhD degree in
Computer Science in 2004 from
Kagoshima University Japan followed by
the award of Postdoctoral fellowship of
two years by Japan Society for the
Promotion of Science. Currently, he is
holding position of full Professor at the
Department of Computer Science,

COMSATS Institute of Information Technology (CIIT), Lahore,
Pakistan. He has established a laboratory for research in Vision,
Image, Graphics (VIG), and Robotics at CIIT, and is working as
the In-Charge of the Center for Research in VIG-Robotics
founded by him in 2011. Habib has achieved various awards in
education and research including Farogh-e-Taleem Gold Medal
for the best performance in field of education, two Research
Productivity Awards by Ministry of Science & Technology,
Pakistan and three graduate merit fellowships by Japanese and
German Governments. He is an associate editor of the
International Open Transportation Journal, reviewer of many
famous journals and is organizer of various international
conferences. Habib’s teaching & research interests broadly span
the areas of Computer Graphics, including Computer Aided
Geometric Design, Data Visualization, Geometric Modeling,
Reverse Engineering of Images, Path Planning, Robotics,
Computer Vision, and Digital Image Processing. He has
published a large number of highly cited research papers in
impact factor journals, supervising master and PhD students, and
actively involved in funding projects.

	RRT
	RRT*
	RRT*-Smart

	Parameter

