
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

46

Manuscript received October 5, 2016
Manuscript revised October 20, 2016

Modified Bat Algorithm for Nonlinear Optimization

Kazimierz Kiełkowicz and Damian Grela,

Department of Computer Science, Faculty of Electrical and Computer Engineering,
Cracow University of Technology, Cracow, Poland

Summary
Bat Algorithm is recently proposed bio-inspired metaheuristics
method for solving hard optimization tasks. It mimics behavior
of bats hunting for their prey. The paper introduces some
modification to Bat Algorithm. Presented modification changes
exploration process as well as introduce different scheme of
acceptance of a newly founded solutions. Effects of introduced
modifications are tested on standard benchmark functions. The
influence of a number of bats used in optimization process is also
taken into account.
Key words:
Bat algorithm, swarm intelligence, metaheuristics, optimization.

1. Introduction

In general metaheuristics algorithms can be divided into
few groups, e.g. algorithms based on evolutionary
approach that models evolutionary process or algorithms
exploring phenomena of a Swarm Intelligence [1]. Others
approach for evolutionary metaheuristic, such as
algorithms for modeling response of a human immune
system (e.g. Artificial Immune System algorithms) might
be considered as separate category due to their multiplicity
of proposed solutions.
Metaheuristics methods which are focused on exploring
models of a natural evolution are (mostly but not limited
to) as follows: Genetic Algorithms (GA) [2], Genetic
Programming (GP) and Differential Evolution (DE) [3].
Algorithms based on Swarm Intelligence are broadly
presented by Particle Swarm Optimization (PSO) [4], Ant
Colony Optimization (ACO) [5] or some of its
modifications.
Recently introduced method, based on population of
solutions which explore phenomena of Swarm Intelligence
was presented by Yang [6] in 2010, is called Bat
Algorithm (BA). In [6] by modeling the behavior of bats
hunting for prey and by exploring phenomena of their
echolocation capabilities, author managed to incorporate
methods for balancing the exploration phase as well as
exploitation phase of a modern Swarm Based Algorithms.
Bat Algorithms had already been applied to solve
numerous hard optimization problems such as multi-
criteria optimization [7] or optimization of topology of
microelectronic circuits [8].
Growing popularity of the Bat Algorithm has encouraged
researchers to focus their work on its further

improvements. Most work has been done within the area
of hybridization of Bat Algorithm with other
metaheuristics or local search methods [9]. Some other
solutions were involved within the area of adding self-
adaptability capabilities to algorithm [10]. Some works has
also been in adaptation standard Bat Algorithm for binary
problems [11].
Unfortunately, most of these modification not only
improves the quality of obtained solutions, but also
increases the number of control parameters that are needed
to be set in order to obtain solutions of expected quality.
This makes such solutions quite impractical.
This paper introduces some modifications to Bat
Algorithms that results in increment of converge
capabilities without the need for any new control
parameters.
Paper is organized as follows, in Section 2 basic scheme of
the Bat Algorithm is introduced as well as some custom
modifications are introduced and briefly discussed, Section
3 covers simulation experiments showing benefits of the
proposed modifications, Section 4 summarize presented
publication and discuss some concluding remarks.

2. Bat Algorithm

Bat Algorithm is recently proposed bio-inspired
metaheuristics method for solving hard optimization tasks.
It tries to mimic behavior of bats hunting for their prey.
Algorithm was introduced by Yang in 2010 [6]. Bat
Algorithm is based on population of bats, which by flying
thru solution search space explore it in order to find
interesting areas. Each single bat represents one solution in
n-dimensional search space. Solutions are evaluated in
terms of their fit value by provided fit function.
For example, consider n-dimensional, real valued solution
space in which optimization takes place. Each solution,
represented as a bat, is evaluated with provided fit function.
There are also two real valued n-dimensional vectors
associated with each bat in population. First vector is real
valued vector representing position of a bat in solution
search space. Second vector is real valued vector
representing velocity in each of n-dimensional directions.
Usually position vector and velocity vector are initialized
randomly at the beginning of the algorithm. Main loop of
the algorithm consists of iterative improvement in founded

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

47

solution. At each iteration step fit value is calculated for
every member of population of bats by provided fit
function, and new velocity vector is calculated based on
relative distance from best and current solution in
population. Next, position of every bat is updated
accordingly to its velocity vector. At the end of each
iteration best solution is founded and used as new
reference point. Exploring search space continues until
some termination conditions are satisfied. Usually these
conditions are the maximum number of iterations or
improvements in the best solution. As a result, after
satisfied stop conditions, the best solution is returned.
Pseudo code for Bat Algorithm is listed in Fig.1.

1: Randomly initialize position 𝑥𝑥𝑖𝑖 and velocity 𝑣𝑣𝑖𝑖 of i-th

bat in population
2: Initialize pulsation frequency 𝑄𝑄𝑖𝑖 ∈ [𝑄𝑄𝑚𝑚𝑖𝑖𝑚𝑚,𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚] ,

pulsation 𝑟𝑟𝑖𝑖 and loudness 𝐴𝐴𝑖𝑖 of i-th bat in population
3: while not termination conditions are satisfied:
4: for_each bat in population:
5: 𝑣𝑣𝑖𝑖(𝑡𝑡) = 𝑣𝑣𝑖𝑖(𝑡𝑡 − 1) + 𝑄𝑄𝑖𝑖(𝑥𝑥𝑖𝑖(𝑡𝑡 − 1) − 𝑥𝑥∗)

 𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝑥𝑥𝑖𝑖(𝑡𝑡 − 1) + 𝑣𝑣𝑖𝑖(𝑡𝑡)
6: if rand(0,1) >𝑟𝑟𝑖𝑖𝑡𝑡:

 Generate new solution around current bests
solutions

7: Generate new solution by flying randomly
8: if rand(0,1) < 𝐴𝐴𝑖𝑖𝑡𝑡 and 𝑓𝑓(𝑥𝑥𝑖𝑖) < 𝑓𝑓(𝑥𝑥∗):

 Accept new solution and update pulsation and
loudness factors 𝑟𝑟𝑖𝑖𝑡𝑡 and 𝐴𝐴𝑖𝑖𝑡𝑡 as:
𝐴𝐴𝑖𝑖𝑡𝑡+1 ← 𝛼𝛼𝐴𝐴𝑖𝑖𝑡𝑡; 𝑟𝑟𝑖𝑖𝑡𝑡+1 ← 𝑟𝑟𝑖𝑖𝑡𝑡(1 − exp (−𝛾𝛾𝑡𝑡))

9: Evaluate bats population using fit function 𝑓𝑓
10: Find best bat in population and mark him as 𝑥𝑥∗

Fig. 1 Bat Algorithm.

where:
𝑣𝑣𝑖𝑖(𝑡𝑡) - real valued velocity vector of i-th bat,
𝑥𝑥𝑖𝑖(𝑡𝑡) - real valued position vector of i-th bat,
𝑄𝑄𝑖𝑖 - pulsation frequency of i-th bat,
𝛼𝛼, 𝛾𝛾, 𝑄𝑄𝑚𝑚𝑖𝑖𝑚𝑚,𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 - constant.

Equations used for bat position and velocity update, used
in algorithm 1 step 5, were introduced in [6]

2.1 Proposed modification to Bat Algorithm

An important aspect of a population-based metaheuristic is
balance between exploration and exploitation phase of a
search process. Exploration (sometimes called
diversification) is responsible for global search capability.
While, in contrast, exploitation (sometimes called
intensification) response for local search ability of
algorithm. As was pointed out in [12] Bat algorithm is
powerful at exploitation but has some insufficiency at
exploration phase. In our opinion Bat Algorithm also
suffer from lack of memory of best solution found during
the time of optimization which cause it Bats sometimes

tend to escape from promising area of solutions search
space. Bat Algorithm also tends to direct bats outside of
the solution search space box. Yang in [6] proposed to use
upper bound limits on position vector to overcome these
limitations. Bat Algorithm also too often tends to accept
solution of worse fit value.
In literature few modifications to Bat Algorithm has been
proposed. In [13] Inertia Weight Factor Modification
relative to current iteration and max iteration and Adaptive
Frequency Modification based on relative bat distance to
best solution has been introduced. In [14] dynamic and
adaptively adjustment of a bat speed and flight direction
has been examined. Self-adaptive capability has also been
examined in [10].
Bat Algorithm has also been hybridized with Harmony
Search Algorithm [12] or with Differential Evaluation
Algorithm [9] In [15] Bat Algorithm with self-adaptation
of control parameters has been hybridized with different
DE strategies as local search heuristics. However there are
no systematic solutions to previously mentioned problem
hence proposed modification.
Our modifications to Bat Algorithm are introduced in two
places: scheme of acceptance of a new solution is modified
and velocity equation is modified to overcome mention
limitation. Introduced modifications are summarized in
pseudo code listing in Fig.2. There is also introduced
memory of best solution found during the process of
optimization by the algorithm.

1: Randomly initialize position 𝑥𝑥𝑖𝑖 and velocity 𝑣𝑣𝑖𝑖 of i-th

bat in population
2: Initialize pulsation frequency 𝑄𝑄𝑖𝑖 ∈ [𝑄𝑄𝑚𝑚𝑖𝑖𝑚𝑚,𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚] ,

pulsation 𝑟𝑟𝑖𝑖 and loudness 𝐴𝐴𝑖𝑖 of i-th bat in population
3: while not termination conditions are satisfied:
4: for_each bat in population:
5: 𝑣𝑣𝑖𝑖(𝑡𝑡) = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖(𝑡𝑡 − 1) + 𝑄𝑄𝑖𝑖�𝑥𝑥∗ − 𝑥𝑥𝑖𝑖(𝑡𝑡 − 1)� +

 + 𝑄𝑄𝑖𝑖(𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ − 𝑥𝑥𝑖𝑖(𝑡𝑡 − 1))
 𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝑥𝑥𝑖𝑖(𝑡𝑡 − 1) + 𝑣𝑣𝑖𝑖(𝑡𝑡)

6: if rand(0,1) > 𝑟𝑟𝑖𝑖𝑡𝑡:
 𝑥𝑥𝑖𝑖′ ← generate new solution around current bat 𝑥𝑥𝑖𝑖

7: if 𝑓𝑓(𝑥𝑥𝑖𝑖′) < 𝑓𝑓(𝑥𝑥𝑖𝑖) or rand(0,1) < 𝐴𝐴𝑖𝑖𝑡𝑡:
 𝑥𝑥𝑖𝑖 ← 𝑥𝑥𝑖𝑖′
 Update values of pulsation and loudness,
respectively 𝑟𝑟𝑖𝑖𝑡𝑡 and 𝐴𝐴𝑖𝑖𝑡𝑡 as:
𝐴𝐴𝑖𝑖𝑡𝑡+1 ← 𝛼𝛼𝐴𝐴𝑖𝑖𝑡𝑡; 𝑟𝑟𝑖𝑖𝑡𝑡+1 ← 𝑟𝑟𝑖𝑖𝑡𝑡(1 − exp (−𝛾𝛾𝑡𝑡))

8: Evaluate bats population using fit function 𝑓𝑓
9:
10:

 Find best bat in population and mark him as 𝑥𝑥∗
 if 𝑓𝑓(𝑥𝑥∗) < 𝑓𝑓(𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗):

11: 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ ← 𝑥𝑥∗

Fig. 2 Modification of Bat Algorithm.

Our solution modifies bat position and velocity equations.
In comparison with equations presented in [6], author use
archive component to help direct bats towards area where
good solutions were used to be known and also

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

48

incorporates some concept of cognition coefficients
instead of using upper bounds limits. Equations (1) and (2)
shows proposed modification.
𝑣𝑣𝑖𝑖(𝑡𝑡) = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖(𝑡𝑡 − 1) + 𝑄𝑄𝑖𝑖�𝑥𝑥∗ − 𝑥𝑥𝑖𝑖(𝑡𝑡 − 1)� +
 + 𝑄𝑄𝑖𝑖(𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ − 𝑥𝑥𝑖𝑖(𝑡𝑡 − 1)) (1)
𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝑥𝑥𝑖𝑖(𝑡𝑡 − 1) + 𝑣𝑣𝑖𝑖(𝑡𝑡) (2)

where:
 𝛼𝛼𝑖𝑖 - cognition coefficient of i-th bat
 𝑥𝑥∗ − 𝑥𝑥𝑖𝑖(𝑡𝑡 − 1) - social component
 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ − 𝑥𝑥𝑖𝑖(𝑡𝑡 − 1) - archive component
 𝑄𝑄𝑖𝑖 - pulsation frequency of i-th bat

In comparison to equations proposed by Yang in [6] we
can see that modified velocity equation is using cognition
coefficients to limit the influence of past direction (taken
at time t-1) at the decision taken at current t iteration.
There is also archive component that helps bats build
social knowledge of the previously, globally found best
solution.
Proposed modification to the scheme of acceptance of new
solutions are tend to limit the probability of acceptance of
worse solution. Comparing original with our modification
the worse solution in original approach is accepted with
probability 𝐴𝐴𝑖𝑖 where in modified algorithm worse solution
is accepted only with probability (1 − 𝑟𝑟𝑖𝑖)𝐴𝐴𝑖𝑖 . There is
obvious relation that, satisfying that 𝑟𝑟𝑖𝑖 > 0 and 𝐴𝐴𝑖𝑖 > 0, the
fallowing relation is true (1 − 𝑟𝑟𝑖𝑖)𝐴𝐴𝑖𝑖 < 𝐴𝐴𝑖𝑖 . Our
modification also includes new form of memory 𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ of
a best solution ever found.
What is important, our introduced modification doesn’t
change computation complexity of the algorithm in the
context of big Ο notation since proposed modification are
linear in nature and are not based on additional
computation or evaluation of a fitness function.

3. Simulation experiments

Our modifications has been tested on set of standard and
well known in literature benchmark functions. Simulation
experiments were performed on a PC computer running
Linux on Intel Core i7 2.20GHz with 8GB of RAM.
Algorithms has been implemented in C++ and compiled
with GCC. Section 3.1 briefly introduce used test
functions, Section 3.2 reports obtained results. Simulation
were re-run 10 times for every test function, mean and
standard deviation are reported. Each of test functions was
performed using 10, 20 and 30 dimensions’ variants.

3.1 Test Functions

Presented algorithm has been tested on three well known
and wildly accepted test function for continues
optimization. Used functions was: Sphere, Rastrigin and
Rosenbrock [15]. In every equation D will stand for

dimension of the function and �⃗�𝑥 is real valued vector in
search space, �⃗�𝑥 ∈ ℛ𝐷𝐷.
First function was standard test function called Sphere
Function. It is convex, unimodal simple test function for
metaheuristics (equ. 3), with global solution at the point
�⃗�𝑥 = (0,0, … ,0)
 𝑓𝑓𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒(�⃗�𝑥) = ∑ 𝑥𝑥𝑖𝑖2𝐷𝐷

𝑖𝑖=1 (3)

Second function was Rastrigin’s Function. It is based on
Sphere function (equ.3) by adding sinusoidal modulation
we obtain Rastrigin function (equ. 4). It is multimodal
non-linear function with global minimum at point �⃗�𝑥 =
(0,0, … ,0)
 𝑓𝑓𝑅𝑅𝑚𝑚𝑅𝑅𝑡𝑡𝑒𝑒𝑖𝑖𝑅𝑅𝑖𝑖𝑚𝑚(�⃗�𝑥) = 10𝐷𝐷 + ∑ (𝑥𝑥𝑖𝑖2 − 10cos (2𝜋𝜋𝑥𝑥𝑖𝑖)𝐷𝐷

𝑖𝑖=1 (4)

Last was Rosenbrock’s function (equ. 5) which has its
global solution at point �⃗�𝑥 = (0,0, … ,0) . Rosenbrock’s
solution is located in wide parabolic shaped valley. This
makes it very complicated point to reach by evolutionary
methods. Rosenbrock function is unimodal for D=2,3
while it’s multimodal for more dimensions [16]

𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑚𝑚𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅(�⃗�𝑥) = ∑ 100(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖2)2 + (𝑥𝑥𝑖𝑖 − 1)2𝐷𝐷−1

𝑖𝑖=1 (5)

3.2 Experiments

Simulation experiments were based on continues
optimization of real valued non-linear functions.
Optimization task was to find minimum of a test function.
Each function was optimized in three dimensionality
variation, for D=10, D=20 and D=30. Each test was rerun
10 times and mean solution and standard deviation were
reported. Founded solution as well as standard deviation
were presented in Tables 1, 2 and 3 for Sphere, Rastrigin
and Rosenbrock test function respectively.
Optimized function was limited in D dimensional cube
with limitation {-15, 15} on each side. Each test were run
for n bats number in population, where 𝑛𝑛 ∈
{10, 20, 50, 100}.
Each bat was represented by D-dimension real valued
vector 𝑥𝑥 ∈ ℛ𝐷𝐷. Initial population were generated randomly,
loudness and pulsation parameters where set to 𝐴𝐴𝑖𝑖 =
0.1 , 𝑟𝑟𝑖𝑖 = 0.9 . Termination conditions were set to 1000
iterations. Method that was used to generate new solution
were “random walk” around current solution. Best
solutions were underlined.

Table 1: Mean solution found from 10 tries for Sphere function.
 n D=10 D=20 D=30
Mean value

10 1800⋅10-6 25200⋅10-6 1054⋅10-4
Stand. dev. 900⋅10-6 9370⋅10-6 346.8⋅10-4
Mean value

20 230⋅10-6 5540⋅10-6 270⋅10-4
Stand. dev. 150⋅10-6 1710⋅10-6 78.5⋅10-4
Mean value

50 0.137⋅10-6 353⋅10-6 33.3⋅10-4
Stand. dev. 6.76⋅10-6 127⋅10-6 11.1⋅10-4

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

49

Mean value
100 1.57⋅10-6 38.6⋅10-6 3.77⋅10-4

Stand. dev. 51.80⋅10-6 2.8⋅10-6 0.91⋅10-4

Table 2: Mean solution found from 10 tries for Rastrigin function.
 n D=10 D=20 D=30
Mean value 10 26.021 93.403 231.479
Stand. dev. 9.138 27.073 39.442
Mean value 20 20.188 63.064 112.660
Stand. dev. 10.520 16.898 32.394
Mean value 50 15.329 35.630 73.273
Stand. dev. 5.205 13.781 26.509
Mean value 100 13.035 29.878 59.406
Stand. dev. 5.791 9.729 15.712

Table 3: Mean solution found from 10 tries for Rosenbrock function.
 n D=10 D=20 D=30
Mean value 10 15.130 92.707 202.422
Stand. dev. 20.321 111.359 216.167
Mean value 20 8.112 62.930 87.279
Stand. dev. 1.639 62.619 66.909
Mean value 50 8.583 29.889 81.823
Stand. dev. 0.938 22.738 57.414
Mean value 100 7.782 17.791 37.268
Stand. dev. 1.163 1.743 15.339

According to Tables 1, 2 and 3, increasing the number of
bats used in optimization process results in improvement
of quality of found solution and, at the same time, in
deceasing of standard deviations. As it can be seen in
Tables 1 thru 3 with increasing dimensionality of the
search problem, performance of proposed algorithm
decrease. The reason for that is as the dimensionality of
the optimized function increase search space exponentially
increases as well. Second with increasing dimensionality
of some optimization problems we might cause change in
characteristic of these objective problems. For instance,
Rosenbrock function [17], which is unimodal in 2 or 3
dimension, may include multiple local minima for higher
number of dimensions [16].
By comparing results reported of modified Bat Algorithm
with results reported for standard Bat Algorithm [9] (using
the same optimization task and the same test function)
proposed modification has positive effect on quality
founded by algorithm. In [9] Bat Algorithm was also
hybridized with DE. The results for Hybrid BA were
similar to results for our modified Bat Algorithm without
any hybridizations. Hybridization of modified Bat
Algorithm might be interesting path for further research.
The obtained results of modified Bat Algorithm are better
that results reported for PSO algorithm in [18] for the
same optimization task and the same test function.

4. Conclusions

This paper shows the possibility of modification of Bat
Algorithm [6]. Original Bat Algorithm is powerful at

exploitation but has some insufficiency at exploration
phase. It also tends to direct bats outside of solution search
space box. Another important issue is that it too often
tends to accept solution of worse fit value. In literature few
modifications to Bat Algorithm been proposed to tackle
mentioned insufficiency [13][14][10]. Unfortunately there
are no systematic solutions to these problem, hence our
proposed modification.
Our modification to Bat Algorithm are two fold in nature.
First: scheme of acceptance of new solution as well as
velocity equation are modified. Acceptance scheme is
modified in order to reduce probability of acceptance of
worse solution. Velocity update equation is modified by
introducing cognitive coefficient and archive component.
Last one is form of additional memory which stores best
solution ever found during the optimization process.
Comparing original [6] and modified Bat Algorithm it can
be seen that in original version worse solution is accepted
with probability 𝐴𝐴𝑖𝑖, where in proposed modification worse
solution might be accepted with probability (1 − 𝑟𝑟𝑖𝑖)𝐴𝐴𝑖𝑖 .
There is obvious relation that, satisfying that 𝑟𝑟𝑖𝑖 > 0 and
 𝐴𝐴𝑖𝑖 > 0 , the fallowing relation is true (1 − 𝑟𝑟𝑖𝑖)𝐴𝐴𝑖𝑖 < 𝐴𝐴𝑖𝑖 .
Proposed modification also includes new form of memory
𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ of best solution ever found.
Those modifications were tested in few simulation
experiments. Experiments were performed for continues
non-linear optimizations problem: minimize real valued
test functions. Three well know test functions were used:
Sphere, Rastrigin and Rosenbrock [15]. According to
numerical experiments proposed modification improves
quality of founded solutions.
Reported results of modified Bat Algorithm are close to
these reported for Hybridized Bat Algorithm with DE in [4]
but without any additional parameters for configuring
algorithm. Moreover, our modification doesn’t change
computation complexity of the algorithm in the context of
big Ο notation since proposed modification are linear in
nature and are not based on additional computation or
evaluation of a fitness function.

References
[1] R. C. Eberhart, Y, Shi, “Empirical Study of Particle Swarm

Optimization”,1999.
[2] D. E. Goldberg, “Genetic algorithms in search, optimization

and machine learning”, Kluwer Academic Publishers, 1989.
[3] R. Storn, K. Price, “Differential evolution - a simple and

efficient adaptive scheme for global optimization over
continuous spaces”, Technical Report, 1995.

[4] J. Kennedy, R. C. Eberhart, “Particle swarm optimization”,
In Proc. of IEEE Int. Conf. on Neural Networks, vol. 4, pp.
1942–1948, 1995

[5] M. Dorigo, V. Maziezzo, A. Colorni, “The ant system:
optimization by a colony of cooperating ants”, IEEE Trans.
on Systems, Man and Cybernetics B, vol. 26, no. 1, pp. 29–
41, 1996.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

50

[6] X. S. Yang, “A new metaheuristic bat-inspired algorithm”,
Nature Inspired Cooperative Strategies for Optimization,
2010.

[7] X. S. Yang, “Bat algorithm for multi-objective
optimization”, International Journal of Bio-Inspired
Computation, 2011.

[8] S. Fong, X. S. Yang, M. Karamanglu, “Bat Algorithm for
Topology Optimization in Microelectronic Application”,
IEEE, 2012.

[9] I. Fister Jr, D. Fister, X. S. Yang, “A Hybrid Bat algorithm”,
Elektrotehniski Vestnik, 2013.

[10] A. Baziar, A. A. Kavoosi-Fard, J. Zare, “A novel Self
Adoptive Modification Approach Based on Bat Algorithm
for Optimal Management of Renewable MG”, Journal of
Intelligent Learning System and Application, 2013.

[11] S. Mirjalili, S. M. Mirjalili, Xin-She Yang, “Binary Bat
Algorithm”, Neural Comput & Applic, 2014.

[12] G. Wang and L. Guo, “A Novel Hybrid Bat Algorithm with
Harmony Search for Global Numerical Optimization”,
Journal of Applied Mathematics, vol. 2013, pp. 21, 2013.

[13] S. Yilmaz and E. U. Kucuksille, “Improved Bat Algorithm
(IBA) on Continuous Optimization Problems”, Lecture
Notes on Software Engineering, Vol. 1, No. 3, August 2013.

[14] X. Wang, W. Wang, Y. Wang, “An Adaptive Bat
Algorithm”, Lecture Notes in Computer Science vol. 7996,
216-223, 2013.

[15] I. Fister Jr., S. Fong, J. Brest, and I. Fister, “A Novel Hybrid
Self-Adaptive Bat Algorithm”, The Scientific World Journal,
Volume 2014.

[16] W. Gao, S. Liu, “A modified artificial bee colony
algorithm”, Computers and Operations Research, pp. 687–
697, vol. 39, 2012

[17] Y. W. Shang and Y. H. Qiu, “A note on the extended
Rosenbrock function”, Evolutionary Computation, vol. 14,
pp. 119-126, 2006.

[18] S. Hossen, F. Rabbi, M. Rahman, “Adaptive Particle Swarm
Optimization (APSO) for multimodal function
optimization”, International Journal of Engineering and
Technology, 2009.

