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Summary 
Bat Algorithm is recently proposed bio-inspired metaheuristics 
method for solving hard optimization tasks. It mimics behavior 
of bats hunting for their prey. The paper introduces some 
modification to Bat Algorithm. Presented modification changes 
exploration process as well as introduce different scheme of 
acceptance of a newly founded solutions. Effects of introduced 
modifications are tested on standard benchmark functions. The 
influence of a number of bats used in optimization process is also 
taken into account. 
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1. Introduction 

In general metaheuristics algorithms can be divided into 
few groups, e.g. algorithms based on evolutionary 
approach that models evolutionary process or algorithms 
exploring phenomena of a Swarm Intelligence [1]. Others 
approach for evolutionary metaheuristic, such as 
algorithms for modeling response of a human immune 
system (e.g. Artificial Immune System algorithms) might 
be considered as separate category due to their multiplicity 
of proposed solutions. 
Metaheuristics methods which are focused on exploring 
models of a natural evolution are (mostly but not limited 
to) as follows: Genetic Algorithms (GA) [2], Genetic 
Programming (GP) and Differential Evolution (DE) [3]. 
Algorithms based on Swarm Intelligence are broadly 
presented by Particle Swarm Optimization (PSO) [4], Ant 
Colony Optimization (ACO) [5] or some of its 
modifications. 
Recently introduced method, based on population of 
solutions which explore phenomena of Swarm Intelligence 
was presented by Yang [6] in 2010, is called Bat 
Algorithm (BA). In [6] by modeling the behavior of bats 
hunting for prey and by exploring phenomena of their 
echolocation capabilities, author managed to incorporate 
methods for balancing the exploration phase as well as 
exploitation phase of a modern Swarm Based Algorithms. 
Bat Algorithms had already been applied to solve 
numerous hard optimization problems such as multi-
criteria optimization [7] or optimization of topology of 
microelectronic circuits [8]. 
Growing popularity of the Bat Algorithm has encouraged 
researchers to focus their work on its further 

improvements. Most work has been done within the area 
of hybridization of Bat Algorithm with other 
metaheuristics or local search methods [9]. Some other 
solutions were involved within the area of adding self-
adaptability capabilities to algorithm [10]. Some works has 
also been in adaptation standard Bat Algorithm for binary 
problems [11].  
Unfortunately, most of these modification not only 
improves the quality of obtained solutions, but also 
increases the number of control parameters that are needed 
to be set in order to obtain solutions of expected quality. 
This makes such solutions quite impractical. 
This paper introduces some modifications to Bat 
Algorithms that results in increment of converge 
capabilities without the need for any new control 
parameters.  
Paper is organized as follows, in Section 2 basic scheme of 
the Bat Algorithm is introduced as well as some custom 
modifications are introduced and briefly discussed, Section 
3 covers simulation experiments showing benefits of the 
proposed modifications, Section 4 summarize presented 
publication and discuss some concluding remarks. 

2. Bat Algorithm 

Bat Algorithm is recently proposed bio-inspired 
metaheuristics method for solving hard optimization tasks. 
It tries to mimic behavior of bats hunting for their prey. 
Algorithm was introduced by Yang in 2010 [6]. Bat 
Algorithm is based on population of bats, which by flying 
thru solution search space explore it in order to find 
interesting areas. Each single bat represents one solution in 
n-dimensional search space. Solutions are evaluated in 
terms of their fit value by provided fit function. 
For example, consider n-dimensional, real valued solution 
space in which optimization takes place. Each solution, 
represented as a bat, is evaluated with provided fit function. 
There are also two real valued n-dimensional vectors 
associated with each bat in population. First vector is real 
valued vector representing position of a bat in solution 
search space. Second vector is real valued vector 
representing velocity in each of n-dimensional directions. 
Usually position vector and velocity vector are initialized 
randomly at the beginning of the algorithm. Main loop of 
the algorithm consists of iterative improvement in founded 



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016 

 

47 

 

solution. At each iteration step fit value is calculated for 
every member of population of bats by provided fit 
function, and new velocity vector is calculated based on 
relative distance from best and current solution in 
population. Next, position of every bat is updated 
accordingly to its velocity vector. At the end of each 
iteration best solution is founded and used as new 
reference point. Exploring search space continues until 
some termination conditions are satisfied. Usually these 
conditions are the maximum number of iterations or 
improvements in the best solution. As a result, after 
satisfied stop conditions, the best solution is returned. 
Pseudo code for Bat Algorithm is listed in Fig.1. 

 
1: Randomly initialize position 𝑥𝑥𝑖𝑖 and velocity 𝑣𝑣𝑖𝑖 of i-th 

bat in population 
2: Initialize pulsation frequency  𝑄𝑄𝑖𝑖 ∈ [𝑄𝑄𝑚𝑚𝑖𝑖𝑚𝑚,𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚] , 

pulsation 𝑟𝑟𝑖𝑖 and loudness 𝐴𝐴𝑖𝑖 of i-th bat in population 
3: while not termination conditions are satisfied: 
4:     for_each bat in population: 
5:            𝑣𝑣𝑖𝑖(𝑡𝑡) = 𝑣𝑣𝑖𝑖(𝑡𝑡 − 1) +  𝑄𝑄𝑖𝑖(𝑥𝑥𝑖𝑖(𝑡𝑡 − 1) − 𝑥𝑥∗) 

           𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝑥𝑥𝑖𝑖(𝑡𝑡 − 1) + 𝑣𝑣𝑖𝑖(𝑡𝑡)  
6:       if rand(0,1) >𝑟𝑟𝑖𝑖𝑡𝑡: 

          Generate new solution around current bests 
solutions  

7:      Generate new solution by flying randomly 
8:      if rand(0,1) < 𝐴𝐴𝑖𝑖𝑡𝑡 and 𝑓𝑓(𝑥𝑥𝑖𝑖) < 𝑓𝑓(𝑥𝑥∗): 
 
 

          Accept new solution and update pulsation and 
loudness factors 𝑟𝑟𝑖𝑖𝑡𝑡 and 𝐴𝐴𝑖𝑖𝑡𝑡 as: 
𝐴𝐴𝑖𝑖𝑡𝑡+1 ← 𝛼𝛼𝐴𝐴𝑖𝑖𝑡𝑡;  𝑟𝑟𝑖𝑖𝑡𝑡+1  ←  𝑟𝑟𝑖𝑖𝑡𝑡(1 − exp (−𝛾𝛾𝑡𝑡)) 

9:     Evaluate bats population using fit function 𝑓𝑓  
10:     Find best bat in population and mark him as 𝑥𝑥∗  

Fig. 1  Bat Algorithm. 

where: 
𝑣𝑣𝑖𝑖(𝑡𝑡) - real valued velocity vector of i-th bat, 
𝑥𝑥𝑖𝑖(𝑡𝑡) - real valued position vector of i-th bat, 
𝑄𝑄𝑖𝑖 - pulsation frequency of i-th bat, 
𝛼𝛼, 𝛾𝛾, 𝑄𝑄𝑚𝑚𝑖𝑖𝑚𝑚,𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚 - constant. 

 
Equations used for bat position and velocity update, used 
in algorithm 1 step 5, were introduced in [6] 

2.1 Proposed modification to Bat Algorithm 

An important aspect of a population-based metaheuristic is 
balance between exploration and exploitation phase of a 
search process. Exploration (sometimes called 
diversification) is responsible for global search capability. 
While, in contrast, exploitation (sometimes called 
intensification) response for local search ability of 
algorithm. As was pointed out in [12] Bat algorithm is 
powerful at exploitation but has some insufficiency at 
exploration phase. In our opinion Bat Algorithm also 
suffer from lack of memory of best solution found during 
the time of optimization which cause it Bats sometimes 

tend to escape from promising area of solutions search 
space. Bat Algorithm also tends to direct bats outside of 
the solution search space box. Yang in [6] proposed to use 
upper bound limits on position vector to overcome these 
limitations. Bat Algorithm also too often tends to accept 
solution of worse fit value.  
In literature few modifications to Bat Algorithm has been 
proposed. In [13] Inertia Weight Factor Modification 
relative to current iteration and max iteration and Adaptive 
Frequency Modification based on relative bat distance to 
best solution has been introduced. In [14] dynamic and 
adaptively adjustment of a bat speed and flight direction 
has been examined. Self-adaptive capability has also been 
examined in [10]. 
Bat Algorithm has also been hybridized with Harmony 
Search Algorithm [12] or with Differential Evaluation 
Algorithm [9] In [15] Bat Algorithm with self-adaptation 
of control parameters has been hybridized with different 
DE strategies as local search heuristics. However there are 
no systematic solutions to previously mentioned problem 
hence proposed modification.  
Our modifications to Bat Algorithm are introduced in two 
places: scheme of acceptance of a new solution is modified 
and velocity equation is modified to overcome mention 
limitation. Introduced modifications are summarized in 
pseudo code listing in Fig.2. There is also introduced 
memory of best solution found during the process of 
optimization by the algorithm. 

 
1: Randomly initialize position 𝑥𝑥𝑖𝑖  and velocity 𝑣𝑣𝑖𝑖  of i-th 

bat in population 
2: Initialize pulsation frequency  𝑄𝑄𝑖𝑖 ∈ [𝑄𝑄𝑚𝑚𝑖𝑖𝑚𝑚,𝑄𝑄𝑚𝑚𝑚𝑚𝑚𝑚] , 

pulsation 𝑟𝑟𝑖𝑖 and loudness 𝐴𝐴𝑖𝑖 of i-th bat in population 
3: while not termination conditions are satisfied: 
4:   for_each bat in population: 
5:     𝑣𝑣𝑖𝑖(𝑡𝑡) = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖(𝑡𝑡 − 1) +  𝑄𝑄𝑖𝑖�𝑥𝑥∗ − 𝑥𝑥𝑖𝑖(𝑡𝑡 − 1)� +

                    + 𝑄𝑄𝑖𝑖(𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ − 𝑥𝑥𝑖𝑖(𝑡𝑡 − 1)) 
    𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝑥𝑥𝑖𝑖(𝑡𝑡 − 1) + 𝑣𝑣𝑖𝑖(𝑡𝑡)  

6:     if rand(0,1) > 𝑟𝑟𝑖𝑖𝑡𝑡: 
      𝑥𝑥𝑖𝑖′  ← generate new solution around current bat 𝑥𝑥𝑖𝑖  

7:       if 𝑓𝑓(𝑥𝑥𝑖𝑖′) < 𝑓𝑓(𝑥𝑥𝑖𝑖) or rand(0,1) < 𝐴𝐴𝑖𝑖𝑡𝑡: 
        𝑥𝑥𝑖𝑖 ←  𝑥𝑥𝑖𝑖′ 
        Update values of pulsation and loudness, 
respectively 𝑟𝑟𝑖𝑖𝑡𝑡  and 𝐴𝐴𝑖𝑖𝑡𝑡 as: 
𝐴𝐴𝑖𝑖𝑡𝑡+1 ← 𝛼𝛼𝐴𝐴𝑖𝑖𝑡𝑡;  𝑟𝑟𝑖𝑖𝑡𝑡+1  ←  𝑟𝑟𝑖𝑖𝑡𝑡(1 − exp (−𝛾𝛾𝑡𝑡)) 

8:   Evaluate bats population using fit function 𝑓𝑓  
9: 
10: 

  Find best bat in population and mark him as 𝑥𝑥∗  
  if 𝑓𝑓(𝑥𝑥∗) < 𝑓𝑓(𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ ): 

11:     𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ ← 𝑥𝑥∗  

Fig. 2 Modification of Bat Algorithm. 

Our solution modifies bat position and velocity equations. 
In comparison with equations presented in [6], author use 
archive component to help direct bats towards area where 
good solutions were used to be known and also 
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incorporates some concept of cognition coefficients 
instead of using upper bounds limits. Equations (1) and (2) 
shows proposed modification. 
𝑣𝑣𝑖𝑖(𝑡𝑡) = 𝛼𝛼𝑖𝑖𝑣𝑣𝑖𝑖(𝑡𝑡 − 1) +  𝑄𝑄𝑖𝑖�𝑥𝑥∗ − 𝑥𝑥𝑖𝑖(𝑡𝑡 − 1)� +
               + 𝑄𝑄𝑖𝑖(𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ − 𝑥𝑥𝑖𝑖(𝑡𝑡 − 1))      (1) 
𝑥𝑥𝑖𝑖(𝑡𝑡) = 𝑥𝑥𝑖𝑖(𝑡𝑡 − 1) + 𝑣𝑣𝑖𝑖(𝑡𝑡)       (2) 

 
where: 
       𝛼𝛼𝑖𝑖 - cognition coefficient of i-th bat 
       𝑥𝑥∗ − 𝑥𝑥𝑖𝑖(𝑡𝑡 − 1) - social component 
       𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗ − 𝑥𝑥𝑖𝑖(𝑡𝑡 − 1) - archive component 
       𝑄𝑄𝑖𝑖 - pulsation frequency of i-th bat 

 
In comparison to equations proposed by Yang in [6] we 
can see that modified velocity equation is using cognition 
coefficients to limit the influence of past direction (taken 
at time t-1) at the decision taken at current t iteration. 
There is also archive component that helps bats build 
social knowledge of the previously, globally found best 
solution. 
Proposed modification to the scheme of acceptance of new 
solutions are tend to limit the probability of acceptance of 
worse solution. Comparing original with our modification 
the worse solution in original approach is accepted with 
probability  𝐴𝐴𝑖𝑖 where in modified algorithm worse solution 
is accepted only with probability  (1 − 𝑟𝑟𝑖𝑖)𝐴𝐴𝑖𝑖 . There is 
obvious relation that, satisfying that 𝑟𝑟𝑖𝑖 > 0 and 𝐴𝐴𝑖𝑖 > 0, the 
fallowing relation is true  (1 − 𝑟𝑟𝑖𝑖)𝐴𝐴𝑖𝑖 < 𝐴𝐴𝑖𝑖 . Our 
modification also includes new form of memory  𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗   of 
a best solution ever found. 
What is important, our introduced modification doesn’t 
change computation complexity of the algorithm in the 
context of big Ο notation since proposed modification are 
linear in nature and are not based on additional 
computation or evaluation of a fitness function. 

3. Simulation experiments 

Our modifications has been tested on set of standard and 
well known in literature benchmark functions. Simulation 
experiments were performed on a PC computer running 
Linux on Intel Core i7 2.20GHz with 8GB of RAM. 
Algorithms has been implemented in C++ and compiled 
with GCC. Section 3.1 briefly introduce used test 
functions, Section 3.2 reports obtained results. Simulation 
were re-run 10 times for every test function, mean and 
standard deviation are reported. Each of test functions was 
performed using 10, 20 and 30 dimensions’ variants. 

3.1 Test Functions 

Presented algorithm has been tested on three well known 
and wildly accepted test function for continues 
optimization. Used functions was: Sphere, Rastrigin and 
Rosenbrock [15]. In every equation D will stand for 

dimension of the function and �⃗�𝑥 is real valued vector in 
search space, �⃗�𝑥 ∈ ℛ𝐷𝐷. 
First function was standard test function called Sphere 
Function. It is convex, unimodal simple test function for 
metaheuristics (equ. 3), with global solution at the point 
�⃗�𝑥 = (0,0, … ,0) 
                           𝑓𝑓𝑆𝑆𝑆𝑆ℎ𝑒𝑒𝑒𝑒𝑒𝑒(�⃗�𝑥) = ∑ 𝑥𝑥𝑖𝑖2𝐷𝐷

𝑖𝑖=1      (3) 
 
Second function was Rastrigin’s Function. It is based on 
Sphere function (equ.3) by adding sinusoidal modulation 
we obtain Rastrigin function (equ. 4). It is multimodal 
non-linear function with global minimum at point �⃗�𝑥 =
(0,0, … ,0) 
       𝑓𝑓𝑅𝑅𝑚𝑚𝑅𝑅𝑡𝑡𝑒𝑒𝑖𝑖𝑅𝑅𝑖𝑖𝑚𝑚(�⃗�𝑥) = 10𝐷𝐷 + ∑ (𝑥𝑥𝑖𝑖2 − 10cos (2𝜋𝜋𝑥𝑥𝑖𝑖)𝐷𝐷

𝑖𝑖=1     (4) 
 
Last was Rosenbrock’s function (equ. 5) which has its 
global solution at point �⃗�𝑥 = (0,0, … ,0) . Rosenbrock’s 
solution is located in wide parabolic shaped valley. This 
makes it very complicated point to reach by evolutionary 
methods. Rosenbrock function is unimodal for D=2,3 
while it’s multimodal for more dimensions [16] 
 
𝑓𝑓𝑅𝑅𝑅𝑅𝑅𝑅𝑒𝑒𝑚𝑚𝑅𝑅𝑒𝑒𝑅𝑅𝑅𝑅𝑅𝑅(�⃗�𝑥) = ∑ 100(𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖2)2 + (𝑥𝑥𝑖𝑖 − 1)2𝐷𝐷−1

𝑖𝑖=1   (5) 

3.2 Experiments 

Simulation experiments were based on continues 
optimization of real valued non-linear functions. 
Optimization task was to find minimum of a test function. 
Each function was optimized in three dimensionality 
variation, for D=10, D=20 and D=30. Each test was rerun 
10 times and mean solution and standard deviation were 
reported. Founded solution as well as standard deviation 
were presented in Tables 1, 2 and 3 for Sphere, Rastrigin 
and Rosenbrock test function respectively. 
Optimized function was limited in D dimensional cube 
with limitation {-15, 15} on each side. Each test were run 
for n bats number in population, where 𝑛𝑛 ∈
{10, 20, 50, 100}. 
Each bat was represented by D-dimension real valued 
vector 𝑥𝑥 ∈ ℛ𝐷𝐷. Initial population were generated randomly, 
loudness and pulsation parameters where set to 𝐴𝐴𝑖𝑖 =
0.1 ,  𝑟𝑟𝑖𝑖 = 0.9 . Termination conditions were set to 1000 
iterations.  Method that was used to generate new solution 
were “random walk” around current solution. Best 
solutions were underlined. 

Table 1: Mean solution found from 10 tries for Sphere function. 
 n D=10 D=20 D=30 
Mean value 

10 1800⋅10-6 25200⋅10-6 1054⋅10-4 
Stand. dev. 900⋅10-6 9370⋅10-6 346.8⋅10-4 
Mean value 

20 230⋅10-6 5540⋅10-6 270⋅10-4 
Stand. dev. 150⋅10-6 1710⋅10-6 78.5⋅10-4 
Mean value 

50 0.137⋅10-6 353⋅10-6 33.3⋅10-4 
Stand. dev. 6.76⋅10-6 127⋅10-6 11.1⋅10-4 



IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016 

 

49 

 

Mean value 
100 1.57⋅10-6 38.6⋅10-6 3.77⋅10-4 

Stand. dev. 51.80⋅10-6 2.8⋅10-6 0.91⋅10-4 

Table 2: Mean solution found from 10 tries for Rastrigin function. 
 n D=10 D=20 D=30 
Mean value 10 26.021 93.403 231.479 
Stand. dev. 9.138 27.073 39.442 
Mean value 20 20.188 63.064 112.660 
Stand. dev. 10.520 16.898 32.394 
Mean value 50 15.329 35.630 73.273 
Stand. dev. 5.205 13.781 26.509 
Mean value 100 13.035 29.878 59.406 
Stand. dev. 5.791 9.729 15.712 

Table 3: Mean solution found from 10 tries for Rosenbrock function. 
 n D=10 D=20 D=30 
Mean value 10 15.130 92.707 202.422 
Stand. dev. 20.321 111.359 216.167 
Mean value 20 8.112 62.930 87.279 
Stand. dev. 1.639 62.619 66.909 
Mean value 50 8.583 29.889 81.823 
Stand. dev. 0.938 22.738 57.414 
Mean value 100 7.782 17.791 37.268 
Stand. dev. 1.163 1.743 15.339 

 
According to Tables 1, 2 and 3, increasing the number of 
bats used in optimization process results in improvement 
of quality of found solution and, at the same time, in 
deceasing of standard deviations. As it can be seen in 
Tables 1 thru 3 with increasing dimensionality of the 
search problem, performance of proposed algorithm 
decrease. The reason for that is as the dimensionality of 
the optimized function increase search space exponentially 
increases as well. Second with increasing dimensionality 
of some optimization problems we might cause change in 
characteristic of these objective problems. For instance, 
Rosenbrock function [17], which is unimodal in 2 or 3 
dimension, may include multiple local minima for higher 
number of dimensions [16]. 
By comparing results reported of modified Bat Algorithm 
with results reported for standard Bat Algorithm [9] (using 
the same optimization task and the same test function) 
proposed modification has positive effect on quality 
founded by algorithm. In [9] Bat Algorithm was also 
hybridized with DE. The results for Hybrid BA were 
similar to results for our modified Bat Algorithm without 
any hybridizations. Hybridization of modified Bat 
Algorithm might be interesting path for further research. 
The obtained results of modified Bat Algorithm are better 
that results reported for PSO algorithm in [18] for the 
same optimization task and the same test function.  

4. Conclusions 

This paper shows the possibility of modification of Bat 
Algorithm [6]. Original Bat Algorithm is powerful at 

exploitation but has some insufficiency at exploration 
phase. It also tends to direct bats outside of solution search 
space box. Another important issue is that it too often 
tends to accept solution of worse fit value. In literature few 
modifications to Bat Algorithm been proposed to tackle 
mentioned insufficiency [13][14][10]. Unfortunately there 
are no systematic solutions to these problem, hence our 
proposed modification. 
Our modification to Bat Algorithm are two fold in nature. 
First: scheme of acceptance of new solution as well as 
velocity equation are modified. Acceptance scheme is 
modified in order to reduce probability of acceptance of 
worse solution. Velocity update equation is modified by 
introducing cognitive coefficient and archive component. 
Last one is form of additional memory which stores best 
solution ever found during the optimization process.  
Comparing original [6] and modified Bat Algorithm it can 
be seen that in original version worse solution is accepted 
with probability 𝐴𝐴𝑖𝑖, where in proposed modification worse 
solution might be accepted with probability  (1 − 𝑟𝑟𝑖𝑖)𝐴𝐴𝑖𝑖 . 
There is obvious relation that, satisfying that 𝑟𝑟𝑖𝑖 > 0 and 
 𝐴𝐴𝑖𝑖 > 0 , the fallowing relation is true  (1 − 𝑟𝑟𝑖𝑖)𝐴𝐴𝑖𝑖 < 𝐴𝐴𝑖𝑖 . 
Proposed modification also includes new form of memory  
𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒∗   of best solution ever found. 
Those modifications were tested in few simulation 
experiments. Experiments were performed for continues 
non-linear optimizations problem: minimize real valued 
test functions. Three well know test functions were used: 
Sphere, Rastrigin and Rosenbrock [15]. According to 
numerical experiments proposed modification improves 
quality of founded solutions.  
Reported results of modified Bat Algorithm are close to 
these reported for Hybridized Bat Algorithm with DE in [4] 
but without any additional parameters for configuring 
algorithm. Moreover, our modification doesn’t change 
computation complexity of the algorithm in the context of 
big Ο notation since proposed modification are linear in 
nature and are not based on additional computation or 
evaluation of a fitness function. 
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