
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

116

Manuscript received October 5, 2016
Manuscript revised October 20, 2016

Instructional Scaffolding for ASIP Design Education with System
Verilog Assertion considering Situated Nature of Learning

Ryuichi TAKAHASHI† and Yoshiyasu TAKEFUJI††,

Hiroshima City University, Keio University

Summary
This paper proposes a new method for bringing out challenges to
study modern microprocessor design at the graduate course from
an advanced senior project for application specific instruction set
processor (ASIP) design using SystemVerilog assertion with
related design verification technologies. We have already
reported that the instruction issue logic for superscalar
microprocessors works very well as an way-in of legitimate
peripheral participation (LPP) to observe the system, since the
instruction issue logic is tuned at the final stage of the design and
is the central part of the system. The way-in gave opportunity for
students to understand the mechanism of superscalar
microprocessors. The fine grain microprocessor design education
for junior students has been greatly improved. Our next step is to
find more general solution to the subject to improve our
microprocessor design education, since the instruction issue logic
seemed to be too specialized for particular microprocessor design.
The answer was SystemVerilog assertion (SVA) describing
central part of the system with related model checking
methodologies which are theoretical successor to the SVA. A
senior student who designed a pipelined ASIP for Dijkstra’s
algorithm as a senior student continued to study an extension of
abstraction technique to investigate the behavior of the algorithm
on the flowchart beside the Kripke structure for identifying the
location of the bugs as a graduate study for his master’s thesis.
Another senior student who designed another pipelined ASIP for
Kruskal’s algorithm as a senior student continued to study
derivation of sophisticated temporal logic equations from simple
properties proved by simple model checking using inference
rules with theories as his graduate study. We believe showing the
central part of the system by using SVA with related
technologies for the design verification will work very well for
guiding the undergraduate students to learn the mechanism of the
system as well as advanced studies of modern microprocessor
design at the graduate course.
Key words:
ASIP, SVA, model checking, design verification, LPP

1. Introduction

The microprocessor design education has become one of
the very important subjects in this time of upheaval. An
application specific instruction set processor (ASIP) is one
of the key solutions used for system-on-a-chip design to
provide a tradeoff between the flexibility of a general
purpose CPU and performance of an application specific
integrated circuit (ASIC) for a special purpose to reduce
the cost and power consumption Digital signal processors

with multiply–accumulate (MAC) operations can be
regarded as a typical ASIP. For designing ASIPs, the
mechanism of computation must be understood well for
the first step.
Instructional scaffolding[1] is a teaching method
introduced by Lev Vygotsky who believed that when
student is in the zone of proximal development (ZPD) for
a particular task, providing an appropriate assistance will
give the student enough of boost to achieve the task.
Constructive approach[2] could be one of a good solution
to the subject for guiding the students to understand how
computer works. Twelve subjects are given to show the
elements of computer built from scratch. Our approach
takes into account the sequence to show the design phases.
First, we give an opportunity to observe the outline of
system by using “way-in” of LPP[3]. We extended the
LPP by choosing the central part of the system as the way-
in[4]. We used the instruction issue logic for superscalar
microprocessor design as the way-in for the extended LPP,
since the logic is tuned at the final stage of the design and
is the central part of the system. Many devices have
become appeared among the designs by junior students.
We have been tried to find more general solution to the
subject for improving our microprocessor design education,
since the instruction issue logic seemed to be too
specialized for superscalar microprocessor design.
In 1990’s, design on hardware description language (HDL)
has become daily routine for digital system design. Design
verification is expected to be the next innovation in the
field of electronic design automation (EDA).
SystemVerilog[5] is a superset of an hardware description
language Verilog HDL, which we have been using for our
microprocessor design education. Properties that should be
held in the system could be written as SystemVerilog
assertion (SVA), which can be used to describe the heart
of the system as the way-in of LPP. Furthermore, design
verification is done at the very final stage of the
microprocessor design. With the SVA, showing model
checking[6] methodologies seemed to be worked as a good
guidance for the students to the further research at the
graduate course, since the model checking is the
theoretical successor to the SVA.
The next section describes the prior microprocessor design
education which seemed to be too specialized for the
superscalar microprocessor design. Section 3 describes the

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

117

design verification by SVA and model checking
methodologies shown to the students after the ASIP design.
Section 4 describes the studies accomplished by the
students after the ASIP design and the guidance, where
linear temporal logic (LTL) and computation tree logic
(CTL) are introduced as a typical way to describe the
behavior on Kripke structure.

2. Prior microprocessor design education

The legitimate peripheral participation (LPP) [3] has been
introduced by Lean Lave and Etienne Wenger, who
noticed the importance of the situated nature of learning.
They investigated the tailors in West Africa. The steps of
the apprenticeship were reversed production steps, which
have effect of focusing the apprentices’ attention first on
the broad outline of the product construction. The
apprentices begin by learning the finishing stages of
producing a garment, go on to learn to sew it, and only
later learn to cut it out. Each step offers the opportunity to
consider how the previous step contributes to the present
one. In addition, this ordering minimizes experiences of
failure and especially of serious failure.
We paid attention to the fact that the learning steps are
reversed production steps. This is for the learners to have
an opportunity to get the broad outline of the product
without having serious risk “Way-in” refers to period of
observation and attempts to construct a first approximation
of the garment. We noticed that we should use a subject
treated at the final stage of the design phases. We also
noticed that if we could find a subject which is the heart of
the product, the subject will be a very good way-in for the
LPP. This is our extension. The subject for the way-in is
desirable to be central part of the product.
The answer was the instruction issue logic for the
superscalar microprocessors[4]. The logic is tuned at the
final stage of the design phases and is the central part of
the superscalar microprocessor. Before teaching
superscalar microprocessor design, pipelining had been
instructed. Pipelining was too difficult, since the division
of the modules for the pipelining was “cutting” at the first
step of the design. The pipelining education was a failure.
The average number of the lines of the modification was
127 and the standard deviation was only 162 lines. Few
students succeeded to introduce their original devices
except internal/external interruption handling. Moreover
the completion ratio was 80%.
After we started superscalar microprocessor design
education showing the role of the instruction issue logic,
many devices have become appeared among the designs
by junior students. In 2007, which is the 3rd year of our
superscalar microprocessor design education, 50 out of 53
junior students succeeded to complete the entire design
and fabrication phases. The average number of the lines of

the modification was 407 and the standard deviation was
975 lines. 20 out of 53 students succeeded to introduce
their original own devices in addition to the simple
internal/external interruption handling. The remarkable
point is the fact that the students have begun to use their
head to create their own original designs. They could have
an opportunity to understand the very mechanism of the
superscalar microprocessor, since the way-in was the
central part of the product.
Our next step is to find more general solution, since the
instruction issue logic for superscalar microprocessor
seemed to be too specialized for particular microprocessor
design.
We noticed that SystemVerilog assertion (SVA) could be
used to describe the central part of the system at the very
final stage of the design phases. SystemVerilog[5] is a
hardware description language backward compatible with
Verilog HDL.
In our microprocessor design education, Verilog HDL has
been used to describe the microarchitecture of the
microprocessors. Register transfer level behavior is written
as state machines for the processors. The state machine for
the prefetch unit only continues to fetch the instructions
one after another. Between the prefetch unit and decode
unit, there exists an instruction register as a staging latch.
Figure 1 illustrates a part of the description of the prefetch
unit in Verilog HDL. For each state machine, register
transfer operations are written with state transitions in
individual state of the machine in Verilog HDL like a
classical hardware description language DDL[7] proposed
by Duley and Dietmeyer in 1968.

Fig. 1 A state machine description in Verilog HDL

Programs for the processors are written in binary image as
the contents of the instruction memory. Data to be
processed are described in data memory.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

118

3. Verification technologies

We paid attention on SystemVerilog’s ability to describe
properties which is expected to be held in the system. The
properties could be written in SystemVerilog assertion
(SVA) separately with the original description of the
system in Verilog HDL.
The SVA could write “condition” that should be held
always like:
assert property ($onehot0(select[15:0]);
describing that only one output signal of a selector could
be one at the same time. This could be regarded as a
description in propositional logic.
An SVA description “response” like
assert property (A==B |=> C ##1 D);
describes “if A equals to B, C must be one in the next
clock cycle and D should be one after one more clock
cycle later.” “|=>” is called non-overlap implication, which
separates the clock cycles.
assert property ($rose(REQ)|=> ##[0:$] ACK);
describes “if signal REQ rose, signal ACK will be one
finally.” These could be regarded as description in
temporal logic for Kripke structure S(W,R,V) , where W is
a set of the states, R is a reachability relation among the
states and V is the assignment of the logical values to the
logical variables in each state.
We instructed assertion based verification (ABV) in our
senior project to design ASIPs on Verilog HDL with
SystemVerilog. The students observed their designs to
write down the key properties in SVAs, which are the new
way-in in our new trial. SVAs worked very well as a new
way-in, since the students have to write down the heart of
the system in SVA to verify the behavior of the ASIPs.
SVAs also worked very well for finding bugs in short time.
Students completed their ASIP designs for their particular
applications in a couple of months in their senior student
days.
After designing ASIPs as senior students, the students are
instructed model checking[6] methodologies in the first
half year of their graduate school days.
Fig. 2 illustrates the relation between ABV and model
checking. Properties written in SVA correspond to the
properties described in temporal logic.

Fig. 2 Relation between ABV and Model Checking

In ABV, only some cases are investigated, since the
verification is accomplished through simulation. In model
checking, all possible cases are investigated on Kripke
structure.
In LTL, properties are described for a particular
computation path of the state transition on Kripke structure.
A state of a system satisfies an LTL formula if all paths
from the given state satisfy it. Abstraction is recognized as
one of the solutions to the state explosion problem.
Abstraction mapping from concrete structure C to abstract
structure A is discussed. The state of traffic signal
C={Green, Yellow, Red} could be mapped to A={Green,
Not-green}. Data mapping is for a particular variable.
Predicate abstraction is for variables more than one.
In CTL, as well as the temporal operator U(Until), F(some
Future state), G(Globally) and X(neXt state) of LTL,
quantifiers A(All paths) and E(Exists a path) are used.
Existence of some particular pipeline hazard condition
could be treated in CTL.
Model checking[5] methodologies were instructed by
using NuSMV[8],[9]. NuSMV is a symbolic model
checker, where both LTL and CTL could be used. Several
examples are asked to be investigated for the graduate
students by using NuSMV to understand the model
checking methodologies after designing ASIPs using ABV.
An application of theorem proving to formal design
verification is also introduced besides the model checking.
In the application, designs are expressed as axioms and the
properties are expressed as the theorems to be proved. We
also instructed that there is a limitation since the theorem
proving depends on particular notation for the theorem
proving system.

4. Studies accomplished by students

Two senior students designed their own ASIPs by
modifying an example description of a pipelined RISC
having 3 stages. Theexample description is written in 498
lines of Verilog HD and verified by ABV with SVA.
Fig.3 illustrates an assertion example in SVA to check a
forwarding mechanism for the pipelined RISC. When the
state of prefech unit changed to “FETCH” from “WAIT”
for pipeline interlock, forwarded value of the flag register
must be equal to the latest value of the flag register “FR”

Fig.3 An assertion example for pipelining

Pipeline interlock is a key mechanism for pipelining. The
heart of the system is now shown to the students through

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

119

SVA, which is more general in comparison with
instruction issue logic for superscalar microprocessors.
A senior student designed an ASIP for Dijkstra’s
algorithm to find a shortest path by modifying the example
RISC description. The ASIP was written in 1063 lines of
Verilog HDL, which could be implemented by using 454
LUTs of Xilinx FPGA.
Fig. 4 illustrates the block diagram of the ASIP. Give
graph is expressed as linked list on the data memory. In
the execution unit, 3 out of 4 index registers were used to
handle the linked lists expressing the weighted graphs for
the Dijkstra’s algorithm.

Fig. 4 An ASIP for Dijkstra’s algorithm

The Dijkstra’s algorithm is expressed in binary image as
the contents of the instruction memory, while the given
graph is expressed in binary image as the contents of the
data memory in Verilog HDL
Fig. 5 illustrates the flowchart for the Dijkstra’s algorithm.
Labels L1,L2,…are implemented by program counter (PC).
The senior student tried to find the location of the bugs by
checking each segment of the flowchart.

Fig. 5 A flowchart for Dijkstra’s algorithm

Fig. 6 illustrates an assertion example to check a segment.

When he found an SVA failed, he divided the segment into
shorter segments for identifying the location of the bug. A
bug on software in binary image as the contents of the
instruction memory was found. This could happen because
the algorithm was implemented not only by the hardware
but also by the software. System verification has been
done by the SVA.

Fig.6 An assertion example for Dijkstra’s algorithm

After designing the ASIP and the exercise using NuSMV,
the student noticed that the predicate abstraction for LTL
could be used to investigate the segments of the flowchart.

Fig. 7 An example graph

Fig. 7 illustrates a graph for the Dijkstra’s algorithm,
where 3 cases exit as the shortest path from starting vertex
s to terminal vertex t.
There are 3 types of paths on the ASIP. First one is the
very shortest path from starting vertex to the terminal.
There are 3 cases in this example: s->a->t, s->b->a->t and
s->b->t. The second one is the path on Kripke structure,
where the initial state is the moment when all vertexes are
labeled infinite and none of the vertexes are selected. The
states are formed by the contents of the PC, the value of
the labels and marks indicating if the vertexes are selected.
The final state on the path is the moment when the
terminal vertex is selected. Although each case of the
shortest path on the graph in Fig. 6 could not identify
particular path on the Kripke structure, a predicate
x2<x2+x3<x1<x2+x3+x4<x1+x4<x2+x5 (1)
identifies a path on the Kripke structure. Each vertex could
be visited more than one time by the algorithm for a
particular shortest path. The third type is the path of the
flowchart characterized by the contents of the PC. For the
path specified by the inequality (1), the program segment
L5->L6->L7->L5 is traversed 5 times on the flowchart,
which can be verified by ABV. He found a way to use
predicate abstraction to reduce the number of the states
also could be used for investigating the behavior of the
algorithm on the flowchart. He selected appropriate
numbers(weights) which satisfy the inequality (1) to check

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

120

the segement L5->L6->L7->L5 is traversed exactly 5
times by ABV.
Another senior student designed an ASIP for Kruskal’s
algorithm to find a maximum spanning tree by modifying
the example RISC description. The ASIP was written in
1468 lines of Verilog HDL, which could be implemented
by using 991 LUTs of Xilinx FPGA.
Fig. 8 illustrates the block diagram of the ASIP. The unit
indicated by A in the figure is a special state machine for
adding an edge to the current set of edges which does not
contain any loop (cycle).

Fig. 8 An ASIP for Kruskal’s algorithm

Kruskal’s algorithm is a greedy strategy, which can
produce an optimum result when and only when M(E,I) is
a matroid, where E is a set of edges and I is the subset of
2E without loop in this case.
Fig. 9 illustrates an assertion example to check if a
connected component has no loop, where V is the number
of the vertexes and E is the number of the edges. The
following two statements are equivalent:

(1) A graph G is a tree
(2) A graph G is connected and V=E+1.

The SVA was checked for each connected component
always when a new edge is added to the current set of
edges.

Fig.9 An assertion example for Kruskal’s algorithm,

After designing the ASIP and the exercise using NuSMV,
the student noticed that the above equivalence (theorem)
could be used as a premise for reasoning to prove
properties. On the other hand, simple properties required
could be proved by some simple model checking.

Fig. 10 Property checking by influence

Fig. 10 illustrates the idea to derive properties by inference
from theorems and simple properties, which could be
proved easily by appropriate model checking..
Fig 11 illustrates an example of such an inference rule[10],
where “˫” indicates the existence of the proof.

Fig. 11 An example inference rule

In Fig.11, “f” could be a statement saying graph G is
connected and V=E-1 while “g” could be a statement
saying G is connected without having any loop. This is a
theorem. “f ⇒Xf,” where “Xf” means that f is true at the
next state, could be proved by some model checking. We
can conclude that if “f” is true at some state “g” is true
globally.
Constructing an appropriate set of inference rules which
has soundness and completeness seemed to be a future
problem.

5. Conclusion

A new method for bringing out challenges to study modern
microprocessor design at the graduate course from
experiences to design ASIPs using SVA with related
design verification technologies in senior student days is
proposed. The key point is to show the heart of the system
with SVA with methodologies for advanced verification.
The method should be suitable along with the progress of
verification technologies in the field of EDA.

Acknowledgments

The authors would like to thank graduate students
Tomohisa Fujita and Masakazu Hirakawa for their
participation in this experiment. This work is supported by
VLSI Design and Education Center (VDEC), the
University of Tokyo in collaboration with Cadence Design
Systems, Inc.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.10, October 2016

121

References
[1] Roland G. Tharp and Ronald Gallimore: Rousing minds to

life: Teaching, learning, and schooling in social context,
Cambridge university press, 1988

[2] Noam Nisan and Shimon Schocken: The Elements of
Computing Systems, The MIT Press, 2005

[3] Jean Lave and Etienne Wenger, Situated learning,
Legitimate peripheral participation. Cambridge university
press, 1991.

[4] Ryuich TAKAHASHI, Hajime OHIWA and Yoshiyasu
TAKEFUJI "A Fine Grain Microprocessor Design
Education considering Situated Nature of Learning,"
International Journal of Computer Science and Network
Security, Vol.8 No.6, pp.194-198,2008

[5] Stuart Sutherland, Simon Davidmann, Peter Flake forword
by Phil Moorby: SystemVerilog for Design, Kluwer
Academic Publishers, 2004

[6] Edmund M. Clarke, Jr., Orna Grumberg, and Doron A.
Peled: Model Checking, The MIT Press, 1999

[7] James R. Duley and Donald L. Dietmeyer: “A Digital
System Design Language (DDL),” IEEE Trans. Computers,
vol. C-17, No.9, pp.850-861, 1968

[8] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M.
Pistore, M. Roveri, R. Sebastiani and A. Tacchella:"NuSMV
2: An OpenSource Tool for Symbolic Model Checking,"
Proceedings of International Conference on Computer
Aided Verification. pp.359-364, 2002

[9] Michael Huth and Mark Ryan: Logic in Computer Science
second edition, Cambridge university press, 2004

[10] Ming-Hsien Tsai and Bow-Yaw Wang: ”Formalization of
CTL* in Calculus of Inductive Constructions,” ASIAN
2006, LNCS4435, pp.316-330, 2007

Ryuichi Takahashi received the B.S.
degree in physics from Waseda University
in 1978 and M.E. degree in information
processing from Tokyo Institute of
Technology in 1981. He received the PhD
degree from Keio University in 2010 with a
thesis entitled "Microarchitecture
Education using the Design on HDL,"
where the letters HDL stand for hardware

description language.. During 1981-1991, he worked for NEC
Corp. as a researcher as well as a VLSI engineer. In 1991, he
moved to Tokyo Institute of Technology, where he had been
having a class for microcomputer design using TTL as an
assistant professor.. He joined Hiroshima City University in 1994,
where he is currently an associate professor on faculty of
information sciences. He received excellent educator award from
Information Processing Society of Japan (IPSJ) in 2004 for his
educational activity known as City-1 He published a couple of
books on Verilog HDL and digital algebra.

Yoshiyasu Takefuji is a tenured
professor on faculty of environmental
information at Keio University since
April 1992 and was on tenured faculty of
Electrical Engineering at Case Western
Reserve University since 1988. Before
joining Case, he taught at the University
of South Florida for 2 years and the
University of South Carolina for 3 years.
He received his BS (1978), MS (1980),

and Ph.D. (1983) in Electrical Engineering from Keio University.
His research interests focus on neural computing, security,
electronic toys. He received the National Science Foundation
Research Initiation Award in 1989, the distinct service award
from IEEE Trans. on Neural Networks in 1992, the TEPCO
research award in 1993, the Takayanagi research award in 1995,
the Kanagawa Academy of Science and Technology research
award in 1993, the best courseware award from Asia multimedia
forum in 1999, the best paper award of Information Processing
Society of Japan in 1980, special research award from the US air
force office of scientific research in 2003, chairman award from
JICA in 2004. He authors 25 books including neural network
parallel computing in 1992, and has published more than 200
papers.

