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Summary 
This paper proposes a new method for bringing out challenges to 
study modern microprocessor design at the graduate course from 
an advanced senior project for application specific instruction set 
processor (ASIP) design using SystemVerilog assertion with 
related design verification technologies. We have already 
reported that the instruction issue logic for superscalar 
microprocessors works very well as an way-in of legitimate 
peripheral participation (LPP) to observe the system, since the 
instruction issue logic is tuned at the final stage of the design and 
is the central part of the system. The way-in gave opportunity for 
students to understand the mechanism of superscalar 
microprocessors. The fine grain microprocessor design education 
for junior students has been greatly improved. Our next step is to 
find more general solution to the subject to improve our 
microprocessor design education, since the instruction issue logic 
seemed to be too specialized for particular microprocessor design. 
The answer was SystemVerilog assertion (SVA) describing 
central part of the system with related model checking 
methodologies which are theoretical successor to the SVA. A 
senior student who designed a pipelined ASIP for Dijkstra’s 
algorithm as a senior student continued to study an extension of 
abstraction technique to investigate the behavior of the algorithm 
on the flowchart beside the Kripke structure for identifying the 
location of the bugs as a graduate study for his master’s thesis. 
Another senior student who designed another pipelined ASIP for 
Kruskal’s algorithm as a senior student continued to study 
derivation of sophisticated temporal logic equations from simple 
properties proved by simple model checking using inference 
rules with theories as his graduate study. We believe showing the 
central part of the system by using SVA with related 
technologies for the design verification will work very well for 
guiding the undergraduate students to learn the mechanism of the 
system as well as advanced studies of modern microprocessor 
design at the graduate course. 
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1. Introduction 

The microprocessor design education has become one of 
the very important subjects in this time of upheaval. An 
application specific instruction set processor (ASIP) is one 
of the key solutions used for system-on-a-chip design to 
provide a tradeoff between the flexibility of a general 
purpose CPU and performance of an application specific 
integrated circuit (ASIC) for a special purpose to reduce 
the cost and power consumption Digital signal processors 

with multiply–accumulate (MAC) operations can be 
regarded as a typical ASIP. For designing ASIPs, the 
mechanism of computation must be understood well for 
the first step. 
Instructional scaffolding[1] is a teaching method 
introduced by Lev Vygotsky who believed that when 
student is in the zone of proximal development (ZPD) for 
a particular task, providing an appropriate assistance will 
give the student enough of boost to achieve the task. 
Constructive approach[2] could be  one of a good solution 
to the subject for guiding the students to understand how 
computer works. Twelve subjects are given to show the 
elements of computer built from scratch. Our approach 
takes into account the sequence to show the design phases. 
First, we give an opportunity to observe the outline of 
system by using “way-in” of LPP[3]. We extended the 
LPP by choosing the central part of the system as the way-
in[4]. We used the instruction issue logic for superscalar 
microprocessor design as the way-in for the extended LPP, 
since the logic is tuned at the final stage of the design and 
is the central part of the system. Many devices have 
become appeared among the designs by junior students. 
We have been tried to find more general solution to the 
subject for improving our microprocessor design education, 
since the instruction issue logic seemed to be too 
specialized for superscalar microprocessor design. 
In 1990’s, design on hardware description language (HDL) 
has become daily routine for digital system design. Design 
verification is expected to be the next innovation in the 
field of electronic design automation (EDA). 
SystemVerilog[5] is a superset of  an hardware description 
language Verilog HDL, which we have been using for our 
microprocessor design education. Properties that should be 
held in the system could be written as SystemVerilog 
assertion (SVA), which can be used to describe the heart 
of the system as the way-in of LPP. Furthermore, design 
verification is done at the very final stage of the 
microprocessor design. With the SVA, showing model 
checking[6] methodologies seemed to be worked as a good 
guidance for the students to the further research at the 
graduate course, since the model checking  is the 
theoretical successor to the SVA.  
The next section describes the prior microprocessor design 
education which seemed to be too specialized for the 
superscalar microprocessor design. Section 3 describes the 
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design verification by SVA and model checking 
methodologies shown to the students after the ASIP design. 
Section 4 describes the studies accomplished by the 
students after the ASIP design and the guidance, where 
linear temporal logic (LTL) and computation tree logic 
(CTL) are introduced as a typical way to describe the 
behavior on Kripke structure. 

2. Prior microprocessor design education 

The legitimate peripheral participation (LPP) [3] has been 
introduced by Lean Lave and Etienne Wenger, who 
noticed the importance of the situated nature of learning. 
They investigated the tailors in West Africa. The steps of 
the apprenticeship were reversed production steps, which 
have effect of focusing the apprentices’ attention first on 
the broad outline of the product construction. The 
apprentices begin by learning the finishing stages of 
producing a garment, go on to learn to sew it, and only 
later learn to cut it out. Each step offers the opportunity to 
consider how the previous step contributes to the present 
one. In addition, this ordering minimizes experiences of 
failure and especially of serious failure.  
We paid attention to the fact that the learning steps are 
reversed production steps. This is for the learners to have 
an opportunity to get the broad outline of the product 
without having serious risk “Way-in” refers to period of 
observation and attempts to construct a first approximation 
of the garment. We noticed that we should use a subject 
treated at the final stage of the design phases. We also 
noticed that if we could find a subject which is the heart of 
the product, the subject will be a very good way-in for the 
LPP. This is our extension. The subject for the way-in is 
desirable to be central part of the product. 
The answer was the instruction issue logic for the 
superscalar microprocessors[4]. The logic is tuned at the 
final stage of the design phases and is the central part of 
the superscalar microprocessor. Before teaching 
superscalar microprocessor design, pipelining had been 
instructed. Pipelining was too difficult, since the division 
of the modules for the pipelining was “cutting” at the first 
step of the design. The pipelining education was a failure. 
The average number of the lines of the modification was 
127 and the standard deviation was only 162 lines. Few 
students succeeded to introduce their original devices 
except internal/external interruption handling. Moreover 
the completion ratio was 80%. 
After we started superscalar microprocessor design 
education showing the role of the instruction issue logic, 
many devices have become appeared among the designs 
by junior students. In 2007, which is the 3rd year of our  
superscalar microprocessor design education, 50 out of 53 
junior students succeeded to complete the entire design 
and fabrication phases. The average number of the lines of 

the modification was 407 and the standard deviation was 
975 lines. 20 out of 53 students succeeded to introduce 
their original own devices in addition to the simple 
internal/external interruption handling. The remarkable 
point is the fact that the students have begun to use their 
head to create their own original designs. They could have 
an opportunity to understand the very mechanism of the 
superscalar microprocessor, since the way-in was the 
central part of the product. 
Our next step is to find more general solution, since the 
instruction issue logic for superscalar microprocessor 
seemed to be too specialized for particular microprocessor 
design.  
We noticed that SystemVerilog assertion (SVA) could be 
used to describe the central part of the system at the very 
final stage of the design phases. SystemVerilog[5] is a 
hardware description language backward compatible with 
Verilog HDL. 
In our microprocessor design education, Verilog HDL has 
been used to describe the microarchitecture of the 
microprocessors. Register transfer level behavior is written 
as state machines for the processors. The state machine for 
the prefetch unit only continues to fetch the instructions 
one after another. Between the prefetch unit and decode 
unit, there exists an instruction register as a staging latch. 
Figure 1 illustrates a part of the description of the prefetch 
unit in Verilog HDL. For each state machine, register 
transfer operations are written with state transitions in 
individual state of the machine in Verilog HDL like a 
classical hardware description language DDL[7] proposed 
by Duley and Dietmeyer in 1968. 

 

Fig. 1  A state machine description in Verilog HDL 

Programs for the processors are written in binary image as 
the contents of the instruction memory. Data to be 
processed are described in data memory.  
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3. Verification technologies 

We paid attention on SystemVerilog’s ability to describe 
properties which is expected to be held in the system.  The 
properties could be written in SystemVerilog assertion 
(SVA) separately with the original description of the 
system in Verilog HDL.  
The SVA could write “condition” that should be held 
always like: 
assert property ($onehot0(select[15:0]); 
describing that only one output signal of a selector could 
be one at the same time. This could be regarded as a 
description in propositional  logic.  
An SVA description “response” like 
assert property (A==B |=> C ##1 D); 
describes “if A equals to B, C must be one in the next 
clock cycle and D should be one after one more clock 
cycle later.” “|=>” is called non-overlap implication, which 
separates the clock cycles. 
assert property ($rose(REQ)|=> ##[0:$] ACK); 
describes “if signal REQ rose, signal ACK will be one 
finally.” These could be regarded as description in 
temporal logic for Kripke structure S(W,R,V) , where W is 
a set of the states, R is a reachability relation among the 
states and V is the assignment of the logical values to the 
logical variables in each state. 
We instructed assertion based verification (ABV) in our 
senior project to design ASIPs on Verilog HDL with 
SystemVerilog. The students observed their designs to 
write down the key properties in SVAs, which are the new 
way-in in our new trial. SVAs worked very well as a new 
way-in, since the students have to write down the heart of 
the system in SVA to verify the behavior of the ASIPs. 
SVAs also worked very well for finding bugs in short time. 
Students completed their ASIP designs for their particular 
applications in a couple of months in their senior student 
days. 
After designing ASIPs as senior students, the students are 
instructed model checking[6] methodologies in the first 
half  year of  their graduate school days. 
Fig. 2 illustrates the relation between ABV and model 
checking. Properties written in SVA correspond to the 
properties described in temporal logic. 

 

Fig. 2 Relation between ABV and Model Checking 

In ABV, only some cases are investigated, since the 
verification is accomplished through simulation. In model 
checking, all possible cases are investigated on Kripke 
structure. 
In LTL, properties are described for a particular 
computation path of the state transition on Kripke structure. 
A state of a system satisfies an LTL formula if all paths 
from the given state satisfy it. Abstraction is recognized as 
one of the solutions to the state explosion problem. 
Abstraction mapping from concrete structure C to abstract 
structure A is discussed. The state of traffic signal 
C={Green, Yellow, Red} could be mapped to A={Green, 
Not-green}. Data mapping is for a particular variable. 
Predicate abstraction is for variables more than one. 
In CTL, as well as the temporal operator U(Until), F(some 
Future state), G(Globally) and X(neXt state) of LTL, 
quantifiers A(All paths) and E(Exists a path) are used. 
Existence of some particular pipeline hazard condition 
could be treated in CTL. 
Model checking[5] methodologies were instructed by 
using NuSMV[8],[9]. NuSMV is a symbolic model 
checker, where both LTL and CTL could be used. Several 
examples are asked to be investigated for the graduate 
students by using NuSMV to understand the model 
checking methodologies after designing ASIPs using ABV. 
An application of theorem proving to formal design 
verification is also introduced besides the model checking. 
In the application, designs are expressed as axioms and the 
properties are expressed as the theorems to be proved. We 
also instructed that there is a limitation since the theorem 
proving depends on particular notation for the theorem 
proving system. 

4. Studies accomplished by students 

Two senior students designed their own ASIPs by 
modifying an example description of a pipelined RISC 
having 3 stages. Theexample description is written in 498 
lines of Verilog HD and verified by ABV with SVA. 
Fig.3 illustrates an assertion example in SVA to check a 
forwarding mechanism for the pipelined RISC. When the 
state of prefech unit changed to “FETCH” from “WAIT” 
for pipeline interlock, forwarded value of the flag register 
must be equal to the latest value of the flag register “FR” 

 

Fig.3 An assertion example for pipelining 

Pipeline interlock is a key mechanism for pipelining. The 
heart of the system is now shown to the students through 
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SVA, which is more general in comparison with 
instruction issue logic for superscalar microprocessors. 
A senior student designed an ASIP for Dijkstra’s 
algorithm to find a shortest path by modifying the example 
RISC description. The ASIP was written in 1063 lines of 
Verilog HDL, which could be implemented by using 454 
LUTs of Xilinx FPGA.  
Fig. 4 illustrates the block diagram of the ASIP. Give 
graph is expressed as linked list on the data memory. In 
the execution unit, 3 out of 4 index registers were used to 
handle the linked lists expressing the weighted graphs for 
the Dijkstra’s algorithm.  

 

Fig. 4  An ASIP for Dijkstra’s algorithm 

The Dijkstra’s algorithm is expressed in binary image as 
the contents of the instruction memory, while the given 
graph is expressed in binary image as the contents of the 
data memory in Verilog HDL  
Fig. 5 illustrates the flowchart for the Dijkstra’s algorithm. 
Labels L1,L2,…are implemented by program counter (PC). 
The senior student tried to find the location of the bugs by 
checking each segment of the flowchart. 

 

Fig. 5  A flowchart for Dijkstra’s algorithm 

Fig. 6 illustrates an assertion example to check a segment.  

When he found an SVA failed, he divided the segment into 
shorter segments for identifying the location of the bug. A 
bug on software in binary image as the contents of the 
instruction memory was found. This could happen because 
the algorithm was implemented not only by the hardware 
but also by the software. System verification has been 
done by the SVA. 

 

Fig.6 An assertion example for Dijkstra’s algorithm 

After designing the ASIP and the exercise using NuSMV, 
the student noticed that the predicate abstraction for LTL 
could be used to investigate the segments of the flowchart.  

 

 

Fig. 7  An example graph 

Fig. 7 illustrates a graph for the Dijkstra’s algorithm, 
where 3 cases exit as the shortest path from starting vertex 
s to terminal vertex t. 
There are 3 types of paths on the ASIP. First one is the 
very shortest path from starting vertex to the terminal. 
There are 3 cases in this example: s->a->t, s->b->a->t and 
s->b->t. The second one is the path on Kripke structure, 
where the initial state is the moment when all vertexes are 
labeled infinite and none of the vertexes are selected. The 
states are formed by the contents of the PC, the value of 
the labels and marks indicating if the vertexes are selected. 
The final state on the path is the moment when the 
terminal vertex is selected. Although each case of the 
shortest path on the graph in Fig. 6 could not identify 
particular path on the Kripke structure, a predicate 
x2<x2+x3<x1<x2+x3+x4<x1+x4<x2+x5     (1) 
identifies a path on the Kripke structure. Each vertex could 
be visited more than one time by the algorithm for a 
particular shortest path. The third type is the path of the 
flowchart characterized by the contents of the PC. For the 
path specified by the inequality (1), the program segment 
L5->L6->L7->L5 is traversed 5 times on the flowchart, 
which can be verified by ABV. He found a way to use 
predicate abstraction to reduce the number of the states 
also could be used for investigating the behavior of the 
algorithm on the flowchart. He selected appropriate 
numbers(weights) which satisfy the inequality (1) to check 
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the segement L5->L6->L7->L5 is traversed exactly 5 
times by ABV. 
Another senior student designed an ASIP for Kruskal’s 
algorithm to find a maximum spanning tree by modifying 
the example RISC description.  The ASIP was written in 
1468 lines of Verilog HDL, which could be implemented 
by using 991 LUTs of Xilinx FPGA. 
Fig. 8 illustrates the block diagram of the ASIP. The unit 
indicated by A in the figure is a special state machine for 
adding an edge to the current set of edges which does not 
contain any loop (cycle). 

 

Fig. 8  An ASIP for Kruskal’s algorithm 

Kruskal’s algorithm is a greedy strategy, which can 
produce an optimum result when and only when M(E,I) is 
a matroid, where E is a set of edges and I is the subset of 
2E without loop in this case.  
Fig. 9 illustrates an assertion example to check if a 
connected component has no loop, where V is the number 
of the vertexes and E is the number of the edges. The 
following two statements are equivalent: 

(1) A graph G is a tree 
(2) A graph G is connected and V=E+1.  

The SVA was checked for each connected component 
always when a new edge is added to the current set of 
edges. 

 

Fig.9 An assertion example for Kruskal’s algorithm, 

After designing the ASIP and the exercise using NuSMV, 
the student noticed that the above equivalence (theorem) 
could be used as a premise for reasoning to prove 
properties. On the other hand, simple properties required 
could be proved by some simple model checking. 

 

Fig. 10 Property checking by influence 

Fig. 10 illustrates the idea to derive properties by inference 
from theorems and simple properties, which could be 
proved easily by appropriate model checking.. 
Fig 11 illustrates an example of such an inference rule[10], 
where “˫” indicates the existence of the proof. 

 

Fig. 11 An example inference rule 

In Fig.11, “f” could be a statement saying graph G is 
connected and V=E-1 while “g” could be a statement 
saying G is connected without having any loop. This is a 
theorem. “f ⇒Xf,” where “Xf” means that f is true at the 
next state, could be proved by some model checking. We 
can conclude that if “f” is true at some state “g” is true 
globally. 
Constructing an appropriate set of inference rules which 
has soundness and completeness seemed to be a future 
problem. 

5. Conclusion 

A new method for bringing out challenges to study modern 
microprocessor design at the graduate course from 
experiences to design ASIPs using SVA with related 
design verification technologies in senior student days is 
proposed. The key point is to show the heart of the system 
with SVA with methodologies for advanced verification. 
The method should be suitable along with the progress of 
verification technologies in the field of EDA. 
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