
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.11, November 2016

55

Manuscript received November 5, 2016
Manuscript revised November 20, 2016

Design and Implementation of Computer Worms Based on
Monitoring Replication and Damage

Yazed B. Al-Saawy1† and Sulaiman Al amro2††

Islamic University in Madinah, Qassim University

Summary
This paper will present the formalisation stage of the
development of the W DS. This formalization was achieved
using CCA and was validated through simulation using ccaPL.
The notation for CCA and the corresponding notation for ccaPL
was presented. Moreover, this paper presented the formalised
processes of each ambient as equations in CCA .Internal
validation through simulation was achieved through a number of
differ- ent scenarios which were designed to validate if the W DS
was capable of detection and the sending and receiving of files
and messages. Overall, the simulation was successful in showing
that the modelling of the system had achieved the predefined
requirements which included detection through signature-based
and behaviour-based techniques, the W DS can now be
implemented in JADE.
Key words:
Computer worms; behavior detection, replication; damage..

1. Introduction

This paper presents the implementation of the proposed
worm detection system (W DS) of this study. The
detection components of the system include an object
handler, a database, hosts and a dummy host, each of
which has its own class.

There is an explanation of the functioning of the W DS and
how it operates within the M AS (Multi-Agent System).
The W DS is designed to detect known and unknown
worms using a dummy host as part of the detection process.
This ter will describe how the implementation of the W DS
is achieved using Java Agent Development Framework
(JADE). Specifically, there is an explanation of the
mapping between CCA and JADE where it will be shown
that JADE is capable of implementing the functions of the
W DS which include managing and controlling the sending
and receiving of messages and files. Moreover, JADE can
also implement the detection mechanisms.

The paper begins by presenting the main components of
the W DS, it then moves into system design using class and
sequence diagrams which illustrate the system structure
and processes respectively. Thereafter, there is an
explanation of the mapping between CCA and JADE, and

finally, an explanation of the implementation of the system
using the Java Agent development framework JADE.1.

2. Literature Review

2.1 Malware Mechanisms

El-Moussa and Jones [1] say that different types of
malware show different behaviours. Malware often
initiates actions of which the user is unaware, i.e., calling
up an application or executive file [2]. A program may
contain features the user requires but may also invoke
unwanted behaviour. Thus, malware is able to enter a
system with all the rights that are appropriate to the user or
application but compromises data integrity [2]. Malware
can function without being confined by a policy and/or
deposit files that contain exploits for popular applications
such as creation or viewing of documents and pictures [3].
These threats target exploits within the computer software
to insert viral or malicious programs [4]. Until now
systems have focused on preventing this exploitation,
whereas, the present study uses this exploitation to prevent
infection and damage to networks. Malware char-
acteristics evolve with time yet often they fall into several
categories of traits [5] wherein a malware is generally
described by four attributes of its operation:

Propagation: refers to the mechanism that enables malware
to be distributed to multiple systems [6]. Malware may
perform vulnerability exploitation of server or client-side
software; may be loaded by an intruder manually; may be
autonomous and, may require user involvement such as
launching an email attachment [5].

Malware’s propagation mechanisms can be subtle and
dangerous when it penetrates the infrastructure and spreads.
Once malware has infected an infrastructure, there is
generally some means by which it moves to other systems
[7]. To achieve best replication results, different
components of self-replication may also be dis- tributed
among several processes that are communicating with each

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.11, November 2016

56

other, since its purpose is to infect as many hosts as
possible [8]. Thus, malware can infect and spread over
wired and wireless networks. By its ability to inter-operate
between the Internet and wireless networks, along with
improved functionalities and mobility, malware
propagation in these networks has the potential to spread
extremely fast [9], propagating to other nodes and
compromising the network as malware takes advantage of
certain weakness in network mobility [10].

Infection: refers to the installation routine used by the
malware as well as its ability to remain installed despite
disinfection attempts [6]. Malware may either run once or
may maintain a persistent presence on the system; may
assemble itself dynamically by downloading additional
components or may attach itself to benign programs or
functions as a stand-alone process [5].

Infection mechanisms, attack vectors and malware
payloads continue to evolve as evidenced by the greater
sophistication of exploits [11], such as malware links
embedded in emails. Malware infection has gone from
simply opportunistic to seem- ingly targeted attacks. These
types of attack are often preceded by considerable open-
source intelligence collection referred to as spear phising,
during which specific individuals are sought to launch an
attack against [7].
Self-defence: refers to the methods used by malware to
conceal their presenc and resist analysis, such techniques
may also be called as anti-reversing capabilities [6]. It may
avoid signature-based detection by changing itself; may
time its actions to take place during busy periods or to go
slowly to avoid being noticed or may be designed to thwart
analysis attempts, i.e., using a packer that encrypts the
original executable and decrypting it at run time [5].
Attackers also circumvent the de- fence mechanism using
obfuscation by altering the shape of data in order to avoid
pattern-matching detection [12]. All too often, malware
presents itself as armoured or obfuscated primarily to
circumvent network security protection mechanisms [13].
Capabilities: refers to software functionality available to
malware operator [6]. Malware may be designed to collect
data by sniffing the network, recording keystrokes and
screenshots, and locating sensitive files; may be
programmed to wreck havoc on a system; and may provide
the attacker with remote access to the system by acting as a
backdoor [5].
Malware is capable of creating a persistence mechanism
through the Registry autorun subkey, causing the program
to start-up each time the system is rebooted [13]. However,
Carvey [18] says not all persistence mechanisms reside
within the Registry, as some, identified as file infector,
infect executable or data files, enabling it to run whenever
the executable file is launched or the data file is accessed.

Knapp [7] brings attention to a malware type called the
advanced persistent threat (APT) which differentiates
itself from other normal malware by its capability to shift
from broad, untargeted attacks to more directed attacks
that focus on determining specifics about its target network
and attempts to remain hidden and proliferate within a
network, leading to the persistence of the threat.

2.2 Computational Model

The design of the detection system is modelled using
ambients which will be formally specified using CCA.
Therefore, the computational model reflects a system
modelled using ambients. Here we describe the
components of the detection system and demonstrate
where they are located in the overall architecture, followed
by a presentation of the computational model using CCA.
The architecture of the W DS is presented in Figure 1. The
architecture comprises of components of the overall
networked system of computers which the W DS is
designed to protect, these are represented as ambients and
include the department and the hosts within that
department. The architecture is also comprised of
components of the W DS itself, also represented as
ambients, which include the Dummy Host (DH), the
Object Handler (OH) and the database (DB). For the
purposes of this study we are concerned with the
architecture, however, the system would work with
multiple departments.
It is important that the computational model allows both
the architecture and the interactions between the system
components to be understood . For example, a host within
a department becomes infected with a worm which has the
ability to move from one host to another via the network.
Located in the network between the various hosts is the
Object Handler (OH) which has two main functions which
are firstly, to manage the transfer of files and messages and
secondly, is comprised of part of the overall detection
mechanism, i.e., detection by signature.

The following is a brief overview of the components of the
system
• Hosts: The hosts are the machines.

• Dummy Host: This is the host that allows itself to be
infected with worms so that they may be detected through
behaviour which includes damage and replication.

• Object Handler: This is the developed middleware of the
present study, which has two functions - detection of
worms using signature-based detection and management of
files and messages.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.11, November 2016

57

• Database: The database contains a list of known worms
against which the Object Handler checks the file, this
forms part of the overall detection mech- anism.

• win32: The win32 ambient is a folder which contains the
executable and system files, each of which are also
considered as ambients. These files include system files
such as cdrom.sys and executable files such as cmd.exe.
The win32 ambient is the location in the Dummy Host
ambient where worms are allowed to carry out replication
behaviour and damages.

As shown in Figure 1 the W DS is comprised of the Hosts,
the Dummy Host DH, Object Handler OH and Database
DB . Before the system can be formalised it is necessary to
model the W DS whereby the system’s components are
represented as ambients. Now we will illustrate this
modelling and also demonstrate how the subsequent model
will be translated into a formal specification using CCA.

At this point the visual model provides a high level of
abstraction of the W DS and illustrates the components as
ambients, the overall architecture and the process
relationships between the ambients. The next stage is to
formalise the ambients, the W DS architecture and the
system processes, which includes the detection mecha-
nism, in CCA.

Fig. 1 Architecture of the Worm Detection System

Now that we have the visual modelling as an architecture
of components as shown in Figure 3.7, and before we
move to formalising the WDS in CCA, it is first necessary
to show the corresponding visual representation of the
components of the system as ambients, this is illustrated in
Figure 3.8. There is a one-to-one correspondence between
the visual modelling shown in Figure 1 and the modelling
as ambients in Figure 2. The following describes the
correspondence between the two graphics.

• Host 1 and Host 3 as components in the architecture of
the system are the networked machines (see Figure 1) that
send and receives files and messages, which the WDS is
designed to protect from worms. In the graphical
modelling using ambients Host 1 and Host 3 are denoted as
H1 and H3 respectively (see Figure 2).

• As a component shown in the architecture of the system,
the Dummy Host is a machine or agent (see Figure 3.7). In
the corresponding equivalent in the graphical modelling
using ambients the Dummy Host is denoted as DH and is
an ambient that contains the child ambient win32 and is a
sibling ambient to other system components (see Figure 2).

• Another component of the W DS represented in the
architecture is the Object Handler which manages the
sending and receiving of files and messages, this
component is located between the networked Hosts (see
Figure 3.7). In the graphical modelling the Object Handler
is an ambient denoted by OH and is a sibling ambient to H
1, H 3 and DB (see Figure 2).
• The Database component of the system, which contains a
list of signatures of known worms, is separate from the
other components (see Figure 3.7). This is clearly
illustrated in the graphical modelling where the Database is
denote as the ambient DB and is a sibling to the other
ambients (see Figure 2).

 Fig. 2 Graphical Representation WDS

Below is a textual representation of the above WDS
using CCA:

DH [win32[cdrom[Pcdrom]| cmd[Pcmd]|
winload[Pwinload] | Pwin32] | Pdh]

| H1 [PH1]
| H2 [PH2]
| H3 [PH3]
| OH [POH]
DB [PDB]

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.11, November 2016

58

2.2 Detection of Worm Behaviour

This section provides an overview of the detection
mechanism of the W DS. The flow diagram in Figure 3.9
shows the mechanism for worm detection, here the process
shows any order of replication or damage respectively.
Firstly, we consider the mechanism where replication is
detected. If replication is detected, then this indicates the
presence of a worm, the system will then check for damage,
it is important to note that checking for damage is for
information purposes only, as detection has already taken
place through detection of replication behaviour. Knowing
the type of damage caused by a worm will indicate the type
of worm. If replication is not detected then the system will
check for damage, if damage is detected then the result is
that malware has been detected which could include a
worm, the reason for this is because damage without
detecting replication means that it is probable that malware
other than a worm is detected. There are five specific types
of damage corresponding to each of the five worms
detected which are corrupts file, destructive file, create
files, change file size and copy files. Damage can also be
detected through the hash directory. If no damage is
detected then the result will be ‘clean’. The processes that
have been described here are implemented into an
algorithm which shows all detection possibilities. This
algorithm is shown in Table 3.1 where D is the Boolean
variable representing damage, R the Boolean variable
representing replication, the results are either clean or
infected.

Table 1: Infection Matrix
D
R

Damage No damage

Replication Infected Infected
No replication Infected Clean

Fig. 3 Detection of Behaviour

3. Components of Detection System in JADE

 The WDS comprises a number of different components;
each component has a specific task and includes the Hosts,
the Dummy Host, the Object Handler and Database. These
components are implemented in the system using JADE .
Besides the components of the system, JADE is also used
to implement replication behaviour and damage derived
from the classification. Figure 4 is a graphical
representation of the components of the system.ables,
Figures and Equations

Fig. 4 System Components

• Host 1:- Host 1, shown in Figure 5.2, is written as
Host1File in JADE as a class. Host 1 is one of the
networked machines which the W DS is designed to
protect and is capable of sending or receiving files or
messages. For the expertimentation of the W DS it is the
sending agent. When Host 1 engages in an action, e.g.,
sending file number 1, it is denoted in JADE as Host1File1
which can be seen in the JADE GUI. The reason it is
necessary to include the name of the file is for
communication purposes with the other components such
as the Object Handler and other hosts, for example, the
sending host is denoted in JADE as Host1File1, the
receiving host, DH , has to be denoted as DHFile

1, if the name of the file being sent does not match, then
communication will not take place.
• Dummy Host:- Dummy Host (DH) shown in Figure 5 is
written as DH in JADE as a class. The DH as an agent
always sends and receives files and is located in the system
and is the intermediary agent between the sending and
receiving agents (hosts). If a message or file is sent
between two hosts it must first go to the DH. The DH is a
machine that has permission to receive any files and
messages without any authorisation required. Thus, if a file
contains a worm it will be allowed to carry out replication

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.11, November 2016

59

behaviour or damage in the DH and it is the observation
and identification of this replication behaviour or damage
which reveals the presence of a worm and the type of
damage caused. As with Host 1, DH will be denoted in
JADE as DHFile when engaged in sending or receiving a
file, this is also shown in the JADE GUI interface.

• Host 3:- Host 3 is an agent of the system that sends and
receives files, however, in most of the experimentation
Host 3 is the receiving agent that will receive the sent file
or message from the sending agent (Host 1). As part of the
function of the detection system, it is important to note that
the file or message will only be received by the destination
host if no worm is detected. Thus, Host 3 run as a receiver
is denoted by JADE as, for example, Host3File.

• Object Handler: - The function of the Object Handler is
to manage the sending and receiving of files and messages,
including objects, between the networked hosts (Agents)
using a cyclical process which is a method of JADE
whereby within JADE messages or data are sent and
received repeatedly on a cyclical basis. The Object
Handler is also involved in managing the signature- based
detection in the database.

• Database:- The Database contains a list of existing worms
and their signatures which is used as part of the first layer
of the detection process, signature- based detection. The
list of worms was gained from the centralised database
available online. Moreover, the database is updated with
the names of newly-detected worms and the location and
type of damage caused. The database log will be updated
every time detection of damage takes place.

4. System Design

This section presents the design of the W DS. Class
diagrams and sequence diagrams are used to illustrate the
design of the system. These two types of modelling

were adopted because the class diagram provides a
visualisation of the specifica- tion requirements and system
properties and the need of different objects, and the
sequence diagram provides a sequential visualisation of
how messages and files are sent and received. The system
was designed using a high level specification duri4.1 Class
Diagram ng formalization.

4.1 Class Diagram

The class diagram in Figure 5.2 shows the various classes
(ambients) of the system. In the previous research [] it was
shown how the ambients of the system were modelled and

formally specified in CCA, this specification was
necessary for implementation using JADE because it
showed the components of the system, how they should be
situated in relation to each other and the actions that they
need to perform.

The system has networked hosts (which are Agents in
JADE) namely Hosts 1 and Host 3 are instances of the
Host class, additional hosts may be added which will also
be instances of the Host class. They have a relationship
with the Object Handler and the JADE GUI. These classes
represent the networked machines of the system and are
engaged in sending and receiving files and messages as
well as to deny or clean file messages from the OH class.

Fig. 5 Class Diagram

The OH class is an intermediary, or middleware, situated
between the Host classes and the Database class as well as
between the host classes and the DH (De- tection Handler)
class. The main function of the OH class is to manage the
send- ing and receiving of files and messages between the
Host classes and the detection classes, i.e., the Database
class and the DH class. The OH class has a controlling
function and will allow or deny files and messages based
on whether a file is clean or infected. It is the only class in
the system that has a direct interaction with all the other
classes of the system. Specifically, this class includes the
identifyWhether- Affected which shows the operation of
identifying if a worm has been detected as a type of
Boolean and receiveMessageInfo which is the receiving of
the message from the Dummy Host. The sending and
receiving of messages is achieved through ACL messaging.

The Database class contains the signatures of known
worms and is used in signature-based detection. This class
only has a direct relationship with the OH and the DH
classes. The OH sends files and message to the Database
class for signature-based detection, and in order for the OH
to open communication with the database a connection is

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.11, November 2016

60

made. The file and the results of the signature-based
detection are sent to the OH by the Database class. The
Database class also receives information about newly
detected worms including file name and signature which
are updated in the database.

The DH class is the main detection component of the
system and is responsible for detection through replication
behaviour and damage. It has a direct relationship with the
OH and the Database classes. The specific function of the
DH class is to detect a worm through hashing for both
replication and damage. The DH class contains the Hash
directories and compares the hash values of the original
file with the current file in order to determine if there is a
change in these values. For this it uses the MessageDigest
which compares the bytesToHex of the original file with
the received file and decides whether or not the latter is
clean and if it is clean, it is sent to the receiving host. If the
file is infected it will inform the OH class and it will also
update the database with the file information such as
signature, name of file and type of damage

4.2 Sequence Diagram

A sequence diagram illustrates sequentially the interactions
between the components of the detection system, i.e., the
sending and receiving of files and messages and detection.
More specifically, it shows the specific sequence of events
when a file is sent from one host to another, which includes
the messages that are sent and received as part of this
process. A sequence diagram can be generic, where it
shows all possible scenarios, or it can be in the instance
form where it focuses on a specific scenario.

Fig. 6 Sequence Diagram

The sequence diagram above shows the sequential
processes for the detection system and is considered
generic because it shows the communication processes

between the various classes, such processes are required
for the implementation in JADE. These processes have
already been established through modelling and formal
specification using CCA, where the possible interactions
between ambients, e.g., communication, were established
and formally specified.

In the sequence diagram in Figure 6 the events that take
place for both an infected and a clean file are represented.
Here Host 1 wants to send a message to Host 3. The first
event is that Host 1 sends a message or file to the OH,
indicated by event 1. The OH checks the signature of the
file or message with the database (DB) shown by event 1.2.
After the signature-based detection has taken place in the
database a reply message is returned to the OH indicating
whether the file is infected or clean, shown by event 1.3.
Thereafter, if the file or message is infected the OH will
send a deny message to the sending host (Host 1) that the
file or message is infected, shown by event 1.4. If the reply
from the Database class says that the file is clean the OH
will send the file to the DH for detection by replication
behaviour and damage, shown by event 6. The DH will
carry out detection indicated by event 2. Depending on
whether or not detection takes place a reply that the file is
infected or clean will be sent back to the OH, shown by
event 3. If the file is infected the OH will send a deny
message to the sending host (Host 1) that the file is denied
and cannot be sent, shown by event 3.1. At the same time
the DH will update the database with the infected file
shown by event 4. In the case that no infection is detected
in the DH, the OH will send the file or message to the
receiving host, in this case Host 3, shown by event 5.

5. Mapping from CCA to JADE

Once the W DS has been modelled and formally specified
in CCA the next step is to implement the system in JADE
which is a software platform for developing multi-agent
systems. During the imple- mentation it is necessary to
consider the components and processes of the system, as
described in the above, as overall requirements. More
specifically, we need to consider the required system
capabilities, the location of the various components or
ambients, the required processes and the Dummy Host as
part of the mechanism of detection, these considerations
are illustrated in Figure 5.4.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.11, November 2016

61

Fig. 4 Mapping between CCA and JADE

The translation between the system modelled in CCA and
the system to be im- plemented in JADE is simplified by
the fact that there is corresponding mapping between CCA
and JADE, for example, CCA has ambients and JADE has
agents, and both consider capabilities, location, processes
and mobility and also both con sider communication. The
implementation in JADE is achieved through mapping
between CCA and JADE, which is presented in the table 2.

In the table above there is a clear mapping between the
components and processes specified in CCA and their
implementation in JADE. In reference to processes, the
table shows how JADE implements systems behaviours,
specifically, cyclical behaviour. The mobility attribute
specified in CCA is implemented in JADE using migration.
Importantly, the table also shows how communication is
implemented, in this case the hand shaking process
formalised in CCA is implemented in JADE through the
data communicating properly with the RMI in Jade. This
will involve the agent joining the RMA (Remote
Monitoring Agent) in Jade using the ACL messages which
contain send and receive messages to and from the Agents.

Table 2: Mapping from CCA to JADE
CCA JADE
Ambient Agent
Ambient location Agent location
Parallel composition of
processes

Parallel composition of
threads.

Hand-shake message
passing

Agent Communication
Language (ACL).

Ambient mobility Agent migration as agent
mobility.

6. Implementation of WDS using JADE

JADE is used for the implementation of the detection
system and is used in the worm detection mechanism. This
section will describe this implementation in detail and
includes the implementation of the components and the
processes such as communication and update functions.

Once the database has been identified by JADE and the
agents (Host 1, DH, Host 3) have been activated, they are
ready for communication and sending and receiving files.
The system is now ready to function and perform sending
and receiving files and messages, detection and updating
signatures and type of damage in the database. The system
will not be terminated while the JADE GUI is running, this
avoids the system terminating if one of the Agents stops
working properly. Agents will automatically continue
sending and receiving messages and remain in an active
state unless there is a problem with the agents, such as a
network communication error, this is one of the advantages
of JADE. This sequence of actions of the system is
illustrated in Figure 5. These sequential processes can also
be found in the sequential diagram in Figure 3, for example,
JADE System in Figure 3 is equivalent to ‘Start Jade.Boot’
in Figure 5, ‘parsing of message done in Object Handler’
in Figure 3 is equivalent to Object Handler manages
messages in Figure

5 and finally, the ‘if file good, send (bad not
send)’sequence in Figure 3 has its equivalent in Figure 5 as
‘Reply to sending agent deny or accept message’.

Figure 5: Sequence of System Actions

6.1 Implementation of Components of the System

Before the sending and receiving of files and the
subsequent detection can take place the system has to be
implemented. This section will describe the mechanisms
be- hind the execution of the components of the system.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.11, November 2016

62

The first action required in running the system is to run the
command prompt mysqld in order to run the service of the
mysql to open a connection with the database. The
database connection is established by connecting the
MySQL of the database to JADE so that the database can
be updated after detection takes place. To run the MySQLd,
the J DBC mysql driver is required to provide a connection
with the database as shown in listing 1.

Listing 1: Database Connections

The second action required in running the system is to run
the command prompt Java jade.Boot - GUI in order to
show all the agents in the platform via the JADE GUI
interface, for example, DHFile1 (as receiver) and
Host1File1 (as sender) in the Agent platform shown in the
interface. In order for the agents to be identified, they first
have been executed, this includes the Dummy Host
because it is considered as an agent.The JADE interface
GUI provides a visual representation of the Agents, Agent
communication and their respective IP addresses, see
Figure 6.

Fig. 6 Communication of All Agents

These hosts (Agents) are able to communicate with each
other through Peer to Peer communication or wireless
communication, the latter is verified by the ability to ping
each other using the JADE Framework. An example of this
is shown in the GUI in Figure 5.6. Each Agent can be
executed as an Agent in a multi-agent system. For a

detailed explanation of the multi-agent system using JADE.
Moreover, the JADE framework allows the agents to be
joined together within the system. This allows the
communication between agents to take place through the
JADE framework.

6.2 Structure of Detection Component

The detection component is comprised of two sub-
components, namely; Object Handler for sending and
receiving objects (files and messages) and managing
signature- based detection and the Dummy Host for
allowing replication behaviour and damage to take place
for detection purposes. This section will describe how
these sub- components are implemented in JADE.

6.2.1 Sending and Receiving Objects - Object Handler

Firstly, in order for a message to be sent it needs to have a
destination, in this case the address of the receiving agent.
Therefore, the Object Handler, as part of its role in sending
and receiving messages, will receive a request from the
sending Agent (host), and at this point the Object Handler
will add the receiver’s address. The sending agent will be
given the specific address of the receiving agent (host), this
will confirm where the message will be sent.

The Object Handler will add the receiver information.
Here the sender of this information can be DH or Host 3
because they are the recipients of the file.

The Object Handler acts as a receiving agent from Host 1
and therefore, needs to add the sender’s (Host 1) address,
it is also the sender for receiving agent, Host 3 and adds
this address as described above. This means that the reply
from the receiving agent (Host 3) can simply be ‘to sender’
because the address has already been added by the Object
Handler. This would be the case for any final destination
receiver of the message in a multi-agent system.

The Object Handler thus handles the sending and receiving
of objects, which includes files and messages. The
following are the actions of the Object Handler.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.11, November 2016

63

1. identifyWhetherAffected(AclMessage):- This indicates
if the file is infected or not. For this it will call the Hashing
function and check the corresponding flag to see if it is
infected with a worm.

2. receiveMessageInfo(ACLMessage message):- This
method receives the message and verifies its content. This
receives the message and replicates the information and
creates corresponding files in the system and logs the
message in the Object Handler.

3. sendMessageInfo(ACLMessage message):- This will be
used to pass the mes- sage to the sender. This sends
messages had been sent by the Message Object which is
the file set in that object.

The code for this process is shown in the fo 2. The initial
portion is the declarations. There is no main function for
the Object Handler because it is the intermediary object
between the agents of the system.
In addition to handling the sending and receiving objects
generally, in the case that the detection component of the
system detects a worm, the Object Handler will identify the
deny message from the detection component and reply
back to the sender that the file or message cannot be sent to
the final destination.

Listing 2: Object Handler

Listing 3: Object Handler1

In this case, the information passed by the command line
arguments and the parsing of that information is sent to
dataToParse. From this the corresponding arguments are
gained and those arguments are verified against the
corresponding arguments of the file or message.

6.2.2 Dummy Host
The second component is the Dummy Host where files and
messages are sent for detection purposes, if the file or
messages contains a worm, it will be allowed to cause
damage. The cmd.exe is the executable command in the
MS DOS prompt and it will be in the win32 directory. The
way that the Dummy Host detects the damage is by
matching. For example, the information for this cmd.exe is
stored in a temporary folder in the system and the original
file is matched against the same file type after infection,
which will reveal a difference in the file size, which
indicates the presence of a worm. The code for this
detection is given below in listing 4.

 Listing 4: Dummy Host detection by Damage

Here as per the logical data variations of the file, the
affected file will be as output. Here is the original file hex
code is calculated, then the hex code for the received file is
calculated and then the Hash values of the original file and
current file are compared, if there is a difference in these
Hash values then damage has occurred.
The WDS is able to detect both known and unknown
worms through detecting replication behaviour and
damage. Specifically, there are different types of
replication behaviour and damage, these are specified in

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.11, November 2016

64

JADE. Although the detection of a known worm may take
place by detecting both replication and damage and the
detection of an unknown worm may be through damage
only, the detection mechanisms are still the same for
detecting both types of worm.

6.2.3 Updating Database
The method for inserting information about worms and
updating the database involves firstly, inserting the worm
information in the database referred to as worm info which
contains id, name, signature and location Of Damage as
illustrated in listing 5. This occurs after detection has taken
place. Specified records can also be deleted from the
database.

Listing 5: Database Connections

 Listing 6: Dummy Host Detection by Replication

Secondly, once the aforementioned information about a
worm has been inserted, the database is updated. When the
system is inactive, the connections with the database will
be closed.

Listing 7: Update Database

Conclusion and Future Research

In summary, this paper has presented the implementation
for the WDS using JADE. More specifically, it has shown
how this implementation first required knowing the
relationships between the components of the system using
class and sequence diagrams. It has described the
components of the system as well as de- scribing how these
components are implemented in JADE through mapping.
The paper followed the process sequentially from
describing the components to be implemented in JADE,
establishing the functions of each component using class
and sequence diagrams and mapping components
formalised in CCA with JADE. The future research will be
the experimentation and evaluation of the WDS.

References
[1] F. El-moussa and A. Jones. Malware analysis: The art of

detecting malicious activities. In Proceedings of the 7th
European Conference on Information War- fare, page 51.
Academic Conferences Limited, 2008.

[2] S. Furnell and J. Ward. Malware: An evolving threat.
Digital crime and forensic science in cyberspace, pages 27–
29, 2006.

[3] R. Sekar. Information flow containment: a practical basis for
malware defense.In Data and Applications Security and
Privacy XXV, pages 1–3. Springer, 2011.

[4] D. Harley and R. Vibert. AVIEN Malware Defense guide
for the Enterprise. Syngress Media Incorporated, 2007.

[5] L. Zeltser. Analyzing malicious software. In CyberForensics,
pages 59–83. Springer, 2010.

[6] BITS. Malware risks and mitigation report. Technical report,
A DIVISION OF THE FINANCIAL SERVICES
ROUNDTABLE, 2011.

[7] H. Carvey. Windows Forensic Analysis Toolkit: Advanced
Analysis Techniques for Windows 7. Syngress Publishing,
2012.

[8] A. Volynkin. Advanced methods for detection of malicious
software. ProQuest, 2007.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.11, November 2016

65

[9] K. Ramachandran. Stochastic and epidemiological models
for performance evaluation of peer-to-peer networks.
ProQuest, 2007.

[10] P. DE. Data Dissemination Protocol in Wireless Sensor
Networks: Design, Modeling and Security. PhD thesis, The
University of Texas at Arlington., 2008.

[11] E. Knapp. Industrial Network Security: Securing Critical
Infrastructure Net- works for Smart Grid, SCADA, and
Other Industrial Control Systems. Syn- gress, 2011.

[12] Y. Choi, T. Kim, S. Choi, and C. Lee. Automatic detection
for javascript obfuscation attacks in web pages through
string pattern analysis. In Future Generation Information
Technology, pages 160–172. Springer, 2009.

[13] C. H. Malin, E. Casey, and J. M. Aquilina. Malware
forensics: investigating and analyzing malicious code.
Syngress, 2008.

 Yazed ALsaawy is an assistant professor
of Computer science at the Faculty of
Computer and Information Systems,
Islamic University of Madinah, Medina,
KSA. He obtained his Bachelor degree in
Computer Studies. Master Software
Engineering and PhD degree in Computer
Science from the DE Montfort University
(UK). His research interests Detection

Malware, Security, context-aware computing and Artificial
intelligence."

Sulaiman Al amro. received his B.Sc
degree in Computer Science from Qassim
University, Qassim (Saudi Arabia) in 2007,
M.Sc. degree in Information Technology
from De Montfort University (DMU),
Leicester (UK) in 2009, and Ph.D. degree
in Computer Science from De Montfort
University (DMU), Leicester (UK) in 2013.
He is currently a working as an Assistant

Professor in computer science department of Qassim University.
His research interests are Network and System Security, Formal
Methods and Computational Intelligence.

