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Summary 
This paper presents a method of synthesizing an observer for a 
class of nonlinear systems. The method is based on the moving 
horizon estimation technique. It can transpose the observation 
problem into an optimization problem. It consists on the 
minimization of the difference between the system measurement 
and its prediction on a predetermined moving time horizon. The 
optimization algorithm used is ''Levenberg-Marquardt''. This 
methodology is applied to an example of CSTR chemical reactor. 
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1. Introduction 

At the outset, an observer is a "computer" measurement 
tool that allows finding the states of a system having a 
minimum of information [1, 2]. In this, different methods 
of nonlinear observer synthesis have been suggested such 
as Kalman extended filter, Luenberger extended observer, 
the high gain observer.... [3, 4]. Yet, most of these 
techniques require linear approximations [5, 6, 7]. 
However, other vital approaches are introduced. i.e., the 
specific methods based on the optimization of a criterion. 
They are a set of the model structure independent 
observers inspired by the foundation of predictive control 
and observability [8, 9, 10]. 
Actually, this paper is a proposal of an observer-synthesis 
method; namely, the moving horizon estimation method 
(MHSE). In other words, it is a strategy that reformulates 
the estimation problem as a minimization of a criterion. It 
is to minimize the difference between the system 
measurement and its prediction on a predetermined time 
horizon [11, 12]. 
The paper is organized as follows: section 2 is devoted to 
the presentation of the moving horizon state estimation 
method (MHSE) as well as "Levenberg-Marquardt" 
optimization technique. An example of the synthesis of an 
observer and the simulation results are given in section 3. 
The paper is ended up by a conclusion in Section 4. 

2. Theory and synthesis 

In this part, the observer synthesis method MHSE is 
presented. The synthesis involves the use of the criterion to 
be minimized and the optimization algorithm. 

2.1 Principle of the method MHSE 

Let the non-linear system be in the form: 
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Where x∈ℜn is the system state, u∈ℜm is the controls and 
y∈ℜp is the output. f and g are two nonlinear functions. 
Let us consider h bounded observations of the output 
vector made at regular time intervals Te, such as lh0 of the 
horizon is lh0 = (h− 1) Te [12, 13, 14]. 
The moving horizon method can be stated as a nonlinear 
optimization problem with the following structure: 
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Where y is the measured output, ym is the estimated output 
and x is the state vector to be identified. tk and lh0 are 
respectively the beginning and the length of the horizon. 
The principle of the moving horizon estimator, shown in 
Fig. 1, is to estimate on a given horizon [tk, tk+lh0] the 

sole initial state 0x̂  which minimizes the criterion J(x). 
Then, the process dynamic model is used (1) in order to 
estimate the current state from the previously estimated 
initial state (Fig.1). In the next sampling period, the 
estimation horizon shifts a period. Therefore, we resume 
the estimation procedure on the new interval 

[ ], 0k kt t t lh∈ +  and so on [13, 14]. 
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Fig. 1  MHSE method 

2.2 Levenberg-Marquardt optimization technique 

To solve the above optimization problem, we use the 
iterative algorithm “Levenberg Marquardt” [3, 15]. 
Equation (2) has an optimum if the optimality condition 
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The variation J∆ of the criterion is given by  
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With Grad is the gradient and Hess is the hessian and are 
given by 
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By applying the optimality condition 
0J

x
∆

=
∆  we get: 

( ) ( , ). 0,i iGrad x Hess i j x+ ∆ =                                 (7) 
Whence the state variation is: 

1
1 ( , ) ( ),i i i ix x x Hess i j Grad x−
+∆ = − = −                      (8) 

The principle of the “Levenberg-Marquardt” method is to 
neglect the term which can make the Hessian matrix 
negative and add a diagonal matrix to adjust the values of 
the descent matrix [16, 17, 18]. 
The new value of the state in iteration i+1 is given by the 
following equation: 
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With  
- Hess is the hessian matrix given by: 
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- λi is the relaxation coefficient. It adjusts the eigen values 
of the Hessian matrix by dividing or multiplying one or 
more times until the convergence of the method [16]. 
Levenberg-Marquardt algorithm is described by the Fig. 2: 
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Fig. 2.  Levenberg-Marquardt technique 
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2.3 Observer synthesis 

The following iterative algorithm gives us a state estimate 
of the dynamic system (1) at the end of the chosen horizon, 

i.e. at the time 0kl t lh= + .This algorithm uses the 

following terminology: maxT is the maximum estimate time 

(duration of the experiment), kt is the beginning of the 

horizon, 0lh is the length of the horizon, 
(.)∑  is the 

dynamic system model, u is the control over the preset 
horizon, y is the measurement of the system output on the 

preset horizon, 0x̂ is the limited estimated state at the 
beginning of the horizon (the solution of the optimization 

problem (2)), ˆlx is the estimated state at the current 

moment 0kl t lh= + . 
 
Observation Algorithm 
Input : Tmax, tk, lh0, u, y, ∑(.) 

Output: 0x̂ , ˆlx  
Initiation: tk=1, l= tk+lh0 
While l≤ Tmax 
1. Optimization problem resolution (2) (Levenberg-
Marquardt) 

   
( )( )0 : , , ,ˆ 0Optimization J x u yx lh=

 
2. Calculation of the sequence of states until the end of the 

horizon 0늿: ( , (.), , 0, )l kx Trajectory x t lh u= ∑  
3. Move the horizon of a step to calculate the next 

estimate: 1ˆlx +  
  tk= tk +1  (Horizon shift) 
End 
 
The observer synthesis technique is described by the 
following flow chart 

 

Fig. 3  Observer synthesis technique 

The principle of the method can be given by the block 
diagram of fig. 4: 
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Fig. 4  Model Method 
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3. Example: CSTR Chemical Reactor 

As an illustration of the previously presented methodology, 
we consider the problem of estimating the concentration of 
a component A of a continuous reactor as shown by Fig. 5. 

 

CA 
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Exit 

Product 

Coolant 
Enter Tc 

 

Fig. 5 CSTR reactor 

The studied reactor is modeled by the following 
differential system [19]: 
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CA is the concentration of the component A and T is the 
reaction temperature [6]. 
Let us consider the following representation: 

[ ] [ ]1 2  T T
Ax x C T=  is the state vector, y T=  is the 

output and cu T=  is the control. 
Numerical parameters:  

The reactor system is characterized by the numerical 
parameters given by Table 1. 

Table 1: The numerical parameters of the CSTR reactor 
 

Notation Description Numerical value 

Q Flow rate 50 L/min 

V Volume of the reactor 100L 

K0 Reaction rate constant 72.1010 min-1 

E0/R Activation energy them 8750 K 

Cp Heat capacity of fluid  0.239 J/gK 

∆H Enthalpy of the reaction -5. 104 J/mol 

CAf Concentration 1.5mol/L 

Tf Temperature 350K 
ρ  Density oh the fluid 100 L 

UA Heat transfer constant 5.104 J/minK 
 
 

The model is simulated according to the following initial 
conditions: 

- Initial state: X0= [1000, 308]. 
- Control: U= 20 L/min 
- Initial state of the estimator: Xm0= [1100, 308]. 

The estimation results of the concentration of the 
component A are represented by fig. 6. 
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Fig. 6 Estimation of the concentration CA. 

The MHSE algorithm tends to minimize the error between 
the simulated value of the concentration and the estimated 
one that is null from a minimum time tm (fig. 6). It is the 
time required by the estimator to remove all the errors 
between these two values. 
The estimation results give us good estimates of the state 
variables. Moreover, the process model is treated as a 
whole without using any transformation or linearization. 

 
Adjustment of parameters of the observer 

Some tests are carried out so as to study the effect of the 
length of the horizon on the quality of the observer. 
In the least squares sense, a number of samples higher than 
n has to be taken (n is the number of the system states, Te 
is the period of Sample Rate). Hence, the minimum value 
of the length of the horizon is lh0=nTe [13]. Let the 
relative errors be:  

ˆ
A

A A
C

A

C CErr
C
−

=  and  ˆ
T

T TErr
T
−

=  

 
Three values of the length of the horizon are presented: 
lh0=nTe, lh0=2nTe and  lh0=6 nTe. 
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Fig. 7  The concentration error (test on lh0). 

Fig. 7 shows that the values of the relative error obtained 
for lh0=nTe and lh0 =2nTe are acceptable. However, for 
an excessive length, lh0 =6nTe, the error increases 
strongly, In fact, if we study the dynamics of the system, 
the latter evolves and naturally responds in a certain time 
tm called response time. In the sense of controllability, one 
must take a length lh0 lower than the system response time 
to excite the system and see all these moved states. Thus, 
the value tm can only be the system response time and the 
length of the horizon is bounded by nTe≤lh0≤ tm. 
 
Robustness of the observer 
To test the robustness of the observer in the presence of a 
measurement noise, a Gaussian noise is added to the 
measurements. 
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Fig. 8  Estimation of the temperature T in the presence of a measurement 
noise 

 

In the presence of noise on the outputs and for some 
amplitude, the estimates show an excellent compatibility 
between the simulated values and the results of the 
estimates of the states. In fact, we see, in fig. 8, the MHSE 
method characterizes the trajectory of the state without 
problem and compensates and filters these disturbances; 
that is how the robustness of the estimator is recognized. 

4. Conclusion 

The main result of this paper is that by reformulating the 
problem by viewing an optimization problem, we can 
synthesize observers for nonlinear systems. Synthesis 
observer is by coupling the sliding horizon technique and 
the Levenberg-Marquardt optimization algorithm. This 
synthetic method has been illustrated by an example of the 
CSTR reactor and the observer has been tested simulation. 
We expect the future to push the study of moving horizon 
estimator to the use of global optimization algorithms such 
as genetic algorithms and simulated annealing. 
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