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Abstract 
In this paper, a comprehensive survey on vector median filters to 
remove the adverse effect due to impulse noise from color 
images  is presented. Color images are nonstationary vectored 
value signals. Hence, nonlinear filters such as vector median 
filters are more effective than linear filters. A number of 
nonlinear filters are proposed in the literature. They have been 
categorized into 12 groups and discussed in details. 
Keywords 
Impulse noise, Vector median filter, Quaternion, Nonlinear, 
Sigma vector filter, Entropy vector filter.  

1. Introduction 

Color images are widely used on daily basis in printing, 
photographs, computer displays, television and movies 
and thus color image processing plays a crucial role in the 
field of advertising and dissemination of information [1]. 
The use of color images is increasing in medical images 
and remote sensing. Color information are being used in 
many color image processing applications like object 
recognition, image matching, content-based image 
retrieval, computer vision, color image compression, etc. 
[2]. Color images are corrupted by noise due to 
malfunctioning of sensors, electronic interference, 
imperfect optics, or fault in the data transmission process. 
Noise introduces color fluctuation making pixel values 
different from the ideal values and thus produces errors 
which complicate the subsequent stages of the image 
processing process [3]. A filter transforms a signal into a 
more suitable form for a specific purpose [4]. Filtering 
gives an estimate of signal degraded by noise. Since color 
images are nonstationary in nature due to the presence of 
edges and fine details, and also the human visual system is 
nonlinear, nonlinear filters are preferred more than linear 
filters. A color image can be treated as a mapping for 2D 
to 3D [5]. The three color channels exhibit strong spectral 
correlation. Marginal or component-wise filtering methods 
which process each channel independently produce 
images containing color shifts and other serious artifacts. 
In vector filtering techniques the input pixels are treated as 
a set of vectors and no new colors are introduced. Hence 
theyare able to preserve the correlation among the channel 
components [5-8]. Thus an efficient filter aims at 
processing of color images with respect to its trichromatic 

nature, nonlinear characteristics and noise corruption 
statistics. 
Impulse noise is a high energy spikes having large 
amplitude with probability greater than that predicted by 
Gaussian density model occurring for a short duration. It 
is required to remove noise in the preprocessing stage to 
prevent degradation of image quality.Many nonlinear 
filters have been proposed in the literature for removing 
impulse noise. In this study, a large number of nonlinear 
filters are categorized into 12 families. 
This paper aims at summarizing the recent developments 
in the vector median filters for removal impulse noise 
from color images. Section 2 describes the categories of 
vector median filters. In Section 3, a commonly used 
impulse noise model is described. Popular filtering 
performance criteria for evaluation filters are given in 
Section 4 followed by conclusion in Section 5. 

2. Category of Filters 

In this section, the commonly used filters used for 
removing impulse noise are grouped into 12 categories. 
They are 

1. Basic Vector Filters 
2. Weighted Vector Filters 
3. Adaptive Vector Filters 
4. Peer Group Vector Filters 
5. Fuzzy Vector Filters 
6. Hybrid Vector Filters 
7. Sigma Vector Filters 
8. EntropyVector Filters 
9. Quaternion based Vector Filters 
10. Morphological based vector median filters 
11. Wavelet based median filters 
12. Miscellaneous Filters 

2.1 BasicVector Filters 

The reduced vector or aggregated ordering technique is 
the most common filtering approach. In this method the 
aggregated distance of a sample pixel 𝒙𝒙𝑖𝑖  inside a sliding 
filtering window 𝑊𝑊 of length N, usually a finite odd 
number, is computed as follows: 
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𝐷𝐷𝑖𝑖 = ∑ 𝜌𝜌�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗�, 𝑖𝑖 = 1, … ,𝑁𝑁𝑁𝑁
𝑗𝑗=1             (1) 

in which ρ(.) represents the distance or dissimilarity 
function, 𝒙𝒙𝑖𝑖 =(𝑥𝑥𝑖𝑖1 , 𝑥𝑥𝑖𝑖2, 𝑥𝑥𝑖𝑖3)  and 𝒙𝒙𝑗𝑗=(𝑥𝑥𝑗𝑗1, 𝑥𝑥𝑗𝑗2, 𝑥𝑥𝑗𝑗3) for three 
channels. The sorting of aggregated 
distance 𝑠𝑠 𝐷𝐷1,𝐷𝐷2 … ,𝐷𝐷𝑁𝑁   in ascending order represents 
same ordering of the associated vectors  
𝐷𝐷(1) ≤ 𝐷𝐷(2) ≤ ⋯ ≤ 𝐷𝐷(𝑁𝑁) ⇒ 𝒙𝒙(1) ≤ 𝒙𝒙(2) ≤ ⋯ ≤ 𝒙𝒙(𝑁𝑁)           
(2) 

2.1.1 Vector Median Filter (VMF) 

In [9] Vector Median filter (VMF), Generalized Vector 
Median Filter (GVMF) and Extended Vector Median 
Filter (EVMF) are introduced for processing vector-valued 
signals having properties similar with median filters 
operation such as zero impulse response and good 
smoothing ability while preserving sharp edges in the 
signal. They are based on the concept of nonlinear order 
statistics and derived as maximum likelihood estimates 
from exponential distributions. Since vectors which vary 
greatly from the data population correspond to the 
maximum aggregated magnitude difference, the VMF 
output is the lowest ranked vector with minimum 
aggregated distance to the input vectors present inside the 
window. If 𝒙𝒙1, … ,𝒙𝒙𝑁𝑁  represent the vectors inside the 
filtering window W, the vector median is computed as 
follows: 
a) For each vector element 𝒙𝒙𝑖𝑖  calculate the sum of 
distances to all other vectors inside the filtering window, 
using the Minkowski metric (either the 𝐿𝐿1or 𝐿𝐿2 norm) and 
add them together to get sum of distances 𝑆𝑆𝑖𝑖 
𝑆𝑆𝑖𝑖 = ∑ �𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑗𝑗�𝛾𝛾

𝑁𝑁
𝑗𝑗=1           (3) 

where 𝛾𝛾 = 1  for city block distance and 𝛾𝛾 = 2  for 
Euclidean distance. 
b) Find a parameter 𝑚𝑚𝑚𝑚𝑚𝑚  such that 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚  denotes the 
minimum 𝑆𝑆𝑖𝑖 . 
c) Corresponding to 𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 , 𝒙𝒙𝑚𝑚𝑚𝑚𝑚𝑚 = 𝒙𝒙(1)  represents the 
vector median 𝒙𝒙𝑉𝑉𝑉𝑉𝑉𝑉. 

2.1.2 α-trimmed Vector Median Filter (α-VMF) 

In α-VMF a trimming operation is incorporated in which 
(1+α) nearest samples to the vector median are given as 
input to an average filter. The output is defined as follows 
[9, 10]: 
𝒙𝒙αVMF = ∑ 1

(1+𝛼𝛼)
1+𝛼𝛼
𝑖𝑖=1 𝒙𝒙𝑖𝑖 ,    𝛼𝛼 ∈ [0,𝑁𝑁 − 1]             (4) 

The trimming operation enhances in removing the long 
tailed or impulsive noise while the averaging filter 
performs well with Gaussian noise. 

2.1.3 Extended Vector Median Filter (EXVMF) 

EXVMF combines the vector median operation with an 
averaging filter. EXVMF of 𝒙𝒙𝑖𝑖 , …𝒙𝒙𝑁𝑁 is denoted as 𝒙𝒙𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  
such that [9, 10] 
𝒙𝒙𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =

� 𝒙𝒙𝐴𝐴𝐴𝐴𝐴𝐴 , 𝑖𝑖𝑖𝑖 ∑ ∥ 𝒙𝒙𝐴𝐴𝐴𝐴𝐴𝐴 − 𝒙𝒙𝑖𝑖 ∥2 < ∑ ∥ 𝒙𝒙𝑉𝑉𝑉𝑉𝑉𝑉 − 𝒙𝒙𝑖𝑖 ∥2 
𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

𝒙𝒙𝑉𝑉𝑉𝑉𝑉𝑉 , otherwise (5) 

             
where  𝒙𝒙𝐴𝐴𝐴𝐴𝐴𝐴 = 1

𝑁𝑁
∑ 𝒙𝒙𝑖𝑖𝑁𝑁
𝑖𝑖=1  and 𝒙𝒙𝑉𝑉𝑉𝑉𝑉𝑉  is the vector median 

output. It behaves like VMF near the edges while in 
smooth areas it behaves like the Arithmetic Mean Filter 
(AMF). 

2.1.4 Generalized Vector Median Filter (GVMF) 

The GVMF [11] of vectors 𝒙𝒙𝑖𝑖 , … 𝒙𝒙𝑁𝑁 is vector 𝒙𝒙𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺  such 
that  𝒙𝒙𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 ∈ { 𝑥𝑥𝑖𝑖 ∣∣ 𝑖𝑖 = 1, … ,𝑁𝑁 }  and for all 𝑗𝑗 = 1, … ,𝑁𝑁 
satisfying the condition 
 
∑ 𝑑𝑑(𝒙𝒙𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 𝒙𝒙𝑖𝑖)𝑁𝑁
𝑖𝑖=1 ≤ ∑ 𝑑𝑑(𝒙𝒙𝑗𝑗 − 𝒙𝒙𝑖𝑖)𝑁𝑁

𝑖𝑖=1             (6) 
 
where 𝑑𝑑(𝒙𝒙,𝒚𝒚) is the distance between the vectors 𝒙𝒙 and 𝒚𝒚. 

2.1.5 Fast Modified Vector Median Filter (FMVMF) 

In [12] a new filter similar with VMF is developed whose 
computational complexity is lower than that of VMF. The 
distance associated with central pixel 𝒙𝒙𝑁𝑁+1

2
 is denoted by 

𝑑𝑑(𝑁𝑁+1)/2 = −𝛽𝛽 + (∑ 𝑑𝑑(𝒙𝒙𝑁𝑁+1
2

,𝒙𝒙𝑗𝑗)
�𝑁𝑁+12 �−1
𝑗𝑗=1 +

∑ 𝑑𝑑(𝒙𝒙𝑁𝑁+1
2

,𝒙𝒙𝑗𝑗)𝑁𝑁
𝑗𝑗=�𝑁𝑁+12 �+1

 where 𝛽𝛽  is a threshold parameter 

and the distance associated with the neighbors of 𝒙𝒙𝑁𝑁+1
2

is 

given as 𝑑𝑑𝑖𝑖 = ∑ 𝑑𝑑(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗)𝑁𝑁
𝑗𝑗=1 , 𝑖𝑖 =

1,2, 3, … ,𝑁𝑁, excluding (𝑁𝑁 + 1)/2. Then for some 𝑘𝑘, if 𝑑𝑑𝑘𝑘 
is smaller than 𝑑𝑑(𝑁𝑁+1)/2  i.e. 𝑑𝑑𝑘𝑘 = ∑ 𝑑𝑑(𝒙𝒙𝑘𝑘,𝒙𝒙𝑗𝑗)𝑁𝑁

𝑗𝑗=1 <
𝑑𝑑(𝑁𝑁+1)/2, then 𝒙𝒙𝑁𝑁+1

2
 is replaced by  𝒙𝒙𝑘𝑘. 

2.1.6 Directional Vector Median Filter (DVMF) 

In this filter, four vector median are applied across the 
four main directions of the filtering window at 
0°, 45°, 90°and135° to obtain four vector median output 
𝒚𝒚1,𝒚𝒚2,𝒚𝒚3 and 𝒚𝒚4. In the second stage, the final output is 
generated by applying another vector median on the four 
filtered results. Hence the Directional Vector Median 
Filter (DVMF) output is denoted as [13] 
𝒙𝒙𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝒚𝒚(1)            (7) 
where  𝒚𝒚(1)  is the vector median of 𝒚𝒚𝟏𝟏,𝒚𝒚2,𝒚𝒚3 and 𝒚𝒚4. 
DVMF is effective in removing impulsive noise while 
preserving thin lines. 
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2.1.7 Rank Conditioned Vector Median Filter (RCVMF) 

It incorporates a decision making process in which every 
pixels in the filtering window is assigned a rank 
depending on the ordered distance. In RCVMF [14] the 
output is the vector median when the rank of central pixel 
is larger than a predefined rank of uncorrupted vector 
pixels in the filtering window. Mathematically it is 
denoted as 

𝒙𝒙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
𝒙𝒙𝑉𝑉𝑉𝑉𝑉𝑉 , 𝑖𝑖𝑖𝑖 𝑟𝑟(𝑁𝑁+1)/2 > 𝑟𝑟𝑘𝑘
𝒙𝒙𝑁𝑁+1

2
,   otherwise             (8)  

where 𝑟𝑟(𝑁𝑁+1)/2  denotes rank of center pixel and 𝑟𝑟𝑘𝑘  is the 
rank of predefined healthy pixel. 

2.1.8 Rank Conditioning and Threshold Vector Median 
Filter (RCTVMF) 

In [14], a new improvement in the RCVMF is proposed in 
which the distance 𝑑𝑑 between the central pixel and 
predefined healthy pixel is used as additional criteria for 
impulse detection. 

𝒙𝒙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
𝒙𝒙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 , 𝑖𝑖𝑖𝑖 𝑟𝑟𝑁𝑁+1

2
> 𝑟𝑟𝑘𝑘  and 𝐷𝐷 > 𝑇𝑇

𝒙𝒙𝑁𝑁+1
2

,         otherwise       (9) 

where  𝐷𝐷 = 𝛥𝛥(𝒙𝒙𝑁𝑁+1
2

,𝒙𝒙(𝑘𝑘)) denotes the distance between 

central pixel and neighboring healthy pixels in which 
𝒙𝒙(𝑘𝑘)(1 < 𝑘𝑘 < 𝑁𝑁)  is a rank-ordered and healthy vector 
pixel. 𝑇𝑇 is a pre-determined threshold. If the central pixel 
is detected as impulse, it is replaced by the vector median 
output. 

2.1.9 Crossing Level Median Mean Filter (CLMMF)  

Crossing Level Median Mean Filter [15] combines the 
idea of the VMF and Arithmetic Mean Filter (AMF) 
which is based on the vector ordering technique. If 𝑤𝑤𝑖𝑖  
denotes the weight of 𝑖𝑖𝑡𝑡ℎ elements of the ordered vectors 
𝒙𝒙(1),𝒙𝒙(2), … 𝒙𝒙(𝑁𝑁), the filtered output is given as follows: 
 
𝒙𝒙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ 𝑤𝑤(𝑖𝑖).𝒙𝒙(𝑖𝑖)

𝑁𝑁
𝑖𝑖=1           (10) 

 
where 

 𝑤𝑤(𝑖𝑖) = �
1 − 𝑁𝑁

�(𝑁𝑁+1)(𝑁𝑁+1+γ)
, for 𝑖𝑖 = 1

1
�(𝑁𝑁+1)(𝑁𝑁+1+γ)

, for 𝑖𝑖 = 2, … ,𝑁𝑁
          (11) 

where γ represents the parameter of the filter which 
resembles the standard VMF for γ→ ∞ and AMF for γ=
0. 

2.1.10 Vector Filters based on Non-Causal (NC) linear 
prediction technique 

A group of switching filters based on noncausal linear 
prediction is introduced in [16]. NC gives an estimate of 

the current pixel based on the past and future pixel values 
in the neighborhood of the current pixel by using a block-
by-block autocorrelation function. The difference between 
the predicted pixel and the original current pixel is used as 
a measure for impulse detection. 
The predicted pixel value at central location ( 𝑟𝑟, 𝑐𝑐 ) is 
computed as 
𝒙𝒙�(𝑟𝑟, 𝑐𝑐) = ∑ 𝑎𝑎(𝑖𝑖, 𝑗𝑗).𝒙𝒙(𝑟𝑟 − 𝑖𝑖, 𝑐𝑐 − 𝑗𝑗) = 𝜲𝜲𝜂𝜂𝒂𝒂𝜂𝜂(𝑖𝑖,𝑗𝑗)∈𝑊𝑊2 (12)
  
where  𝒂𝒂𝜂𝜂  represents the vector obtained from the 
prediction coefficients, 𝑊𝑊2  is the noncausal region for 
linear prediction, 𝜲𝜲𝜂𝜂  denotes the matrix of vector pixels 
used for prediction and 𝜂𝜂 is the order of prediction. 
Then the predictor decides if the current sample is 
corrupted or not and is replaced by the vector median if 
the predicted error  𝑒𝑒(𝑟𝑟, 𝑐𝑐) exceeds a pre-defined threshold 
𝑇𝑇.  Hence the output of the noncausal linear prediction 
based vector filter 𝒙𝒙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁  is denoted by 

𝒙𝒙𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = � 𝒙𝒙𝑉𝑉𝑉𝑉𝑉𝑉 , if ∥ 𝑒𝑒(𝑟𝑟, 𝑐𝑐) ∥> 𝑇𝑇
𝒙𝒙(𝑟𝑟, 𝑐𝑐), otherwise           (13) 

2.1.11 Basic Vector Directional Filter (BVDF) 

It is a rank ordered filter in which the angle between two 
vectors is used as the distance measure. The vectors with 
atypical directions are regarded as an outlier and filtering 
is done similar with the VMF. The aggregated sum of 
angles between the vectors is given by 
𝜃𝜃𝑖𝑖 = ∑ 𝐴𝐴(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗)𝑁𝑁

𝑗𝑗=1 , 𝑖𝑖 = 1, … ,𝑁𝑁          (14) 
where 

 𝐴𝐴�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝒋𝒋� = cos−1 �
𝒙𝒙𝑖𝑖.𝒙𝒙𝑗𝑗

∥𝒙𝒙𝑖𝑖∥∥𝒙𝒙𝑗𝑗∥
�                        (15) 

where 𝐴𝐴�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗� represents the angle between the vectors 
𝒙𝒙𝒊𝒊  and 𝒙𝒙𝑗𝑗 . The angles are ordered which correspond to 
ordering of the input vectors as follows: 
𝜃𝜃(1) ≤ 𝜃𝜃(2) ≤ ⋯𝜃𝜃(𝑟𝑟) … ≤ 𝜃𝜃(𝑁𝑁) →  𝒙𝒙(1) ≤ 𝒙𝒙(2) ≤ ⋯𝒙𝒙(𝑟𝑟) …

≤ 𝒙𝒙(𝑁𝑁) 
The output of BVDF [17] is the vector 𝒙𝒙𝑖𝑖 whose angular 
distance to all other vector in the window is minimum. 
BVDF preserves chromaticity better than the VMF since 
vector’s direction corresponds to its chromaticity. BVDF 
considers only directional processing and is effective 
when vector magnitudes are less important than the 
vectors direction which is not suitable for multichannel 
signal processing.  

2.1.12 Generalized Vector Directional Filter (GVDF) 

The above mentioned filters do not consider both the 
unique features of a vector namely direction and 
magnitude together which may produce erroneous results. 
GVDF [18] is a generalization of BVDF. In the first step, 
a set of low- rank vectors that is the first 𝑟𝑟 terms are 
selected from the ordered set of vectors based on the 
aggregated sum of angular distance as opposed to the 
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BVDF in which a single vector with the minimum 
aggregated angular sum is selected. Next these vectors are 
given as an input to an additional filter, e.g. alpha-trimmed 
average filter, multistage median filter or morphological 
filters which consider magnitude processing. Hence 
GVDF considers both the directional and magnitude 
processing. 

2.1.13 Directional Distance Filter (DDF) 

An improved filter is achieved by combining VMF and 
VDF which is known as Directional Distance Filter (DDF) 
[18,19]. DDF considers the vector’s direction and 
magnitude in which both the vector’s chromaticity and 
intensity are considered. The combined aggregated 
measure is defined as follows: 
Ω𝑖𝑖 = �∑ ∥ 𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑗𝑗 ∥𝛾𝛾𝑁𝑁

𝑗𝑗=1 �1−𝑝𝑝. �∑ 𝐴𝐴(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗)𝑁𝑁
𝑗𝑗=1 �𝑝𝑝    (16) 

where 𝑝𝑝 ∈ (0, 1) is a parameter which tunes the influence 
of magnitude and angle quantities. 

2.1.14 Filters based on Hopfield Neural Network and 
Improved Vector Median Filter 

In this filter, the noise detection in done using a Hopfield 
neural network (HNN) and in the second stage, the noisy 
pixels are replaced by an improved Vector Median Filter 
first in RGB space and then in HSI space [20]. For the 
improved VMF, the steps are given by 

1. The vector median is computed in RGB space 
inside the filtering window. 

2. All the pixels fit for being median inside the 
filtering window are collected. 

3. If  more than one pixel is fit for being median, 
then select that particular pixel which is nearest 
to the mean of the Hue in HSI space 

4. In Step 3 if more than one pixel is qualified, then 
the pixel which is nearest to the mean of 
saturation in HSI space is selected. 

2. 2 Weighted Vector Filters 

Weighted Vector Filters are extension of Weighted 
Standard Median Filters in which a non-negative weight is 
assigned to every pixel inside the filtering window 
offering more flexibility. 

2.2.1 Weighted Vector Median Filter (WVMF) 

WVMF is a generalization of VMF in which each pixel 
𝑥𝑥𝑖𝑖 in the filter window is assigned a positive integer 
weight. The weight controls the filtering behavior while 
offering greater flexibility than the median-based filter. If 
 𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑁𝑁 are vectors inside the filtering window and 
𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑁𝑁 are the corresponding nonnegative integer-

valued weights, then WVMF is the vector 𝒙𝒙𝑊𝑊𝑊𝑊𝑊𝑊 such that 
[10, 21] 𝒙𝒙𝑊𝑊𝑊𝑊𝑊𝑊 ∈ {𝒙𝒙𝑖𝑖; 𝑖𝑖 = 1, … ,𝑁𝑁} and for all 𝑗𝑗 = 1, … ,𝑁𝑁 
∑ 𝑤𝑤𝑖𝑖 ∥ 𝒙𝒙𝑊𝑊𝑊𝑊𝑊𝑊 − 𝒙𝒙𝑖𝑖 ∥𝛾𝛾𝑁𝑁
𝑖𝑖=1 ≤ ∑ 𝑤𝑤𝑖𝑖 ∥ 𝒙𝒙𝑗𝑗 − 𝒙𝒙𝒊𝒊 ∥𝛾𝛾𝑁𝑁

𝑖𝑖=1    (17)
  
It can be summarized as follows: sort the pixels inside the 
filtering window depending on the value of vector median, 
duplicate each pixel 𝒙𝒙𝑖𝑖  to the number of their 
corresponding weight 𝑤𝑤𝑖𝑖  and the median value from the 
new sequence represents the weighted vector median. 

2.2.2 α-Trimmed Weighted Vector Median Filter (α-
TWVMF) 

α-TWVMF [21] of vectors 𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑵𝑵  having weights 
𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑁𝑁 is defined as 
 
𝒙𝒙𝛼𝛼−𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 =

�𝒙𝒙𝛼𝛼 , if∑ 𝑤𝑤𝑖𝑖 ∥ 𝒙𝒙𝛼𝛼 − 𝒙𝒙𝑖𝑖 ∥< ∑ 𝑤𝑤𝑖𝑖 ∥ 𝒙𝒙𝑊𝑊𝑊𝑊𝑊𝑊 − 𝒙𝒙𝑖𝑖 ∥𝑁𝑁
𝑖𝑖=1

𝑁𝑁
𝑖𝑖=1

𝒙𝒙𝑊𝑊𝑊𝑊𝑊𝑊 ,                                                      otherwise    (18) 

where 𝒙𝒙𝛼𝛼 = 1
∣𝑆𝑆𝛼𝛼∣

∑ 𝒙𝒙𝑖𝑖𝒙𝒙𝑖𝑖∈𝑆𝑆𝛼𝛼  and 𝑆𝑆𝛼𝛼 = �𝒙𝒙𝑖𝑖; having 𝑆𝑆𝑖𝑖 <

𝑆𝑆(𝑁𝑁−𝛼𝛼)�  𝑆𝑆𝑖𝑖  is the sum of weighted from vector  𝒙𝒙𝑖𝑖  to all 
other vectors 𝒙𝒙𝑗𝑗, 𝑗𝑗 = 1, … ,𝑁𝑁.  ∣ 𝑆𝑆𝛼𝛼 ∣ represents the number 
of elements in 𝑆𝑆𝛼𝛼  and 𝑆𝑆(𝑖𝑖)  is the 𝑖𝑖𝑡𝑡ℎ  smallest of 𝑆𝑆1, … 𝑆𝑆𝑁𝑁 . 
𝛼𝛼 can have any value 0, 1, ………., N-1. 

2.2.3 Extended Weighted Vector Median Filter 
(EXWVMF) 

The EXWVMF [21,22] is an extension of WVMF which 
is defined as 
𝒙𝒙𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =

�𝒙𝒙𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 ,  if ∑ 𝑤𝑤𝑖𝑖 ∥ 𝒙𝒙𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 − 𝒙𝒙𝑖𝑖 ∥<𝑁𝑁
𝑖𝑖=1 ∑ 𝑤𝑤𝑖𝑖 ∥ 𝒙𝒙𝑊𝑊𝑊𝑊𝑊𝑊 − 𝒙𝒙𝑖𝑖 ∥𝑁𝑁

𝑖𝑖=1
𝒙𝒙𝑊𝑊𝑊𝑊𝑊𝑊, otherwise  

(19) 
where 𝒙𝒙𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 1

∑ 𝑤𝑤𝑖𝑖𝑁𝑁
𝑖𝑖=1

∑ 𝑤𝑤𝑖𝑖𝒙𝒙𝑖𝑖𝑁𝑁
𝑖𝑖=1           (20) 

EWVMF chooses the average as output in the smooth 
areas while it chooses weighted vector median (WVM) 
near edges. 

2.2.4 Rank Order Weighted Vector Median Filter 
(ROWVMF) 

In [23] an adaptive noise attenuating and edge enhancing 
filter based on the minimization of aggregated weighted 
distances among pixels in window is proposed. The 
distance between a pixel 𝒙𝒙𝑖𝑖 and all other pixels inside the 
filtering window is ordered to obtain 𝑑𝑑𝑖𝑖(𝑟𝑟)by assigning a 
rank 𝑟𝑟 
𝑑𝑑𝑖𝑖1,𝑑𝑑𝑖𝑖2, … ,𝑑𝑑𝑖𝑖𝑖𝑖 → 𝑑𝑑𝑖𝑖(1),  𝑑𝑑𝑖𝑖(2), … ,𝑑𝑑𝑖𝑖(𝑁𝑁) 
A weighted sum of distances is computed by utilizing the 
distance ranks denoted as follows: 
𝛬𝛬𝑖𝑖 = ∑ 𝑓𝑓(𝑟𝑟).𝑑𝑑𝑖𝑖(𝑟𝑟)

𝑁𝑁
𝑟𝑟=1           (21) 
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where 𝑓𝑓(𝑟𝑟) denotes a constantfunction associated with the 
distance rank 𝑟𝑟. All the weighted aggregated distances 𝛬𝛬𝑖𝑖 
are sorted forming a new order of vectors 
𝛬𝛬(1),𝛬𝛬(2), … ,𝛬𝛬(𝑁𝑁) → 𝒙𝒙(1)

∗ ,𝒙𝒙(2)
∗ , … ,𝒙𝒙(𝑁𝑁)

∗  
The output of the ROWVMF is the vector 𝒙𝒙(1)

∗ . Another 
filter called Rank-based Vector Median Filter having 
similar concept is also designed in [24]. 

2.2.5 Weighted Vector Directional Filters (WVDF) 

It employs a nonnegative real weighing coefficient 
{𝑤𝑤1,𝑤𝑤2, …𝑤𝑤𝑁𝑁}  corresponding to vector elements 
{𝒙𝒙1,𝒙𝒙2, …𝒙𝒙𝑁𝑁}  with filter output 𝒙𝒙𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝒙𝒙𝑖𝑖 ∈ 𝑊𝑊  which 
minimizes the aggregated weighted angular distance with 
other vector pixels given by [25, 26] 
𝒙𝒙𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

𝒙𝒙𝑖𝑖∈𝑊𝑊
∑ 𝑤𝑤𝑗𝑗𝐴𝐴(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗)𝑁𝑁
𝑗𝑗=1            (22) 

where 𝐴𝐴(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) represents the angle between two vectors. 
Similarly Weighted Directional Distance Filter (WDDF) is 
also obtained using both the magnitude and angular 
distance criteria. 

2.2.6 Genetic Algorithm based Weighted Vector 
Directional Filter (GA WVDF) 

An optimized WVDF based on Genetic Algorithm is 
designed in [27] which adapts the filter weights in order to 
match the varying image and noise characteristics. Since 
GA-based methods search the entire solution space, they 
are able to provide a globally optimal (or very close) 
solution as compared with other optimization techniques. 
Another filter based on Genetic Programming (GP) is 
developed in [28] aiming at the removal of mixed noise. 
The estimator is based on the global learning capability of 
GP and measurement of local statistical properties of the 
healthy pixels present in the surrounding of the corrupted 
pixel. 

2.2.7 Center-Weighted Vector Median Filter (CWVMF) 

In WVMF when the center weight is varied and the others 
remain fixed, a new class of filter is formed called the 
Center weighted Vector Median Filter (CWVMF) [29,30] 
is formed. It is defined as 
𝒙𝒙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 = argmin

𝑥𝑥𝑖𝑖∈𝑊𝑊
�∑ 𝑤𝑤𝑗𝑗(𝑘𝑘). ∥ 𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑗𝑗 ∥𝑁𝑁

𝑗𝑗=1 �  (23) 

with 𝑤𝑤𝑗𝑗(𝑘𝑘) = �𝑁𝑁 − 2𝜅𝜅 + 2, for 𝑗𝑗 = (𝑁𝑁 + 1)/2
1,                                   otherwise   

where only the central weight  𝑤𝑤(𝑁𝑁+1)/2  is varied with 
smoothing parameter 𝜅𝜅. 

2.3 Adaptive Vector Filters 

VMF and its variants result in fixed amount of smoothing 
leading to blurring of edges and fine details since they 
perform filtering operation on all pixels which may not be 

noisy. Also noise characteristics varies in the image and 
hence nonadaptive filters have low performance. Adaptive 
filters are introduced to handle the difficulty of varying 
noise characteristics by implementing estimation 
procedures based on the nature of data on local image 
statistics [3]. The coefficients of filter kernel change 
values depending on the image structure which is to be 
smoothed. 

2.3.1 Adaptive Vector Median filter (AVMF) 

In this filter desired features are made invariant to filtering 
operation while the noisy pixels are effected by altering 
between VMF and the identity operation. This is based on 
the decision rule expressed as follows [31] 
if 𝑉𝑉𝑉𝑉𝑉𝑉 ≥ 𝑇𝑇𝑇𝑇𝑇𝑇 , then  𝒙𝒙𝑁𝑁+1

2
  is  impulse 

else 𝒙𝒙𝑁𝑁+1
2

 is noise free 

where 𝑉𝑉𝑉𝑉𝑉𝑉 is the vector distance between the central pixel 
𝒙𝒙𝑁𝑁+1

2
 and the mean of the first 𝑟𝑟 vector order statistics 

𝒙𝒙(1),𝒙𝒙(2), … ,𝒙𝒙(𝑟𝑟)  associated with the ordered distances 
𝐿𝐿(1), 𝐿𝐿(2), … , 𝐿𝐿(𝑟𝑟) , for 𝑟𝑟 ≤ 𝑁𝑁.  𝑇𝑇𝑇𝑇𝑇𝑇  is  a prespecified 
threshold value. Mathematically, 𝑉𝑉𝑉𝑉𝑉𝑉 is denoted by 

𝑉𝑉𝑉𝑉𝑉𝑉 = �𝒙𝒙𝑁𝑁+1
2
− 1

𝑟𝑟
∑ 𝒙𝒙(𝑖𝑖)
𝑟𝑟
𝑖𝑖=1 �

𝛾𝛾
        (24) 

where γ characterizes the norm used in Minkowski metric. 
If noise is detected the central pixel is replaced by the 
vector median output. 
Another adaptive filter is the Adaptive Basic Vector 
Directional Filter (ABVDF) which is the angular 
counterpart of AVMF. 

2.3.2 Adaptive based Impulsive Noise Removal Filter 

In [32], a new adaptive filtering scheme is proposed. The 
impulse is detected based on the difference between the 
aggregated distance assigned to central pixel and the 
vector median output. The output of the filter is given as 
follows: 
𝒙𝒙𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝛼𝛼𝒙𝒙𝑁𝑁+1

2
+ (1 − 𝛼𝛼)𝒙𝒙(1)         (25) 

where 𝛼𝛼 is a filter parameter and 𝒙𝒙(1) is the VMF output. 
The value of 𝛼𝛼 is 0 when an impulse is present otherwise 
it is 1. 

2.3.3 Multiclass Support Vector Machine based Adaptive 
Filter (MSVMAF) 

A new filter called Multiclass Support Vector Machine 
based Adaptive Filter (MSVMAF) is developed in [33] for 
reducing high density impulse noise. It takes the 
advantages of both multiclass Support Vector Machine 
(SVM) as well as adaptive vector median filtering.  
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2.3.4 Adaptive Threshold and Color Correction (ATCC) 
Filter 

 For removing random-valued impulse noise, a new filter 
named Adaptive Threshold and Color Correction (ATCC) 
filter is proposed in [34]. It has an adaptive threshold 
which is computed on the basis of local pixel statistics 
within the sliding window. 

2.3.5 Robust Switching Vector Filter (RSVF) 

In this filter, the pixels in the window are ordered 
according to the distance measure used in VFM, VDF and 
DDF. A pixel is detected as corrupted if the cumulative 
distance 𝑑𝑑(𝑁𝑁+1)/2  of the central pixel is larger than the 
median cumulative distance of the neighborhood. The 
output of the filter is one of the outputs of VMF, VDF and 
DDF as follows: 
𝒙𝒙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

�
𝒙𝒙(𝑁𝑁+1)/2, if 𝑑𝑑(𝑁𝑁+1)/2 ≤ med 𝛼𝛼. (𝑑𝑑1, … ,𝑑𝑑𝑁𝑁) < 0
𝒙𝒙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ,       otherwise (26)  

where 𝑚𝑚𝑚𝑚𝑚𝑚(. ) is a robust univariate median operator and 
𝛼𝛼 is a filter parameter used for preserving image details 
and smoothing. If  𝑑𝑑𝑖𝑖  = ∑ 𝐿𝐿𝛾𝛾(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗)𝑁𝑁

𝑗𝑗=1  the output is 
denoted by the VMF (𝒙𝒙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝒙𝒙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) to obtain Robust 
Switching Vector Median Filter (RSVMF). If 
𝑑𝑑𝑖𝑖=∑ 𝐴𝐴(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗)𝑁𝑁

𝑗𝑗=1 , 𝒙𝒙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝒙𝒙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  to represent Robust 
Switching Basic Vector Directional Filter (RSBVDF) 
while for 𝑑𝑑𝑖𝑖 = (∑ 𝐴𝐴(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗)𝑁𝑁

𝑗𝑗=1 )𝛾𝛾(∑ 𝐿𝐿𝑝𝑝(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗))𝑁𝑁
𝑗𝑗=1

1−𝛾𝛾 , 
𝒙𝒙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝒙𝒙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅  which is obtained by the Directional 
Distance filter output to represent Robust Switching 
Directional Distance filter (RSDDF) [35,36]. 

2.3.6 Adaptive Marginal Median filter (AMMF) 

A new modification to Vector Marginal Median Filter 
(VMMF) is designed in [4] which aims at integrating the 
noise reduction capability of VMMF as well as preserving 
the vector correlation resulting from VMF. From the 
ordered aggregated distance used in VMF 
𝑑𝑑(1),𝑑𝑑(2), …𝑑𝑑(𝑁𝑁) → 𝒙𝒙(1),𝒙𝒙(2), … 𝒙𝒙(𝑁𝑁) , select a set of 
vectors 𝑆𝑆 constituted by 𝑚𝑚 vectors which are most similar 
to the Vector Median 𝒙𝒙(1)  such that 𝑆𝑆 =
{𝒙𝒙(1),𝒙𝒙(2), …𝒙𝒙(𝑚𝑚)} for 𝑚𝑚 ≤ 𝑁𝑁. Then the Vector Marginal 
Median filter is applied to this set to achieve high noise 
reduction. The output of the marginal median filter is 
given as follows [37] 
𝒙𝒙𝐴𝐴𝐴𝐴𝐴𝐴 =
(�𝑚𝑚𝑚𝑚𝑚𝑚({𝑥𝑥(1)

𝑅𝑅 , …𝑥𝑥(𝑁𝑁)
𝑅𝑅 })�, �𝑚𝑚𝑚𝑚𝑚𝑚({𝑥𝑥(1)

𝐺𝐺 , …𝑥𝑥(𝑁𝑁)
𝐺𝐺 })�, (𝑚𝑚𝑚𝑚𝑚𝑚({𝑥𝑥(1)

𝐵𝐵 , … 𝑥𝑥(𝑁𝑁)
𝐵𝐵 })))            

(27) 

2.3.7 Adaptive Center-Weighted Vector Filter 

To provide more flexibility for modification in the size 
and shape of the window, adaptive center weighted vector 

filters are designed in [29,38,39]. They are based on user-
defined threshold for detection of impulses. If the central 
pixel is detected as corrupted, it is replaced by one of the 
output of VMF, BVDF and DDF forming ACWVMF, 
ACWBVDF and ACWDDF. The mathematical 
expressions of the corresponding filters are given below 
 

𝒙𝒙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �
𝒙𝒙𝑉𝑉𝑉𝑉𝑉𝑉 ,   if ∑ ∥ 𝒙𝒙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 − 𝒙𝒙𝑁𝑁+1

2
∥𝜆𝜆+2

𝑘𝑘=𝜆𝜆 > 𝑇𝑇

𝒙𝒙𝑁𝑁+1
2

, otherwise
    

(28) 

𝒙𝒙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �
𝒙𝒙𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 , if ∑ 𝐴𝐴(𝒙𝒙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 − 𝒙𝒙𝑁𝑁+1

2

𝜆𝜆+2
𝑘𝑘=𝜆𝜆 ) > 𝑇𝑇

𝒙𝒙𝑁𝑁+1
2

, otherwise
        

(29) 
𝒙𝒙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =

�
𝒙𝒙𝐷𝐷𝐷𝐷𝐷𝐷 ,   if ∑ 𝐴𝐴𝛾𝛾(𝒙𝒙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 − 𝒙𝒙𝑁𝑁+1

2
) ∥ 𝒙𝒙𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑘𝑘 − 𝒙𝒙𝑁𝑁+1

2
∥1−𝛾𝛾𝜆𝜆+2

𝑘𝑘=𝜆𝜆 > 𝑇𝑇

𝒙𝒙𝑁𝑁+1
2

, otherwise
 (30) 

where λ∈ [1,𝑁𝑁+1
2
− 1] 

2.3.8. Modified switching median filter (MSMF) 

It is an extension of the VMF and AVMF consisting of 
two-stage noise detector [40]. In the first stage, the 
probably noisy candidates are detected using the AVMF 
detection procedure as follows 

𝒚𝒚𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �
𝒚𝒚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 2
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 , �𝒙𝒙𝑁𝑁+1

2
− 1

𝑟𝑟
∑ 𝒙𝒙(𝑖𝑖)
𝑟𝑟
𝑖𝑖=1 �

𝛾𝛾
≥ 𝑇𝑇𝑇𝑇𝑇𝑇

𝒙𝒙𝑁𝑁+1
2

, otherwise
 (31) 

In the second phase for preserving the edge pixels, these 
noise candidates are again judged by four Laplacian 
operators in which the central pixel is convolved with four 
convolution kernals. For edge detection, the minimum 
difference of the four convolutions denoted by 𝑍𝑍 is used 
and the noisy samples are replaced by the VMF. The 
output is defined as follows: 

𝒁𝒁 = min �𝒙𝒙𝑁𝑁+1
2
∗ 𝑊𝑊𝑐𝑐| 𝑐𝑐 = 1, … ,4�       (32) 

𝒚𝒚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �
𝒚𝒚𝑉𝑉𝑉𝑉𝑉𝑉 , 𝑍𝑍 ≥ 𝑇𝑇
𝒙𝒙𝑁𝑁+1

2
, otherwise       (33) 

2.3.9 Sharpening Vector Median Filter 

In [23] if the function 𝑓𝑓(𝑟𝑟) is a step-like function defined 
by 

𝑓𝑓(𝑟𝑟) = �1, for 𝑟𝑟 ≤ 𝛼𝛼 𝑎𝑎𝑎𝑎𝑎𝑎 𝛼𝛼 ≤ 𝑁𝑁
0, otherwise      (34) 

then a new vector filter is obtained known as the 
Sharpening Vector Median Filter [41]. 
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2.3.10 Adaptive rank weighted switching filter (ARWSF) 

ARWSF [42] is a modification of the Rank Order 
Weighted Vector Median Filter which incorporates an 
adaptive scheme. If the rank weighted distance assigned to 
the central pixel 𝒙𝒙𝑁𝑁+1

2
 is denoted by 𝛬𝛬𝑁𝑁+1

2
, then the 

difference 𝛿𝛿 = 𝛬𝛬𝑁𝑁+1
2
− 𝛬𝛬(1) is used for measuring impulse 

noise corruption. The output of ARWSF is given as 
follows: 

𝒚𝒚𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = �
𝒙𝒙𝐴𝐴𝐴𝐴𝐴𝐴 , if 𝛿𝛿 > 𝑇𝑇
𝒙𝒙𝑁𝑁+1

2
, otherwise            (35) 

where 𝒙𝒙𝐴𝐴𝐴𝐴𝐴𝐴  is the output of the Arithmetic Mean Filter 
which is calculated using the non-corrupted  pixels 
declared by the detector. 

2.4. Peer Group Vector Filters 

Peer Group Filters use the neighborhood of each pixel 
while building its peer group which is defined as a set 
constituted by the central pixel with neighboring pixels 
which are similar to it [43-45]. 

2.4.1 Peer Group Averaging (PGA) Filter 

For an image 𝐼𝐼, the peer group associated with a pixel 𝑖𝑖 
comprises of pixels in a predefined 𝑙𝑙 × 𝑙𝑙 window centered 
at 𝑖𝑖, whose intensity is nearest with 𝑖𝑖. This pixel is then 
replaced by the intensity of average of the peer group. 
This concept is referred to as Peer Group Averaging (PGA) 
[44].  

2.4.2 Peer Group Vector Filter 

For color images, Peer Group filters [43] use the vector 
filter such as VMF. To develop the peer group, first the 
pixels in window are sorted in ascending order according 
to the distance between the central pixel and the 
neighboring pixels as follows: 
𝑐𝑐𝑖𝑖 =∥ 𝒙𝒙𝑁𝑁+1

2
− 𝒙𝒙𝑖𝑖 ∥𝛾𝛾  for 𝑖𝑖 = 1,2, …𝑁𝑁        (36) 

Then the peer group of the central pixel is computed as 𝑚𝑚 
pixels that rank lowest in the ordered sequence with 𝑚𝑚 
given by 

𝑚𝑚 =
�√𝑁𝑁 + 1�

2
 

To check the presence of impulse, the first order 
difference of the peer group is calculated 
𝛿𝛿𝑖𝑖 = 𝑐𝑐𝑖𝑖+1 − 𝑐𝑐𝑖𝑖  for 𝑖𝑖 = 1,2, …𝑚𝑚 
The central pixel is declared as noisy if any one of these 
differences is larger than a pre-specified threshold and 
replaced by VMF. 
In [46], a similar peer group switching filter is proposed 
which utilizes the statistical properties of the sorted 
sequence of the aggregated distance of pixels inside 
filtering window. Noise detection is based on the Fisher’s 

Linear Discriminant computed on the aggregated distance 
and the outliers are replaced by the VMF. A modification 
to peer group filter is the Fast Peer Group Filters (FPGF) 
[47] in which the central pixel is regarded as noise free if 
𝑚𝑚 pixels are found to be similar. If the noise density is 
low, 𝑚𝑚 is kept low which reduces the number of distance 
calculation. In [48] a new Fast Averaging Peer Group 
Filter (FAPGF) is designed in which a pixel is considered 
as noisy if the peer group consists of at least two close 
pixels. If this condition is not satisfied, the central pixel is 
replaced by the weighted average of the uncorrupted 
pixels from the neighborhood. In order to improve the 
efficiency and detection, fuzzy metric can be used for 
defining the peer group concept. 
A two stage filter based on the fuzzy peer group concept is 
developed in [49] for removing Gaussian and impulse 
noise as well as mixed Gaussian impulse noise. It consists 
of a fuzzy rule –based switching impulse noise filter 
followed by a fuzzy averaging filter. A fuzzy peer group is 
defined as a fuzzy set which considers a peer group as 
support set and membership degree of each peer group 
member is given by its fuzzy similarity with respect to the 
central pixel. A Novel Peer Group Filter (NPGF) is 
proposed in [50] in which the noise detection is done in 
the CIELab instead RGB color space in order to enhance 
the noise detection ability. The peer group is formed by 
two different sized windows aiming at reducing the false 
detection of non-corrupted pixels. 

2.5. Fuzzy Vector Filters 

Fuzzy set concepts are suitable for dealing with ambiguity 
resulting from inexactness and imprecision in an image 
such as shape of objects, continuity of line segment and 
similarity of regions [2]. Also based on the fact that the 
human vision system is a fuzzy system, many fuzzy based 
filters have been designed for image enhancement. The 
weights of Fuzzy filtersare determined from the features 
of datainside the window by applying fuzzy 
transformation thus utilizing the local correlation [51]. 
This transformation can be modeled as a membership 
function in accordance to a specific window component.A 
fuzzy set is defined by the membership function µ𝐹𝐹: 𝐼𝐼 →
[0,1]  that transforms the pixels in image 𝐼𝐼  to fuzzy set 
with degree of membership ranging between 0 and 1. 

2.5.1 Fuzzy Weighted Average Filter [FWAF] 

The general form of fuzzy based filters is a fuzzy 
weighted average [52,53] of the pixel values inside the 
filtering window. The output is estimated as the centroid 
given below 

𝒙𝒙𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = ∑ 𝑤𝑤𝑖𝑖𝒙𝒙𝑖𝑖𝑁𝑁
𝑖𝑖=1 = ∑ 𝑓𝑓(µ𝑖𝑖)𝒙𝒙𝑖𝑖

𝑁𝑁
𝑖𝑖=1
∑ 𝑓𝑓(µ𝑖𝑖)𝑁𝑁
𝑖𝑖=1

         (37) 

where  𝑓𝑓(µ𝑖𝑖) = µ𝑖𝑖𝜆𝜆  denotes an adaptive function 
determined from the local context with membership 
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function µ𝑖𝑖 of the pixel 𝑥𝑥𝑖𝑖 and λ is a parameter such that 
λ∈ [0,∝) . This filter should satisfy the following two 
constraints 

(i) Each weight is  a positive number i.e. 𝑤𝑤𝑖𝑖 ≥ 0 
and 

(ii) The sum of all the weights is equal to 
unity∑ 𝑤𝑤𝑖𝑖 = 1𝑁𝑁

𝑖𝑖=1 . 

2.5.2 Fuzzy Stack Filter 

In [54] Fuzzy Stack Filters are proposed to extend the 
smoothing characteristics of stack filters which is based on 
the application of fuzzy positive Boolean function. 

2.5.3 Fuzzy Vector Median Filter (FVMF) 

In Fuzzy Vector Median Filter the dissimilarity distance 
measure used is the Minkowski metric 𝐿𝐿𝛾𝛾 which is fed as 
an input to the membership function for determining the 
fuzzy weights. The membership function is the 
exponential (Gaussian-like) form [52, 53]: 
µ𝑖𝑖 = exp [− 𝐿𝐿𝛾𝛾(𝑖𝑖)𝑟𝑟

𝜉𝜉
]        (38) 

where  𝑟𝑟  denotes a positive constant and 𝜉𝜉  is a distance 
threshold which control the amount of fuzziness in the 
weights. 

2.5.4 Fuzzy Vector Directional Filter (FVDF) 

In Fuzzy directional filter the vector angle criterion 
(angular distance) is used as the distance function and has 
asigmoidal membership function. The fuzzy weight 
associated with the vector  𝒙𝒙𝑖𝑖 is given by [52, 53] 
µ𝑖𝑖 = 𝜉𝜉

(1+exp (⍺𝑖𝑖))𝑟𝑟
      (39) 

where ⍺𝑖𝑖 is the angular distance measure. 

2.5.5 Fuzzy Ordered Vector Filter (FOVF) 

 Fuzzy Ordered Vector Filters   use only a part of the 
vector-valued pixels which are ordered according to their 
corresponding fuzzy membership strengths. It is given as 
follows: 
𝒙𝒙𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1

𝑍𝑍
∑ 𝑤𝑤(𝑖𝑖)𝒙𝒙(𝑖𝑖)
𝜏𝜏
𝑖𝑖=1            (40) 

where 𝑍𝑍 = ∑ 𝑤𝑤(𝑖𝑖)
𝜏𝜏
𝑖𝑖=1  

𝑤𝑤(𝑖𝑖) denotes the ith ordered fuzzy membership function 
such that 𝑤𝑤(𝜏𝜏) ≤ 𝑤𝑤(𝜏𝜏−1) ≤ ⋯ ≤ 𝑤𝑤(1) with 𝑤𝑤(1)  being the 
fuzzy coefficient having the largest membership value 
[52].These filters resemble fuzzy generalization of α-
trimmed filters. 

2.5.6 Fuzzy Hybrid Filter (FHF) 

Hybrid filters combine a nonlinear filter used for 
suppression of noise with a fuzzy weighted linear filter. 

One kind of these filters proposed in [15,55] can be 
described as follows: 
Perform a pre-processing activity for removing impulse 
noise from the set of pixels in the filtering window 𝑊𝑊 by 
forming a new set 𝑊𝑊′ = {𝒙𝒙𝑖𝑖′; 𝑖𝑖 = 1, … ,𝑁𝑁} . This is 
obtained by replacing the minimum and maximum 
luminance values by the median pixel value 𝒙𝒙𝑉𝑉𝑉𝑉𝑉𝑉 . The 
output of the filter is given by 

𝒙𝒙𝐹𝐹𝐹𝐹𝐹𝐹 = ∑ µ𝛱𝛱(𝛥𝛥𝒙𝒙𝑖𝑖
′)𝒙𝒙𝑖𝑖

′𝑁𝑁
𝑖𝑖=1
∑ µ𝛱𝛱(𝛥𝛥𝒙𝒙𝑖𝑖

′)𝑁𝑁
𝑖𝑖=1

         (41) 

where  𝛥𝛥𝒙𝒙𝑖𝑖′ = 𝒙𝒙𝑖𝑖′ − 𝒙𝒙𝑉𝑉𝑉𝑉𝑉𝑉  and µ𝛱𝛱  is the membership 
function which describes a Π-type (i.e. a bell-shaped) 
fuzzy set aiming at removing the pixels with large 
luminance values. 

2.5.7 Adaptive Nearest-Neighbor Filter (ANNF) 

Adaptive nearest-neighbor filter (ANNF) is based on the 
nearest neighbor rule in which the fuzzy weights are 
calculated as follows [56]: 
𝑤𝑤𝑖𝑖 =

𝑎𝑎(𝑁𝑁)−𝑎𝑎(𝑖𝑖)

𝑎𝑎(𝑁𝑁)−𝑎𝑎(1)
 for 𝑖𝑖 = 1, 2, …𝑁𝑁.          (42) 

where  𝑎𝑎(𝑛𝑛)  is the maximum angular distance and  𝑎𝑎(1) 
represents the minimum angular distance associated with 
the center-most pixel inside the filtering window. 

2.5.8 Adaptive Nearest-Neighbor Multichannel Filter 
(ANNMF) 

An improvement in the ANNF is the Adaptive nearest-
neighbor multichannel filter (ANNMF) which combines 
vector directional with vector magnitude filtering.  The 
distance measure for noisy vector 𝒙𝒙𝑖𝑖  is given by the 
following formula [57] 
𝑑𝑑𝑖𝑖 = ∑ (1 − 𝑆𝑆(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗))𝑁𝑁

𝑗𝑗=1           (43) 

𝑆𝑆�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗� = �
𝒙𝒙𝑖𝑖𝒙𝒙𝑗𝑗

𝑡𝑡

∣𝒙𝒙𝑖𝑖∣∣𝒙𝒙𝑗𝑗∣
� �1 −

∣∥𝒙𝒙𝑖𝑖∥−∥𝒙𝒙𝑗𝑗∥∣

max (∣𝒙𝒙𝑖𝑖∣,∣𝒙𝒙𝑗𝑗∣)
�          (44) 

The first part of the equation represents the vector angular 
criteria and second part is the normalized magnitude 
difference. According to this equation the directional 
information is used when the vectors have same length 
while the magnitude difference part is used when the 
vectors have direction. 

2.5.9Adaptive Hybrid Multichannel Filter (AHMF) 

To achieve three objectives such as noise attenuation, 
chromaticity retention and edges or detail preservation a 
new filter named Adaptive Hybrid Multichannel Filter 
(AHMF) is introduced in [58]. The structure of AHMF 
consists of three parts: a Hybrid Multichannel (HM) filter, 
a fuzzy ruled-based system and a learning algorithm.HM 
comprises of four components: VMF, BVDF, Identity 
Filter (IF) and a summation combinatory. 
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2.5.10 Fuzzy Impulse Detection and Reduction Method 
(FIDRM) 

For images corrupted with mixture of impulse noise and 
other types of noise, Fuzzy Impulse Detection and 
Reduction Method [59]is developed based on the concept 
of fuzzy gradient values which constructs a fuzzy set 
impulse noise. This fuzzy set is denoted by a fuzzy 
membership function which is used by filtering method 
usually a fuzzy averaging of neighboring pixels. It results 
an output image quasi without or with very little impulse 
noise such that other filters can be applied afterwards. 

2.6. Hybrid Vector Filters 

Hybrid Filters are combination of sub filters which belong 
to different types giving an output being a linear or non-
linear combination of the vector samples.  

2.6.1 Vector Median Rational Hybrid filter (VMRHF) 

Vector Median Rational Hybrid filters [60] are 
multispectral image processing filters based on rational 
functions. VMRHF comprises of three sub filters (two 
vector median filters and one centre weighted vector 
median filter) with a vector rational operation. 
The output 𝒙𝒙𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉  of VMRHF results from the vector 
rational function considering three input sub functions 
{ɸ1 ,  ɸ2 , ɸ3}  where ɸ2  is fixed as center weighted 
vector sub filter and is given as 

𝒙𝒙𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = ɸ2(𝑛𝑛) +
∑ 𝑎𝑎𝑗𝑗ɸ𝑗𝑗
3
𝑗𝑗=1 (𝑛𝑛)

ℎ+𝑘𝑘∥ɸ1(𝑛𝑛)−ɸ3(𝑛𝑛)∥2
        (45) 

with  ⍺ = [⍺1,⍺2,⍺3]𝑇𝑇  represents the constant vector 
coefficient used to weight the output of the three sub 
filters. ℎ and 𝑘𝑘 are positive constants, the former ensures 
numerical stability whereas the nonlinearity is regulated 
by the latter. 

 

Fig. 1 Structure of VMRHF 

2.6.2 Structure-Adaptive Hybrid Vector Filter (SAHVF) 

In [61], another hybrid filter is designed. At each pixel 
location, noise adaptive preprocessing and modified quad 
tree decomposition techniques are used for classifying the 
corrupted image into several signal  
activity categories. Then according to the structure 
classification, window adaptive hybrid filter is designed. 
The hybrid filter consists of three sub filters as follows 

a)  Modified Peer Group (MPG) which reduces 
image degradation in high-activity regions 

b) Adaptive Nearest Neighbor Filter (ANNF) which 
removes noise by preserving edge structures in 
medium-activity regions 

c) Structure Weighted Average Filter (SWAV) 
which smoothes small distortions in low-activity 
regions 

 

Fig. 2 Schematic diagram of Structure-Adaptive Hybrid Vector Filter 

2.7 SigmaVector Filters 

 

Fig. 3 Concept of sigma filtering in which radius indicates the variance 
or variance multiplied by a tuning parameter. 

Sigma filters combine the order statistics theory and 
standard deviation or approximation of multivariate 
variance. In the figure, the radius of the circles represents 
the approximation of the variance and if the central pixel 
lies inside the circle, it is healthy otherwise it is regarded 
as an outlier. 
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2.7.1 Standard Sigma Filters 

Sigma filters are adaptive switching filters which are 
based on the concept of standard deviation used for gray-
scale images described in [62, 63]. Mathematically, the 
standard deviation is given by 

𝜎𝜎 = �(1
𝑁𝑁
∑ (𝒙𝒙𝑖𝑖 − 𝒙𝒙�)2𝑁𝑁
𝑖𝑖=1 )          (46) 

where  𝒙𝒙�  represents the mean of the pixels inside the 
sliding window. The output of the sigma filter is described 
as 

𝒙𝒙𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �
𝑓𝑓(𝒙𝒙1,𝒙𝒙2, … ,𝒙𝒙𝑁𝑁), 𝑖𝑖𝑖𝑖 ∣ 𝒙𝒙𝑁𝑁+1

2
− 𝒙𝒙� ∣   𝑘𝑘 ≥   𝑘𝑘𝑘𝑘

𝒙𝒙𝑁𝑁+1
2

,                                                 otherwise       

(47) 
where (. ) is the smoothing function usually a median filter 
and 𝑘𝑘 is the smoothing factor.  

2.7.2 Vector Sigma Filters 

The concept of standard sigma filter can be extended to 
multichannel images. For calculating the standard 
deviation, the Minkowski metric, the angular distance or 
the combination of both can be used. If the central pixel is 
detected as noisy, it is replaced by one of the output of 
VMF, BVDF or DDF otherwise it is left unchanged. 
These filters require a tuning parameter 𝜆𝜆 for determining 
the switching threshold. These filters are described below 
[64-66] 
(a)Sigma Vector Median Filter (SVMF) 
The output of sigma filter is described by 

𝒚𝒚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �
𝒙𝒙(1), for 𝐿𝐿(𝑁𝑁+1)/2 ≥ 𝑇𝑇𝑇𝑇𝑇𝑇
𝒙𝒙𝑁𝑁+1

2
, otherwise         (48) 

where  𝑇𝑇𝑇𝑇𝑇𝑇  is a threshold determined  from the 
approximation of the multivariate variance of the 
vectors 𝜓𝜓𝛾𝛾 present in the window. 
𝑇𝑇𝑇𝑇𝑇𝑇 = 𝐿𝐿(1) + 𝜆𝜆𝜓𝜓𝛾𝛾 = 𝑁𝑁−1+𝜆𝜆

𝑁𝑁−1
𝐿𝐿(1)                        (49) 

with 
𝜓𝜓𝛾𝛾 =

𝐿𝐿(1)

𝑁𝑁−1
,  𝐿𝐿(1) is the aggregated distance associated with 

the vector median 𝒙𝒙(1)  and 𝜆𝜆  represents the tuning 
parameter. 
 (b) Sigma Basic Vector Directional Filter (SBVDF) 
The output of SBVDF is given by 

𝒚𝒚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �
𝒙𝒙(1), for 𝛼𝛼(𝑁𝑁+1)/2 ≥ 𝑇𝑇𝑇𝑇𝑇𝑇
𝒙𝒙𝑁𝑁+1

2
, otherwise          (50) 

where  𝑇𝑇𝑇𝑇𝑇𝑇 = 𝛼𝛼(1) + 𝜆𝜆𝜓𝜓𝐴𝐴  with 𝜓𝜓𝐴𝐴 =
𝛼𝛼(1)

𝑁𝑁−1
 in which 𝛼𝛼(1)  is 

the smallest aggregated angular distance and 𝜓𝜓𝐴𝐴 
represents the approximated variance calculated using the 
angular distance. 
(c)Sigma Directional Distance Filter (SDDF) 
The output of SDDF is given by 

𝒚𝒚𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �
𝒙𝒙(1), for 𝛺𝛺(𝑁𝑁+1)/2 ≥ 𝑇𝑇𝑇𝑇𝑇𝑇
𝒙𝒙𝑁𝑁+1

2
, otherwise          (51) 

where 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝛺𝛺(1) + 𝜆𝜆𝜓𝜓𝛾𝛾𝛾𝛾with 𝜓𝜓𝛾𝛾𝛾𝛾 =
𝛺𝛺(1)

𝑁𝑁−1
in which 𝛺𝛺(1) is 

the smallest hybrid measureconsidering both magnitude 
and angular distance and 𝜓𝜓𝐴𝐴 represents the approximated 
variance. 

2.7.3 Adaptive Vector Sigma Filters 

In Adaptive Vector Sigma Filters [67] the threshold is 
determined adaptively which employ the approximations 
of the multivariate variance based on the sample mean or 
the lowest-ranked vector. 
(i) Design based on the sample mean 
(a) Adaptive Sigma Vector Median Filter (ASVMF-mean) 
 The output of ASVMF-mean is given by 

𝒚𝒚𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �
𝒙𝒙𝑉𝑉𝑉𝑉𝑉𝑉 ,  if ∥ 𝒙𝒙𝑁𝑁+1

2
− 𝒙𝒙� ∥𝛾𝛾 ≥ 𝜎𝜎𝛾𝛾

𝒙𝒙𝑁𝑁+1
2

, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒    (52) 

where  𝒙𝒙�  is the mean of the samples inside the filtering 
window and the variance 𝜎𝜎2 for chosen norm 𝛾𝛾 is given by 
𝜎𝜎𝛾𝛾2 = 1

𝑁𝑁
∑ ((∥ 𝒙𝒙𝑖𝑖 − 𝒙𝒙� ∥)𝛾𝛾)2𝑁𝑁
𝑖𝑖=1         (53) 

(b) Adaptive Sigma Basic Vector Directional Filter 
(ASBVDF-mean) 
The output of ASBVDF-mean is given by 

𝒚𝒚𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = �
𝒙𝒙𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 ,  if  𝐴𝐴(𝒙𝒙𝑁𝑁+1

2
,𝒙𝒙�)  ≥ 𝜎𝜎𝐴𝐴

𝒙𝒙𝑁𝑁+1
2

, otherwise      (54) 

with angular definition of multichannel variance 𝜎𝜎𝐴𝐴2 
defined by 
𝜎𝜎𝐴𝐴2 = 1

𝑁𝑁
∑ 𝐴𝐴2(𝒙𝒙𝑖𝑖 ,𝒙𝒙�)𝑁𝑁
𝑖𝑖=1         (55) 

(c) Adaptive Sigma Directional Distance Filter (ASDDF-
mean) 
The output of the ASDDF-mean is given by 
𝒚𝒚𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−𝒙𝒙� =

�
𝒙𝒙𝐷𝐷𝐷𝐷𝐷𝐷, 𝑖𝑖𝑖𝑖  (𝐴𝐴(𝒙𝒙𝑁𝑁+1

2
,𝒙𝒙�))𝑝𝑝. (∥ 𝒙𝒙𝑖𝑖 − 𝒙𝒙� ∥)𝛾𝛾

1−𝑝𝑝  ≥ 𝜎𝜎𝑝𝑝𝑝𝑝
𝒙𝒙𝑁𝑁+1

2
, otherwise

                    

(56) 
with variance 𝜎𝜎𝑝𝑝𝑝𝑝2  is the combination of 𝜎𝜎𝛾𝛾2 and 𝜎𝜎𝐴𝐴2  given 
by 
𝜎𝜎𝑝𝑝𝑝𝑝2 = (𝜎𝜎𝛾𝛾2)1−𝑝𝑝(𝜎𝜎𝐴𝐴2)𝑝𝑝 
(ii) Design based on the lowest-ranked vector 
In this family, the lowest-ranked vector is used in 
calculation of the variance. 
(a) Adaptive Sigma Vector Median Filter (ASVMF-rank) 
The output of ASVMF-rank is given by 

𝒚𝒚𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �
𝒙𝒙𝑉𝑉𝑉𝑉𝑉𝑉 , if ∥ 𝒙𝒙𝑁𝑁+1

2
− 𝒙𝒙(1) ∥𝛾𝛾 ≥ 𝜎𝜎𝛾𝛾

𝒙𝒙𝑁𝑁+1
2

, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  (57) 

where 𝒙𝒙(1) is the lowest-ranked vector inside the filtering 
window and the variance 𝜎𝜎2  for chosen norm 𝛾𝛾 is given 
by 
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𝜎𝜎𝛾𝛾2 = 1
𝑁𝑁−1

∑ ((∥ 𝒙𝒙𝑖𝑖 − 𝒙𝒙(1) ∥)𝛾𝛾)2𝑁𝑁
𝑖𝑖=1            (58) 

(b) Adaptive Sigma Basic Vector Directional Filter 
(ASBVDF-rank) 
The output of ASBVDF-rank is given by 

𝒚𝒚𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = �
𝒙𝒙𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 , 𝑖𝑖𝑖𝑖  𝐴𝐴(𝒙𝒙𝑁𝑁+1

2
,𝒙𝒙(1))  ≥ 𝜎𝜎𝐴𝐴

𝒙𝒙𝑁𝑁+1
2

,                         otherwise    (59) 

with angular definition of multichannel variance 𝜎𝜎𝐴𝐴2 
defined by 
𝜎𝜎𝐴𝐴2 = 1

𝑁𝑁−1
∑ 𝐴𝐴2(𝒙𝒙𝑖𝑖 ,𝒙𝒙(1))𝑁𝑁
𝑖𝑖=1          (60) 

(c) Adaptive Sigma Directional Distance Filter (ASDDF-
rank) 
The output of the ASDDF-rank is given by 
𝒚𝒚𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴−𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =

�
𝒙𝒙𝐷𝐷𝐷𝐷𝐷𝐷, 𝑖𝑖𝑖𝑖  (𝐴𝐴(𝒙𝒙𝑁𝑁+1

2
,𝒙𝒙(1)))𝑝𝑝. (∥ 𝒙𝒙𝑖𝑖 − 𝒙𝒙(1) ∥)𝛾𝛾

1−𝑝𝑝  ≥ 𝜎𝜎𝑝𝑝𝑝𝑝
𝒙𝒙𝑁𝑁+1

2
, otherwise ≥ 0

                    (61) 
with variance 𝜎𝜎𝑝𝑝𝑝𝑝2  is the combination of 𝜎𝜎𝛾𝛾2 and 𝜎𝜎𝐴𝐴2  given 
by 
𝜎𝜎𝑝𝑝𝑝𝑝2 = (𝜎𝜎𝛾𝛾2)1−𝑝𝑝(𝜎𝜎𝐴𝐴2)𝑝𝑝         (62) 

2.8 Entropy Vector Filters 

Entropy Vector Filters are adaptive multichannel filters 
based on the local contrast entropy introduced by 
Beghdadi and Khellaf in [68] for gray scale image. Each 
pixel 𝑥𝑥𝑖𝑖 inside the filtering window is associated with its 
contrast 𝐶𝐶𝑖𝑖 defined by 
𝐶𝐶𝑖𝑖 = |𝑥𝑥𝑖𝑖−𝑥̅𝑥|

𝑥̅𝑥
= 𝛥𝛥𝑖𝑖

𝑥̅𝑥
 (63) 

with 𝛥𝛥𝑖𝑖  is the gradient and 𝑥̅𝑥  represents the mean of the 
input { 𝑥𝑥1,  𝑥𝑥2, … 𝑥𝑥𝑁𝑁 }. The local contrast probability is 
given by 
𝑃𝑃𝑖𝑖 = 𝛥𝛥𝑖𝑖

∑ 𝛥𝛥𝑖𝑖𝑁𝑁
𝑗𝑗=1

   (64) 

Any pixel is considered as noisy if the local contrast 
probability is too high. In case of multichannel image, the 
local contrast probability is given by 

𝑃𝑃𝑖𝑖 = �∑ (|𝑥𝑥𝑖𝑖𝑖𝑖−𝑥̅𝑥𝑘𝑘|)𝛾𝛾𝑚𝑚
𝑘𝑘=1 �

1
𝛾𝛾

∑ �∑ |𝑥𝑥𝑖𝑖𝑖𝑖−𝑥̅𝑥𝑘𝑘|𝛾𝛾𝑚𝑚
𝑘𝑘=1 �

1
𝛾𝛾𝑁𝑁

𝑗𝑗=1

 ,          (65) 

where  𝜇𝜇𝑘𝑘  represents the 𝑘𝑘𝑡𝑡ℎ  component of the mean. 
Noisy pixels contribute heavily to the entropy defined by 
𝐻𝐻𝑖𝑖 = −𝑃𝑃𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖         (66) 
It is assumed that each sample is associated with an 
adaptive threshold 𝛽𝛽𝑖𝑖 defined as the rate of change of local 
contrast entropy 𝐻𝐻𝑖𝑖  and the overall entropy 𝐻𝐻 expressed as 
𝛽𝛽𝑖𝑖 = −𝑃𝑃𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑖𝑖

−∑ 𝑃𝑃𝑗𝑗𝑙𝑙𝑙𝑙𝑙𝑙𝑃𝑃𝑗𝑗𝑁𝑁
𝑗𝑗=1

         (67) 

The output of the entropy vector median filter (EVMF) 
[69] is given by 

𝒚𝒚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = �
𝒙𝒙(1), if 𝑃𝑃(𝑁𝑁+1)/2 ≥ 𝛽𝛽(𝑁𝑁+1)/2

𝒙𝒙𝑁𝑁+1
2

, otherwise          (68) 

𝒚𝒚𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = �
𝒙𝒙(𝟏𝟏), 𝑖𝑖𝑖𝑖 𝑃𝑃(𝑁𝑁+1)/2 ≥ 𝛽𝛽(𝑁𝑁+1)/2

𝒙𝒙𝑁𝑁+1
2

, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒          (69) 

where  𝛽𝛽(𝑁𝑁+1)/2  is the adaptive threshold of the central 
pixel and 𝑥𝑥(1) is the vector median output. Similarly other 
entropy vector filters such as Entropy Basic Vector 
Directional Filter (EBVDF) and Entropy Directional 
Distance Filter (EDDF) are also developed according to 
their corresponding distance and angular measure [70]. 

2.9 Quaternion based Vector Filters  

Another approach for impulsive noise removal is based on 
the quaternion theory for improving the evaluation of 
color dissimilarity. A quaternion number 𝑞𝑞  is a four 
dimensional number that consists of a real part 𝑎𝑎 and three 
imaginary parts 𝑏𝑏, 𝑐𝑐  and 𝑑𝑑[71-73]. In the hyper complex 
form, it is represented as  
𝑞𝑞 = 𝑎𝑎 + 𝑏𝑏𝚤𝚤̂ + 𝑐𝑐𝚥𝚥̂ + 𝑑𝑑𝑘𝑘�           (70) 
where 𝚤𝚤̂, ȷ ̂and 𝑘𝑘�  are the complex operators, which obey the 
following rules 
𝚤𝚤̂2 = 𝚥𝚥2̂ = 𝑘𝑘�2 = −1 
𝚤𝚤̂𝚥𝚥̂ = 𝑘𝑘� , 𝚥𝚥̂𝑘𝑘� = 𝚤𝚤̂, 𝑘𝑘�𝚤𝚤̂ = 𝚥𝚥̂ 
𝚥𝚥̂𝚤𝚤̂ = −𝑘𝑘� , 𝑘𝑘�𝚥𝚥̂ = −𝚤𝚤̂, 𝚤𝚤𝑘̂𝑘 = −𝚥𝚥 ̂
Multiplication of the quaternion is not commutative. A 
pure quaternion has 𝑎𝑎 = 0. The modulus and conjugate of 
a quaternion are 
|𝑞𝑞| = √𝑎𝑎2 + 𝑏𝑏2 + 𝑐𝑐2 + 𝑑𝑑2        (71) 
𝑞𝑞� = 𝑎𝑎 − 𝑏𝑏𝚤𝚤̂ − 𝑐𝑐𝚥𝚥̂ − 𝑑𝑑𝑘𝑘�         (72) 
A unit quaternion has unit modulus. A quaternion in the 
polar form is represented as  
𝑞𝑞 = |𝑞𝑞|𝑒𝑒𝜇𝜇𝜇𝜇 
= (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇)        (73) 
where µ is a unit pure quaternion and µ = �𝚤𝚤̂ + 𝚥𝚥̂ + 𝑘𝑘��/√3; 
𝜇𝜇  and 𝜃𝜃 are referred to as the eigenaxis and eigenangle 
respectively.                                                 
An RGB color pixel can be represented in quaternion form 
as  
𝑞𝑞1 = 𝑟𝑟1𝚤𝚤̂ + 𝑔𝑔1𝚥𝚥̂ + 𝑏𝑏1𝑘𝑘�           (74) 
where𝑟𝑟1,𝑔𝑔1and 𝑏𝑏1  denote the pixel values of red, green 
and blue channels respectively.Any unit quaternion U can 
be represented as 𝑈𝑈 = |𝑈𝑈|𝑒𝑒𝜇𝜇𝜇𝜇 . The quaternion unit 
transform of a color pixel 𝑞𝑞1 can be expressed as follows 
[74] 
𝑌𝑌 = 𝑈𝑈𝑞𝑞1𝑈𝑈� = [𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇]�𝑟𝑟1𝚤𝚤̂ + 𝑔𝑔1𝚥𝚥̂ + 𝑏𝑏1𝑘𝑘��[𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −
𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇𝜇] = �𝑟𝑟1𝚤𝚤̂ + 𝑔𝑔1𝚥𝚥̂ + 𝑏𝑏1𝑘𝑘��𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 + 2

√3
𝜇𝜇�𝑟𝑟1𝚤𝚤̂ + 𝑔𝑔1𝚥𝚥̂ +

𝑏𝑏1𝑘𝑘��𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 + 1
√3

[(𝑏𝑏1 − 𝑔𝑔1)𝚤𝚤̂ + (𝑟𝑟1 − 𝑏𝑏1)𝚥𝚥̂ + (𝑔𝑔1 −
𝑟𝑟1)𝑘𝑘��𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 
= 𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅 + 𝑌𝑌𝐼𝐼 + 𝑌𝑌∆           (75) 
where 𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅 = �𝑟𝑟1𝚤𝚤̂𝑖𝑖 + 𝑔𝑔1𝚥𝚥̂𝑗𝑗 + 𝑏𝑏1𝑘𝑘�𝑘𝑘�𝑐𝑐𝑐𝑐𝑐𝑐2𝜃𝜃 ,  𝑌𝑌𝐼𝐼 =
2
√3
𝜇𝜇(𝑟𝑟1𝚤𝚤̂ + 𝑔𝑔1𝚥𝚥̂ + 𝑏𝑏1𝑘𝑘�)𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃, 
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𝑌𝑌∆ = 1
√3

[(𝑏𝑏1 − 𝑔𝑔1)𝚤𝚤̂ + (𝑟𝑟1 − 𝑏𝑏1)𝚥𝚥̂ + (g1 − r1)k��𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃 ; 
𝑌𝑌 𝐼𝐼 represents the intensity of the color image; 𝑌𝑌∆  is the 
projection of the tristimuli in Maxwell triangle rotated 900, 
and it represents the chromaticity [3]. When𝜃𝜃 = 𝜋𝜋

4
, 𝑇𝑇 =

𝑈𝑈|𝜃𝜃=𝜋𝜋4
= �1 √2⁄ � + �1 √6⁄ ��𝚤𝚤̂ + 𝚥𝚥̂ + 𝑘𝑘��and𝑌𝑌𝑅𝑅𝑅𝑅𝑅𝑅 = 0, 𝑌𝑌𝐼𝐼 =

(1 3⁄ )(𝑟𝑟1 + 𝑔𝑔1 + 𝑏𝑏1)�𝚤𝚤̂ + 𝚥𝚥̂ + 𝑘𝑘��  and 𝑌𝑌∆ = �1 √3⁄ � [ (𝑏𝑏1 −
𝑔𝑔1)𝚤𝚤̂ + (𝑟𝑟1 − 𝑏𝑏1)𝚥𝚥̂ + (𝑔𝑔1 − 𝑟𝑟1)𝑘𝑘�] .Similarly, 𝑌𝑌�  can be 
defined as follows 
𝑌𝑌� = 𝑇𝑇�𝑞𝑞1𝑇𝑇 = 1

3
(𝑟𝑟1 + 𝑔𝑔1 + 𝑏𝑏1)�𝚤𝚤̂ + 𝚥𝚥̂ + 𝑘𝑘�� − 1

√3
[(𝑏𝑏1 −

𝑔𝑔1)𝚤𝚤̂ + (𝑟𝑟1 − 𝑏𝑏1)𝚥𝚥̂ + (𝑔𝑔1 − 𝑟𝑟1)𝑘𝑘�] = 𝑌𝑌𝐼𝐼 − 𝑌𝑌∆ (76) 
𝑌𝑌 𝐼𝐼 and  𝑌𝑌∆ can be expressed as 𝑌𝑌𝐼𝐼 = 1

2
(𝑇𝑇𝑞𝑞1𝑇𝑇� +

𝑇𝑇�𝑞𝑞1𝑇𝑇)and𝑌𝑌∆ = 1
2

(𝑇𝑇𝑞𝑞1𝑇𝑇� − 𝑇𝑇�𝑞𝑞1𝑇𝑇). 
The color pixel difference between two pixels 𝑞𝑞𝑖𝑖  and 𝑞𝑞𝑗𝑗 
can be written as the sum of the intensity and chromaticity 
differences as follows: 
𝑑𝑑�𝑞𝑞𝑖𝑖 , 𝑞𝑞𝑗𝑗� = 𝑑𝑑𝐼𝐼�𝑞𝑞𝑖𝑖 , 𝑞𝑞𝑗𝑗� + 𝑑𝑑∆�𝑞𝑞𝑖𝑖 , 𝑞𝑞𝑗𝑗�          (76) 
where  𝑑𝑑𝐼𝐼�𝑞𝑞𝑖𝑖 , 𝑞𝑞𝑗𝑗� = (1 2⁄ )|(𝑇𝑇𝑞𝑞𝑖𝑖𝑇𝑇� + 𝑇𝑇�𝑞𝑞𝑖𝑖𝑇𝑇) − (𝑇𝑇𝑞𝑞𝑗𝑗𝑇𝑇� +
𝑇𝑇�𝑞𝑞𝑗𝑗𝑇𝑇)| is the color intensity difference 
and 𝑑𝑑∆�𝑞𝑞𝑖𝑖 , 𝑞𝑞𝑗𝑗� = (1 2⁄ )|(𝑇𝑇𝑞𝑞𝑖𝑖𝑇𝑇� − 𝑇𝑇�𝑞𝑞𝑖𝑖𝑇𝑇) − (𝑇𝑇𝑞𝑞𝑗𝑗𝑇𝑇� −
𝑇𝑇�𝑞𝑞𝑗𝑗𝑇𝑇)|is the color chromaticity difference.The intensity 
difference and chromaticity difference approach zero 
when 𝑞𝑞𝑖𝑖 is very similar to 𝑞𝑞𝑗𝑗. 
In [75-76] a switching VMF based on quaternion impulse 
detector is proposed using 5× 5 window. The quaternion 
color difference between pixels along the four directional 
operators at0°, 45°, 90°and135° are computed. An average 
color difference 𝑉𝑉𝑉𝑉𝑉𝑉ℎbetween the central pixel and other 
pixel values in the directionℎ = (1, 2, 3,4) for respective 
degrees are computed as follows: 
𝑉𝑉𝑉𝑉𝑉𝑉ℎ = 1

4
∑ ∣ 𝑑𝑑�𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗� ∣4
𝑗𝑗=1          (77) 

𝑉𝑉𝑉𝑉𝑉𝑉 = min (𝑉𝑉𝑉𝑉𝑉𝑉1,𝑉𝑉𝑉𝑉𝑉𝑉2,𝑉𝑉𝑉𝑉𝑉𝑉3,𝑉𝑉𝑉𝑉𝑉𝑉4) 
The above two equations are used for impulse detection. If 
the central pixel is an impulse, its 𝑉𝑉𝑉𝑉𝑉𝑉 value will be large 
otherwise it is small. Hence the output of the filter is given 
by 

𝒙𝒙𝑄𝑄𝑄𝑄𝑄𝑄𝑄𝑄 = � 𝑄𝑄(𝑉𝑉𝑉𝑉𝑉𝑉), if 𝑉𝑉𝑉𝑉𝑉𝑉 ≥ 𝑇𝑇
𝒙𝒙(𝑁𝑁+1)/2, otherwise         (78) 

where 𝑄𝑄(𝑉𝑉𝑉𝑉𝑉𝑉)represents the VMF calculated in Quaternion 
form and T being a pre-specified threshold. 
In [77] another Quaternion Switching Vector Median 
Filter (QSVMF) is developed based on both the intensity 
and chromaticity differences described above. 
A modification of QSVMF is designed in [78]. It is 
different from other related works in the impulse detection 
which utilizes the pixels along only a direction with 
maximum number of similar pixels while other utilize the 
color differences between the central pixel and its 
neighboring pixels in the four-edge direction. 
A two-stage filter using both the Quaternion based 
Switching filter and a local mean filter is designed in [79] 

for removing mixture noise. In [80] a new two-stage filter 
is proposed which incorporates the peer group concept 
along with the quaternion based distance measure for 
impulse detection. The probably noisy pixels are replaced 
by Weighted Vector Median Filter in the second stage. 
The concept of quaternion is extended in video sequences 
for removal of random-valued impulse noise in [81]. The 
luminance and chromaticity difference are represented in 
quaternion form which are combined together for 
measuring color difference between color samples. Based 
on this color difference, the color vectors along the 
horizontal, vertical and diagonal directions in current 
frame and adjacent frames on motion trajectory are utilize 
for the detection of presence of impulse. For noisy pixels, 
a 3-D weighted vector median operation is carried out 
while the other pixels are left intact. Another filter for 
removal of random-valued impulse noise from video 
sequences is also designed in [82]. 

2.10 Morphology based filters 

Morphological filters (MF) are designed by parallel or 
sequential combination of the basic fundamental 
morphological operations such as erosion, dilation, 
opening and closing [83-85]. The common structures of 
MF are defined as 
OC Filter → Opening followed by Closing 
CO Filter → Closing followed by Opening           (79) 
Erosion distributes the local minima while dilation 
distributes the local maxima within the sliding window 
defined by the structuring element which resembles a 
min/max filtering action for suppression of impulse noise. 
In [86], an extension of MF to multichannel images on 
learning-based morphological color operations is 
developed. The color pixel ordering scheme is learned in 
accordance to pre-estimation of healthy and corrupted 
pixels where the corrupted samples are ordered either as 
maximum in erosion or minimum in dilation. The SVM is 
used as the classification technique of such learning-based 
multichannel MF in the RGB color domain. After each 
morphological operation, the image reconstruction step is 
carried out for restoring the original features.  
Extension of mathematical morphology to multivariable 
data such as multichannel image is performed in [87-89]. 
In order to develop multivariate morphological operators, 
various complex mathematical tools such as machine 
learning [90], principal component analysis [91], hyper 
complex [92], rand projection depth function [93], group-
invariant frames [94], and probabilistic extrema estimation 
[95] are used. 
 Based on the self-duality property of morphological 
operator, a multivariate self-dual morphological operator 
is developed in [96] which is applicable for noise removal 
and segmentation purposes. A pair of symmetric vector 
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ordering is introduced in order to develop multivariate 
dual morphological operators. 
Quantile filters and a group of morphological gradient 
filters are proposed in [97]. Their properties and links with 
dilation and erosion operators are also investigated. 
Another quantile filter is also designed in [98]. 
In [99], a new hybrid filter based on mathematical 
morphology and trimmed standard median filter is 
developed. For impulse detection, mathematical 
morphology such as erosion and dilation are utilized. 
Erosion refers to the computation of local minima while 
dilation estimates the local maxima of the neighboring 
pixels. The existence of an inverse relationship between 
erosion and dilation is used for detection for salt & pepper 
noise. 

2.11 Wavelet-Transform based Filters 

Many nonlinear filtering techniques are designed based on 
wavelet transform. Haci Tasmaz et al., [100] proposes a 
satellite image enhancement system comprising of image 
denoising and illumination enhancement technique. It is 
based on dual tree complex wavelet transform (DT-CWT). 
 Based on the combined effect of Haar wavelet transform 
and median filter, a denoising technique is also proposed 
[101]. In [102], another denoising algorithm based on 
combined effect of the bi-orthogonal wavelet transform 
and median filter is designed which removes noise 
effectively. In [103], a wavelet based denoising technique 
for suppression of noise in Magnetic Resonance images 
(MRI) is proposed. Shalini and Godwin in [104] present a 
comparative analysis of denoising algorithms based on 
different wavelet transform such as Bior, Surelet, Haar 
and Curvelet. 

2.12 Miscellaneous Filters 

Miscellaneous Filters consist of those filters which cannot 
be included into any of the filter families described above 
although some filters may have common properties. 

2.12.1 Selective Vector Median Filter  

In [105] Selective Vector Median Filter is introduced 
which has two steps: noise detection and noise removal. 
For every pixel in the window aggregated sum of distance 
between other pixels is computed  
𝑆𝑆𝑖𝑖 = ∑ ∥ 𝒙𝒙𝑖𝑖 − 𝒙𝒙𝑗𝑗 ∥, 𝑖𝑖 = 1, …𝑁𝑁𝑁𝑁

𝑗𝑗=1           (80) 
Then the mean 𝑆𝑆 value for that neighborhood is calculated 
as follows 
𝑆𝑆̅ = 1

𝑁𝑁
∑ 𝑆𝑆𝑗𝑗𝑁𝑁
𝑗𝑗=1         (81) 

The pixels which have 𝑆𝑆  value higher than 𝑘𝑘𝑆𝑆̅ in the 
neighborhood are flagged as outliers. 𝑘𝑘 represents a 
constant used to increase or decrease the sensitivity of the 
threshold.  If the central pixel is an outlier, then the 

remaining pixels which are not flagged as outliers are used 
for calculating the Vector median and the noisy pixel is 
replaced by the corresponding vector median. 

2.12.2 Similarity based Impulsive Noise Removal Filter 

In [106] a filter based on similarities between the pixels in 
a predefined window is developed. If {𝒙𝒙𝑖𝑖 , … ,𝒙𝒙𝑁𝑁} denote 
the pixels in a filtering window, then a convex similarity 
function is used to find the similarity between pixels. For 
the central pixel and its neighboring pixels, the cumulated 
sum of similarities 𝑀𝑀 are computed as follows: 
𝑀𝑀1 = ∑ µ(𝒙𝒙1,𝒙𝒙𝑗𝑗)𝑁𝑁

𝑗𝑗=2 , 
 𝑀𝑀𝑘𝑘 = ∑ µ(𝒙𝒙𝑘𝑘,𝒙𝒙𝑗𝑗)𝑁𝑁

𝑗𝑗=2,𝑗𝑗≠𝑘𝑘        (82) 
𝒙𝒙1 is the central pixel and µ(𝒙𝒙𝑖𝑖,𝒙𝒙𝑗𝑗)is a convex similarity 
function. The central pixel is detected as noisy if 𝑀𝑀1 <
𝑀𝑀𝑘𝑘, 𝑘𝑘 = 2, … ,𝑁𝑁and is replaced by that 𝒙𝒙𝑘𝑘 for which 𝑘𝑘 =
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑀𝑀𝑖𝑖, 𝑘𝑘 = 2, … ,𝑁𝑁.This filter is faster than VMF. A 
similar filter based on this idea is also developed in [107]. 

2.12.3 Filters based on Digital Path Approach  

In [108] noise filtering approach based on the connections 
between image samples using the digital geodesic path is 
developed instead of using a fixed window. In this filter 
the image pixels are grouped togetherthrough the fuzzy 
membership function defined over vectorial inputs by 
forming digital paths revealing the underlying structure 
dynamics of the image. It shows better performance in 
suppressing impulsive, Gaussian as well as mixed-type 
noise.  

2.12.4 Filters based on Long Range Correlation 

Traditional method of noise filtering utilizes information 
based on local window centered around the corrupted 
pixel. In [109] a new class of filter based on information 
on both the local window and also some remote regions in 
the image is developed. This is due to the fact that there 
exists a long range correlation within natural images and 
also the human visual system can use such correlations to 
interpret and restore image information [110]. This filter 
comprises of two steps: impulse detection and noise 
cancellation. In the impulse detection stage any impulse 
detector as described in [111] and [112] can be used for 
identifying the corrupted pixel in the local window. If the 
central pixel is corrupted, then a remote window centered 
around the impulse pixel is defined in the search range 
which is larger than the local window. All the pixels in the 
remote window will compete for the perfect match with 
the local window based on the mean square error of 
uncorrupted pixels in local and remote window. Finally, 
the corrupted pixel is replaced by the central pixel of the 
remote window with minimum mean squared error. 
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Fig. 4 Demonstration of the general approach 

2.12.5 Vector Rational Filters (VRF) 

Vector rational filters are extension of rational filters. In 
[113], two algorithms are proposed 𝑉𝑉𝑉𝑉𝑉𝑉𝐿𝐿 and 𝑉𝑉𝑉𝑉𝑉𝑉𝑑𝑑 based 
on 𝐿𝐿𝑝𝑝 -norm and directional processing using two 
decimation schemes such as rectangular and quincunx 
decimation for down-sampling. Merits of these filters are 
better edge-preserving properties and absence of artifacts. 

2.12.6 Robust Local Similarity Filters (RLSF) 

A new algorithm for suppression of mixed Gaussian and 
impulsive noise based on concept of Rank ordered 
Absolute Difference (ROAD) [114] is proposed in [115]. 
Noise is detected by computing ROAD between samples 
of the processing block and a small window which is 
centered at block’s central pixel. Main contribution is that 
the similarity measure is not affected by outliers due to 
impulses and the averaging operation reduces the 
Gaussian noise. The output of this filter is given as 

𝒙𝒙𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
∑ 𝑤𝑤𝑗𝑗.𝒙𝒙𝑗𝑗
𝑁𝑁
𝑗𝑗=1
∑ 𝑤𝑤𝑗𝑗𝑁𝑁
𝑗𝑗=1

            (83) 

with  𝑤𝑤𝑗𝑗 = Ҡ�1
𝛼𝛼
∑ 𝑑𝑑𝑗𝑗(𝑘𝑘)𝛼𝛼
𝑘𝑘=1 �           (84) 

 
where Ҡ  represents the kernel function (Gaussian) and 
𝑑𝑑𝑗𝑗(𝑘𝑘)  denotes the 𝑘𝑘𝑡𝑡ℎ  smallest Euclidean distance 
between pixel 𝑥𝑥𝑗𝑗  of the processing block and pixels of 𝑊𝑊 
of the small window. 𝛼𝛼 is the number of close neighbors 
used in calculation of ROAD. 

 

Fig. 5 Calculation of similarity measure between pixel in the processing 
block (Green Square) and small window (red square) by ROAD. 

2.12.7 Vector Marginal Median Filters (VMMF) 

In [3] a vector filter named Vector Marginal Median Filter 
(VMMF) based on the median operation is presented. It 
calculates the median value of each channel separately and 
the central pixel is replaced by the median value of the 
respective channel. The output of VMMF is given below 
𝒙𝒙𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 =
((𝑚𝑚𝑚𝑚𝑚𝑚({𝑥𝑥1𝑅𝑅 , … 𝑥𝑥𝑁𝑁𝑅𝑅})), �𝑚𝑚𝑚𝑚𝑚𝑚({𝑥𝑥1𝐺𝐺 , … 𝑥𝑥𝑁𝑁𝐺𝐺})�, (𝑚𝑚𝑚𝑚𝑚𝑚({𝑥𝑥1𝐵𝐵, … 𝑥𝑥𝑁𝑁𝐵𝐵})))                        
(85) 
where 𝑅𝑅,𝐺𝐺 and 𝐵𝐵 are the red, green and blue channel of 
the pixels in the window. Its noise reduction capability is 
highest but since it does not consider the correlation 
among the vector channel, it leads to color artifacts. 

2.12.8 Vector Signal-Dependent Rank Order Mean Filters 

Multichannel extension of the grayscale Signal Dependent 
Rank Order Mean (SDROM) filter [116] is the Vector 
signal-dependent rank order mean (VSDROM) filter [117]. 
For noise detection, first the vector pixels in the window 
are sorted according to their aggregated distance to all 
other samples. The distance between the four lowest-
ranked vectors and the central pixel are compared against 
respective increasing thresholds. The central pixel is 
regarded as noisy if any of these distances is greater than 
their threshold and replaced by the VMF. 

2.12.9 Decision based Couple Window Median Filters 
(DBCWMF) 

They use an increasing window size in order to maximize 
the probability of finding noise-free pixels [118]. The 
steps of DBCWMF is given below 
1. Define a 2-D local window 𝑊𝑊𝑛𝑛  of dimension (2𝑛𝑛 +
1) × (2𝑛𝑛 + 1) (initialize algorithm by choosing 𝑛𝑛 = 1).  
2. Identify salt & pepper noise by checking if the central 
pixel 𝒙𝒙𝑁𝑁+1

2
 is either 0 or 255. If 0<  𝒙𝒙𝑁𝑁+1

2
<  255 it is left 

intact. 
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3. If  𝒙𝒙𝑁𝑁+1
2

 is noisy, then trim all 0’s and 255’s present in 

the 𝑊𝑊𝑛𝑛 and follow the two cases 
Case 1. If the number of non-noisy pixels is non-zero, then 
replace the central pixel by the median value calculated 
from the remaining uncorrupted pixels. 
Case 2. If the number of non-noisy pixels is zero, then 
update the window size by increasing 𝑛𝑛 = 𝑛𝑛 + 1, (𝑛𝑛 < 5) 
and goto Step 1. 
4. If the number of non-noisy pixels in 𝑊𝑊4 is zero, then 
replace the value of central pixel by mean of 𝑊𝑊1. 
5. Repeat Steps 1 to 4 until all the pixels are processed. 

2.12.10 Improved Bilateral Filter for reducing mixed 
noise  

A Bilateral Filter (BF) [119] is a combination of two low-
pass Gaussian filters operating in spatial and color (range) 
domain for reducing both impulse and additive noise 
while preserving edge structures. The spatial low-pass 
filter gives larger weights to those samples closer to the 
central pixel while the range low pass filter assigns larger 
weights to those pixels having similar color distributions 
with the central pixel. Here the filter’s output is mainly 
dependent on the central pixel and neighboring pixels 
close in both spatial and range domain with the central 
pixel.An improvement in the traditional Bilateral Filter 
(BF) is designed in [120] in which a new weighting 
function to the bilateral filtering mechanism is introduced. 
For an impulse, the vector median (as opposed to the 
traditional BF which always uses the central pixel) is 
considered as base for bilateral filtering operation for 
replacement of the central pixel otherwise the normal 
bilateral filtering action is continued.  

3. Impulse Noise Model  

In the real life, the form of impulse noise varies. For 
example, the value of impulse noise caused by 
malfunction of sensor is expected to be fixed-valued 
impulse noise, while the value of impulse caused by 
electronic interference is random-valued impulse noise 
[77]. Impulse noise can be divided into two types: 
Correlated impulse noise and Uncorrelated impulse noise.   
The impulse noise model proposed by Viero et al [10] is 
correlated type impulse noise and it has the following 
form 

𝒒𝒒′ =

⎩
⎪
⎨

⎪
⎧

{𝑞𝑞1 𝑞𝑞2 𝑞𝑞3}with probability 1 − 𝑝𝑝
{𝑛𝑛1, 𝑞𝑞2, 𝑞𝑞3}with probability 𝑝𝑝1𝑝𝑝
{𝑞𝑞1, 𝑛𝑛2, 𝑞𝑞3}with probability 𝑝𝑝2𝑝𝑝
{𝑞𝑞1, 𝑞𝑞2, 𝑛𝑛3}with probability 𝑝𝑝3𝑝𝑝
{𝑛𝑛1, 𝑛𝑛2, 𝑛𝑛3}with probability 𝑝𝑝𝑎𝑎𝑝𝑝

           (86) 

where 𝒒𝒒 = (𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3)  is the original uncontaminated 
vector pixel, 𝒒𝒒′  may be either contaminated or 

uncontaminated, 𝑛𝑛𝑘𝑘(𝑘𝑘 = 1,2,3) equals 0 or 255 with equal 
probability for fixed-valued impulse noise, or takes any 
value in the range [0,255]  for random-valued impulse 
noise; 𝑝𝑝 is the sample corruption probability; 𝑝𝑝1, 𝑝𝑝2and 𝑝𝑝3 
are the channel corruption probabilities and 𝑝𝑝𝑎𝑎 = 1 −
𝑝𝑝1 − 𝑝𝑝2 − 𝑝𝑝3. 
The uncorrelated impulse noise has the following form [46] 

𝑞𝑞𝑘𝑘′ = �𝑛𝑛𝑘𝑘        with probability 𝑝𝑝
𝑞𝑞𝑘𝑘 with probability 1 − 𝑝𝑝         (87) 

where 𝑘𝑘 = 1,2,3 denotes the three channels in RGB color 
space; 𝑝𝑝 is the channel corruption probability; 𝑞𝑞𝑘𝑘  and 𝑛𝑛𝑘𝑘 
denote the original component and contaminated 
component respectively. 𝑛𝑛𝑘𝑘  can take either 0 or 255 for 
fixed-valued impulse noise and can take any discrete value 
in [0,255] for random-valued impulse noise.  

4. Performance Measurement of Filters 

The performance of filter is evaluated by the following 
parameters 

(a) Mean Absolute Error (MAE) 
 

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑀𝑀1×𝑁𝑁1

∑ ∑ |𝑞𝑞(𝑖𝑖, 𝑗𝑗) − 𝑓𝑓(𝑖𝑖, 𝑗𝑗)|𝑁𝑁1
𝑗𝑗=1

𝑀𝑀1
𝑖𝑖=1          (88) 

where 𝑀𝑀1 × 𝑁𝑁1 is the size of the image; 𝑞𝑞(𝑖𝑖, 𝑗𝑗) and 𝑓𝑓(𝑖𝑖, 𝑗𝑗) 
are the original and filtered pixel values at (𝑖𝑖, 𝑗𝑗) location. 
(b) Mean Squared Error (MSE) 
𝑀𝑀𝑀𝑀𝑀𝑀 = 1

𝑀𝑀1×𝑁𝑁1
∑ ∑ (𝑞𝑞(𝑖𝑖, 𝑗𝑗) − 𝑓𝑓(𝑖𝑖, 𝑗𝑗))2𝑁𝑁1

𝑗𝑗=1
𝑀𝑀1
𝑖𝑖=1            (89) 

(C) Peak Signal to Noise ratio (PSNR) 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10log10 �

𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚
2

𝑀𝑀𝑀𝑀𝑀𝑀
�          (90) 

where  𝐼𝐼𝑚𝑚𝑚𝑚𝑚𝑚  is the maximum pixel value of the original 
image. 
(d) Normalized Color Distance (NCD) 
The NCD is defined in the Lu*v* color space by 
𝑁𝑁𝑁𝑁𝑁𝑁 =
∑ ∑ ��𝐿𝐿𝑜𝑜(𝑖𝑖,𝑗𝑗)−𝐿𝐿𝑥𝑥(𝑖𝑖,𝑗𝑗)�

2
+�𝑢𝑢𝑜𝑜(𝑖𝑖,𝑗𝑗)−𝑢𝑢𝑥𝑥(𝑖𝑖,𝑗𝑗)�

2
+�𝑣𝑣𝑜𝑜(𝑖𝑖,𝑗𝑗)−𝑣𝑣𝑥𝑥(𝑖𝑖,𝑗𝑗)�

2𝑁𝑁1
𝑗𝑗=1

𝑀𝑀1
𝑖𝑖=1

∑ ∑ ��𝐿𝐿𝑜𝑜(𝑖𝑖,𝑗𝑗)�
2
+�𝑢𝑢𝑜𝑜(𝑖𝑖,𝑗𝑗)�

2
+�𝑣𝑣𝑜𝑜(𝑖𝑖,𝑗𝑗)�

2𝑁𝑁1
𝑗𝑗=1

𝑀𝑀1
𝑖𝑖=1

 

(91) 
where 𝐿𝐿𝑜𝑜(𝑖𝑖, 𝑗𝑗),𝑢𝑢𝑜𝑜(𝑖𝑖, 𝑗𝑗) , 𝑣𝑣𝑜𝑜(𝑖𝑖, 𝑗𝑗)  and 𝐿𝐿𝑥𝑥(𝑖𝑖, 𝑗𝑗),𝑢𝑢𝑥𝑥(𝑖𝑖, 𝑗𝑗) , 
𝑣𝑣𝑥𝑥(𝑖𝑖, 𝑗𝑗) are values of the lightness and two chrominance 
components of the original image sample  𝑞𝑞(𝑖𝑖, 𝑗𝑗)  and 
filtered image sample 𝑓𝑓(𝑖𝑖, 𝑗𝑗) respectively.  
(E) Structural Similarity Index (SSIM) 
Structural similarity index measures the similarity 
between two images and is given below 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝐶𝐶1��2𝜇𝜇𝑥𝑥𝑥𝑥+𝐶𝐶2�
�𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2+𝐶𝐶1��𝜎𝜎𝑥𝑥2+𝜎𝜎𝑦𝑦2+𝐶𝐶2�

           (92) 

where µx and µy are mean of the original and filtered 
image, σxy, 

2
xσ  and 2

yσ represent the corresponding 
covariance and variance of the original and filtered images. 
𝐶𝐶1 and 𝐶𝐶2 are the constants. 
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MAE is used to evaluate detail preservation; MSE and 
PSNR are used to evaluate noise suppression capability; 
NCD is used to measure perceptual error in the CIELab 
color space [3]. 
For an efficient filter, it is expected to have high PSNR 
and SSIM, while the other parameters like MAE, MSE 
and NCD are minimum.  

5. Conclusions 

A comprehensive survey of various vector median filters 
for the removal of impulse noise from color images is 
presented. These filters have been categorized into 12 
different families. Their properties have been summarized 
and presented. Some recently proposed algorithms have 
been added and studied.  
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