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Summary 
Data mining is to discover valuable patterns from large data set, 
such as item sets and graph traversals. This paper focuses on the 
graph traversal, which is a sequence of vertices along edges on a 
graph. Although there were a few works on the graph traversals, 
they considered mainly the frequency of patterns. This paper 
extends them by considering the length of patterns as well as 
frequency. Under such length settings, traditional mining 
algorithms can not be adopted directly any more. To cope with 
the problem, this paper proposes new algorithm by adopting the 
notion of support bound.  
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1. Introduction 

In the pattern mining problem, the value of pattern may be 
defined in several ways. Although the simplest and 
traditional one is the frequency of pattern, more valuable 
one may be defined in other ways. The mining problem 
this paper focus is defined as follows. Given a set of 
traversals on a graph, discover all the valuable patterns 
contained in the traversals, in which the value is measured 
by the combination of length and frequency. Main issue on 
such mining problem is how to generate candidates, from 
which solutions can be obtained. Another issue is how to 
keep the number of candidates as small as possible.  
To cope with these kinds of issues, there have been some 
works. Chen et al. [1] defined the problem of traversal 
pattern mining, and then proposed algorithms with hashing 
and pruning techniques. However, they did not consider 
graph structure, on which the traversals occur. Nanopoulos 
et al. [2, 3] proposed the problem of mining patterns from 
graph traversals. They defined new criteria for the support 
and subpath containment, and then proposed algorithms 
with a trie structure. Although they considered the graph 
on which traversals occur, they did not consider weight. 
Lee and Park [4] extended the graph traversal problem to 
the weight settings, in which weights are attached to the 
vertices of graph. Such vertex weight may reflect the 
importance of vertex. For example, each Web page may 
have different importance which reflects the value of its 
content. The mining algorithms for these kinds of problems 
cannot be relied on the well-known Apriori algorithm [5] 
any more. Instead, the notion of support bound [6] had 
been adopted.  

This paper further extends the problem of graph traversal 
mining by considering the length of patterns. To cope with 
this extension, we basically adopt the previous paradigm in 
[4] as a whole, but revise its definitions and approaches. 
Although overall foundation is similar to the previous one, 
details are somewhat different.  
This paper is organized as follows. Section 2 defines the 
problem of length-frequent pattern mining. In Section 3, 
we propose a mining algorithm based on the notion of 
support bound. Section 4 includes two approaches for the 
estimation of support bound used in the mining process. In 
Section 5, we experiment and analyze the approaches on 
synthetic data. Finally, Section 6 contains conclusion and 
future works. 

2. Length-frequent Pattern 

Definition 1. Directed graph is a finite set of vertices and 
edges, in which each edge joins an ordered pair of vertices. 
Base graph is a directed graph, on which traversals occur.  
 
For example, the following base graph has 6 vertices and 8 
edges.  

 

Fig. 1 Example of base graph  

Definition 2. A traversal is a sequence of consecutive 
vertices along a sequence of edges on a base graph. We 
assume that every traversal is path, which has no repeated 
vertices and edges. The length of a traversal is the number 
of vertices in the traversal. A traversal database is a set of 
traversals.  
 
We restrict any traversal to be a path, because repeated 
vertices or edges in a traversal may not contain useful 
information in many cases, such as backward movements. 
If a traversal has repeated vertices or edges, it can be 
separated into several paths, such as maximal forward 
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references [1]. The following traversal database has totally 
6 traversals, each of which has an identifier and a sequence 
of consecutive vertices. 

Tid Traversal 
1 
2 
3 
4 
5 
6 

<A> 
<A, B> 
<A, C> 
<B, C, E> 
<B, C, E, F> 
<A, C, E, D> 

Fig. 2 Example of traversal database 

Definition 3. Subtraversal is any subsequence of 
consecutive vertices in a traversal. If a pattern P is a 
subtraversal of a traversal T, then we say that P is 
contained in T, and vice versa T contains P.  
 
For example, given a traversal of length 4, <B, C, E, F>, 
there are only two subtraversals of length 3, <B, C, E> and 
<C, E, F>. Note that non-consecutive sequences, such as 
<B, C, F>, are not subtraversals.  
 
Definition 4. The support count of a pattern Pk with length 
k, denoted by scount(Pk), is the number of traversals 
containing the pattern. The support of a pattern Pk, 
denoted by support(Pk), is the fraction of traversals 
containing the pattern. Given a traversal database D, let |D| 
be the number of traversals. 

D
)scount(P)support(P k

k =                         (1) 

There is a well-known property on such support count and 
support as follows. 
 
Property 1. The support count and the support of a pattern 
decrease monotonically as the length of the pattern 
increases. In other word, given a k-pattern Pk and any l-
pattern containing Pk, denoted by (Pk, l), where l > k, then 
scount(Pk) ≥  scount(Pk, l) and support(Pk) ≥  support(Pk, 
l). 
 
Definition 5. The length-support of a pattern Pk, denoted 
by lsupport(Pk),  is 

)support(Pk                     
)support(P)length(P)lsupport(P

k

kkk

×=
×=            (2) 

Definition 6. A pattern Pk is said to be length-frequent, 
when the length-support is greater than or equal to a given 
minimum length-support (minlsup) threshold, 

minlsup)lsupport(Pk ≥                      (3) 
For example, given a base graph and traversal database of 
Fig. 1 and 2 with |D| is 6, and minlsup of 0.9, then the 

pattern <B, C, E> is length-frequent since 3 × 2/6 = 1.0 ≥ 
0.9, but the pattern <B, C> is not since 2 × 2/6 = 0.7 < 0.9. 
From equation (1), (2) and (3), a pattern P is length-
frequent when its support count satisfies: 

k
Dminlsup

)scount(Pk
×

≥                  (4) 

We can consider the right hand side of (4) as the lower 
bound of the support count for a pattern P to be length-
frequent. Such lower bound, called support bound, is given 
by 








 ×
=

k
Dminlsup

)sbound(Pk                  (5) 

We take the ceiling of the value since the function 
sbound(Pk) is an integer. From Equation (4) and (5), we 
can say a pattern P is length-frequent when the support 
count is greater than or equal to the support bound. 

)sbound(P)scount(P kk ≥                    (6) 
Note that sbound(Pk) can be calculated from base graph 
without referring traversal database. On the contrary, 
scount(Pk) can be obtained by referring traversal database.  

The problem concerned in this paper is stated as 
follows. Given a directed graph (base graph) and a set of 
path traversals on the graph (traversal database), find all 
length-frequent patterns. 

3. Length-frequent Pattern Mining 

Traditional mining algorithms have been based on Apriori 
algorithm [5]. The reason why Apriori algorithm works is 
due to the downward closure property, which says all the 
subsets of a large itemset must be also large. For the length 
setting, however, it is not necessarily true for all the 
subpatterns of a length-frequent pattern being length-
frequent. As in the previous example, although a pattern 
<B, C> is a subpattern of the length-frequent pattern <B, C, 
E>, it is not length-frequent. Therefore, Apriori algorithm 
cannot be directly adopted for the mining of length-
frequent patterns. Instead, we will propose new approaches 
by extending the notion of support bound [6]. 

3.1 Pruning by Support Bound 

Pruning is most critical phase in mining process by 
reducing the number of candidates as many as possible. 
Such candidates that have no possibility to become length-
frequent in the future can be pruned. On the contrary, we 
must keep such candidates that have a possibility to 
become length-frequent in the future. Main concern is how 
to decide such possibility. 
 
Definition 7. A pattern Pk is said to be feasible when it has 
a possibility to become length-frequent in the future if 
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extended to longer patterns. In other words, when some 
future patterns containing Pk will be possibly length-
frequent. 
Now, the pruning problem is converted to the feasibility 
problem. For the decision of such feasibility, we will 
devise the support bound of longer patterns containing Pk. 
Let the maximum possible length of length-frequent 
patterns be u, which may be the length of longest traversal 
in the traversal database. Given a k-pattern Pk, suppose l-
pattern containing Pk, denoted by (Pk, l), where k < l ≤ u. 

  
We can derive the lower bound of the support count for l-
pattern to be length-frequent. Such lower bound, called l-
support bound of Pk, is given by 








 ×
=

l
Dminlsup

l) ,sbound(Pk                      (7) 

Lemma 1. A pattern Pk is feasible if scount(Pk) ≥ 
sbound(Pk, l) for some k < l ≤ u, but not feasible if 
scount(Pk) < sbound(Pk, l) for all k < l ≤ u. 
 
Proof. If scount(Pk) ≥ sbound(Pk, l), then although 
scount(Pk) ≥ scount(Pk, l) by Property 1, there is still 
possibility to become scount(Pk, l) ≥ sbound(Pk, l). It 
means that (Pk, l) will possibly be length-frequent. On the 
contrary, if scount(Pk) < sbound(Pk, l), then because 
scount(Pk) ≥ scount(Pk, l) by Property 1, there is no 
possibility to become scount(Pk, l) < sbound(Pk, l). It 
means that (Pk, l) will definitely not be length-frequent. 
If a pattern Pk is feasible then some l-patterns containing 
Pk will be possibly length-frequent. In other word, Pk has a 
possibility to be subpatterns of some length-frequent l-
patterns. Therefore, Pk must be kept to be extended to 
longer patterns for possible length-frequent patterns in the 
coming passes. On the contrary, if a pattern Pk is not 
feasible, then all l-patterns containing Pk will not be 
length-frequent. In other word, Pk certainly has no 
possibility to be subpattern of any length-frequent l-
patterns. Therefore, Pk must be pruned. 

For example, referring to Fig. 1 and Fig. 2, given a 2-
pattern <B, C>, suppose 3-pattern <B, C, v>. For the 
additional vertex ‘v’, the 3-support bound of <B, C> is 

2
3

60.93) ,CB,sbound( =



 ×

=><  

It means if the support count of <B, C> is greater than or 
equal to 2, some 3-patterns will be possibly length-frequent. 
In other word, <B, C> has a possibility to be subpatterns of 
some length-frequent 3-patterns. Because the support count 
of the pattern <B, C> is actually 2, the pattern must be 
extended to 3-patterns for possible length-frequent patterns. 
 
According to Lemma 1, we can devise a pruning algorithm, 
called ‘pruning by support bounds’, as follows. 

Algorithm. Pruning by support bounds 
 

      for each pattern Pk in candidates set Ck { 
for (l = k+1; l ≤  u; l++) { 

                   estimate sbound(Pk, l); 
                   if (scount(Pk) ≥  sbound(Pk, l)) 
                          break;    // Pk is feasible. Keep it 
            } 
            if (l > u)  
                   Ck = Ck – {Pk};    // Pk is not feasible. Prune it 
      } 

Fig.3 Algorithm for pruning by support bounds 

3.2 Mining Algorithm 

By combing the pruning algorithm as a whole, we can 
devise an algorithm for mining length-frequent patterns. 
Fig. 3 shows the algorithm proposed in this paper, which 
performs in a level-wise manner.  

Algorithm. Mining length-frequent patterns 
 
Inputs: Base graph G, Traversal database D, Minimum length- 

support minlsup 

Output: List of length-frequent patterns Lk 
{ 
       // 1. maximum length of length-frequent patterns 
    u = max(length(t)), t ∈ D; 
 
       // 2.  initialize candidate patterns of length 1 
    C1 = V(G); 
    for (k = 1; k ≤ u and Ck ≠ ∅; k++) { 
 
              // 3. obtain support counts of candidate patterns 
          for each pattern Pk ∈ Ck { 
               for each traversal t ∈ D 
                    if Pk is contained in t, then scount(Pk)++; 
          } 
 

// 4. determine length-frequent patterns  
         Lk = { Pk | Pk ∈ Ck, lsupport(Pk) ≥ minlsup}; 
                              (equivalently, scount(Pk))≥ 
sbound(Pk)) 
 

// 5.  prune candidate patterns 
         C’k = Pruning(Ck, G); 
 
             // 6. generate new candidate patterns for next pass 

for each Pk = <v1, v2, …, vk> in C’k { 
               for each edge <vk, v> in G 
                     Pk is extended to Pk+1 = <v1, v2, …, vk, v>; 
         } 
    } 
} 
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Fig.4 Algorithm for mining length-frequent patterns 

In the algorithm, Step 1 is to find out the maximum 
possible length of length-frequent patterns, which is 
limited by the maximum length of traversals. Step 2 
initializes candidate patterns of length 1 with the vertices 
of base graph. In Step 3, traversal database is scanned to 
obtain the support counts of candidate patterns. Step 4 is to 
determine support-frequent patterns if the length-support is 
greater than or equal to the specified minimum value. 
Equivalently, if the support count is greater or equal to the 
support bound.  In Step 5, the subroutine Pruning(Ck, G) is 
to prune candidate patterns as described in Fig. 3. Step 6 
generates new candidate patterns of length k+1 from the 
pruned candidate patterns of length k for next pass. 

4. Estimations of Support Bound 

Given a k-pattern Pk, l-pattern containing Pk is denoted by 
(Pk, l), where k < l ≤ u. The sbound(Pk, l), defined by 
Equation (7), should be estimated as described in the 
pruning algorithm of Fig. 3.  We propose two approaches 
for the estimation of such support bound.  

4.1 Estimation by All Vertices 

In this approach, we assume any (l-k) vertices in the base 
graph can be chosen to extend Pk to (Pk, l). Because 
sbound(Pk, l) decreases monotonically as l increases, we 
only need sbound(Pk, u) to decide the feasibility of Pk, 
where u is the length of longest traversal in the traversal 
database. 
 
For example, refer to Fig. 1 and Fig. 2, the 4-support 
bound for the pattern <A> is 

2
4

60.94) ,Asbound( =



 ×

=><  

Example.  
From the Fig. 1 and 2, we will show how the length-
frequent patterns can be mined from the traversal database, 
where |D| is 6. Suppose the minimum length-support 
threshold (minlsup) is 0.9. 
 
1. In the upperLimit() subroutine, the algorithm will scan 
the length of traversals, and returns the maximum length, 
which is 4 in this example. The maximum length is the 
upper limit of the length of length-frequent patterns. 
 
2. During the initialization step, the candidate patterns of 
length 1 are generated with all vertices of the base graph. 

C1 = {<A>, <B>, <C>, <D>, <E>, <F>} 
 
3. The algorithm repeats as follows. 

 
pattern 

P1 
scount(P1) sbound(P1) length-

frequent sbound(P1,4) feasible 

<A> 4 

6 

 

2 

 
<B> 3   
<C> 4   
<D> 1   
<E> 3   
<F> 1   

 
pattern 

P2 
scount(P2) sbound(P2) length-

frequent sbound(P2,4) feasible 

<A, B> 1 

3 

 

2 

 
<A, C> 2   
<B, C> 2   
<B, D> 0   
<C, E> 3   
<D, F> 0   
<E, D> 1   
<E, F> 1   

 
pattern 

P3 
scount(P3) sbound(P3) length-

frequent sbound(P3,4) feasible 

<A, C, E> 1 

2 

 

2 

 
<B, C, E> 2   
<C, E, D> 1   
<C, E, F> 1   

 
pattern 

P4 
scount(P4) sbound(P4

) 
length-

frequent 
<B, C, E, D> 0 2  
<B, C, E, F> 1  

The length-frequent patterns are {<C, E>, <B, C, E>}. 

4.2 Estimation by Reachable Vertices  

To prune unnecessary candidates as many as possible, the 
support bounds need to be estimated as high as possible. 
The previous approach, however, has a tendency to under-
estimate the support bounds. This tendency is mainly due 
to the non-consideration of the topology of base graph. 
Specifically, any vertices are chosen even though they can 
not be reached from the corresponding pattern. To cope 
with this problem, we will propose another approach which 
takes into account the graph topology, specifically 
reachable vertices. 
  
Definition 8. Given a base graph G, r-reachable vertices 
from a vertex v is all the vertices reachable from v within 
the distance r. 
 
Such r-reachable vertices can be regarded as the vertices 
within the radius r from v. Therefore, r-reachable vertices 
include all the (r-1)-reachable vertices. 
Given a k-pattern Pk, let R(Pk, l), k < l ≤ u, be the (l-k)-
reachable vertices from the head vertex of Pk. They can be 
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obtained by a level wise manner. For example, from Fig. 1, 
R(<A>, 2) is {B, C}, and R(<A>, 3) is {B, C, D, E}. 
 

Algorithm. Reachable vertices: R(Pk, l) 
 

       S = {head vertex of Pk} for l = k+1,  Nl-1 for l > k+1; 
       Nl = ∅;   // new reachable vertices 
       for each vertex v in S 
             for each edge <v, w> in G 
                    if w is not in Pk and R(Pk, l-1) and Nl,  

 then append w to Nl; 
       R(Pk, l) = R(Pk, l-1) ∪ Nl 

Fig.5 Algorithm for reachable vertices 

If R(Pk, l) is not empty, (l-k) vertices among the vertices in 
R(Pk, l) can be chosen to extend Pk to (Pk, l). Therefore, 
we can estimate sbound(Pk, l). For example, refer to Fig. 1 
and Fig. 2, the R(<A>, 2) is {B, C}, therefore the 2-
support bound for the pattern <A> is 

3
2

60.92) ,Asbound( =



 ×

=><  

If R(Pk, l) is empty, Pk cannot be extended to (Pk, l). 
Therefore, we cannot estimate sbound(Pk, l). For example, 
the R(<F>, 2) is empty, therefore the 2-support bound for 
the pattern <F> is not applicable. 

2) ,Fsbound( ><  : not applicable 
Example. 

pattern 
P1 

scount(P1) sbound(P1

) 
length-

frequent 
sbound(P1,l) feasible 

l = 2 l = 3 l = 4  
<A> 4 

6 

 3 - -  
<B> 3  3 - -  
<C> 4  3 - -  
<D> 1  3 × ×  
<E> 3  3 - -  
<F> 1  × × ×  

In the above table, ‘-’ denotes ‘no need’ and ‘×’ denotes ‘not applicable’. 
 

pattern 
P2 

scount(P2) sbound(P2

) 
length-

frequent 
sbound(P2,l) feasible 

l = 3 l = 4 
<A, B> 1 

3 

 2 2  
<A, C> 2  2 -  
<B, C> 2  2 -  
<B, D> 0  - -  
<C, E> 3  2 -  
<D, F> 0  - -  
<E, D> 1  2 ×  
<E, F> 1  × ×  

 
pattern 

P3 
scount(P3) sbound(P3) length-

frequent 
sbound(P3,l) feasible 

l = 4 
<A, C, E> 1 

2 

 2  
<B, C, E> 2  2  
<C, E, D> 1  2  
<C, E, F> 1  ×  

 
pattern 

P4 
scount(P4) sbound(P4) length-

frequent 
<B, C, E, D> 0 2  
<B, C, E, F> 1  

The length-frequent patterns are {<C, E>, <B, C, E>}. 

5. Experimental Results 

This section presents experimental results of the mining 
algorithm by comparing two support bound estimation 
approaches, All vertices and Reachable vertices, using 
synthetic dataset. During the experiment, base graph is 
generated synthetically according to the parameters, i.e., 
number of vertices and average number of edges per vertex. 
All the experiments use a base graph with 100 vertices and 
300 edges, i.e., 3 average edges per vertex. The number of 
traversals is 10,000 and the minimum length-support is 0.9. 
We generated six sets of traversals, in each of which the 
maximum length of traversals varies from 5 to 10. 

Fig. 6 shows the trend of the number of feasible 
patterns with respect to the max length of traversals. We 
measured the number of feasible patterns when the length 
of candidate patterns is (max length of traversals – 1). As 
shown in the figure, the number of feasible patterns for 
Reachable vertices is smaller than that of All vertices. The 
difference of the number of feasible patterns between two 
estimation approaches becomes smaller as the max length 
of traversals increases.  

 
Fig.6 Number of feasible patterns w.r.t diferrent max 

length of traversals 
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6. Conclusions 

This paper proposed new problem of graph traversal 
mining by considering length of patterns as well as 
frequency. With this length setting, mining algorithm 
should take into account the length of patterns in the 
measurement of support. To cope with the problem, we 
formalized new paradigm that is based on the notion of 
support bound. For the estimation of support bound, two 
approaches were devised, and then experimented. 
  
References 
[1] M.S. Chen, J.S. Park and P.S. Yu, “Efficient Data Mining 

for Path Traversal Patterns”, IEEE Trans. on Knowledge 
and Data Engineering, vol. 10, no. 2, pp. 209-221, Mar. 
1998.  

[2] A. Nanopoulos and Y. Manolopoulos, “Finding Generalized 
Path Patterns for Web Log Data Mining”, Proc. of East-
European Conf. on Advanced Databases and Information 
Systems (ADBIS), Sep. 2000. 

[3] A. Nanopoulos and Y. Manolopoulos, “Mining Patterns 
from Graph Traversals”, Data and Knowledge Engineering, 
vol. 37, no. 3, pp. 243-266, Jun. 2001. 

[4] S.D. Lee and H.C. Park, “Mining Weighted Frequent 
Patterns from Path Traversals on Weighted Graph”, 
International Journal of Computer Science and Network 
Security, vol. 7, no. 7, pp. 140-148, Apr. 2007. 

[5] R. Agrawal and R. Srikant, “Fast Algorithms for Mining 
Association Rules”, Proc. of the 20th VLDB Conference, 
1994. 

[6] C.H. Cai, W.C. Ada, W.C. Fu, C.H. Cheng and W.W. 
Kwong, “Mining Association Rules with Weighted Items”, 
Proc. of International Database Engineering and 
Applications Symposium (IDEAS), UK, Jul. 1998.  

 


