
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016

97

Manuscript received December 5, 2016
Manuscript revised December 20, 2016

Length-Frequent Pattern Mining from Graph Traversals

Hyu Chan Park
Department of Computer Engineering, Korea Maritime and Ocean University, Korea

Summary
Data mining is to discover valuable patterns from large data set,
such as item sets and graph traversals. This paper focuses on the
graph traversal, which is a sequence of vertices along edges on a
graph. Although there were a few works on the graph traversals,
they considered mainly the frequency of patterns. This paper
extends them by considering the length of patterns as well as
frequency. Under such length settings, traditional mining
algorithms can not be adopted directly any more. To cope with
the problem, this paper proposes new algorithm by adopting the
notion of support bound.
Key words:
Data mining, Graph traversal, Length-frequent pattern

1. Introduction

In the pattern mining problem, the value of pattern may be
defined in several ways. Although the simplest and
traditional one is the frequency of pattern, more valuable
one may be defined in other ways. The mining problem
this paper focus is defined as follows. Given a set of
traversals on a graph, discover all the valuable patterns
contained in the traversals, in which the value is measured
by the combination of length and frequency. Main issue on
such mining problem is how to generate candidates, from
which solutions can be obtained. Another issue is how to
keep the number of candidates as small as possible.
To cope with these kinds of issues, there have been some
works. Chen et al. [1] defined the problem of traversal
pattern mining, and then proposed algorithms with hashing
and pruning techniques. However, they did not consider
graph structure, on which the traversals occur. Nanopoulos
et al. [2, 3] proposed the problem of mining patterns from
graph traversals. They defined new criteria for the support
and subpath containment, and then proposed algorithms
with a trie structure. Although they considered the graph
on which traversals occur, they did not consider weight.
Lee and Park [4] extended the graph traversal problem to
the weight settings, in which weights are attached to the
vertices of graph. Such vertex weight may reflect the
importance of vertex. For example, each Web page may
have different importance which reflects the value of its
content. The mining algorithms for these kinds of problems
cannot be relied on the well-known Apriori algorithm [5]
any more. Instead, the notion of support bound [6] had
been adopted.

This paper further extends the problem of graph traversal
mining by considering the length of patterns. To cope with
this extension, we basically adopt the previous paradigm in
[4] as a whole, but revise its definitions and approaches.
Although overall foundation is similar to the previous one,
details are somewhat different.
This paper is organized as follows. Section 2 defines the
problem of length-frequent pattern mining. In Section 3,
we propose a mining algorithm based on the notion of
support bound. Section 4 includes two approaches for the
estimation of support bound used in the mining process. In
Section 5, we experiment and analyze the approaches on
synthetic data. Finally, Section 6 contains conclusion and
future works.

2. Length-frequent Pattern

Definition 1. Directed graph is a finite set of vertices and
edges, in which each edge joins an ordered pair of vertices.
Base graph is a directed graph, on which traversals occur.

For example, the following base graph has 6 vertices and 8
edges.

Fig. 1 Example of base graph

Definition 2. A traversal is a sequence of consecutive
vertices along a sequence of edges on a base graph. We
assume that every traversal is path, which has no repeated
vertices and edges. The length of a traversal is the number
of vertices in the traversal. A traversal database is a set of
traversals.

We restrict any traversal to be a path, because repeated
vertices or edges in a traversal may not contain useful
information in many cases, such as backward movements.
If a traversal has repeated vertices or edges, it can be
separated into several paths, such as maximal forward

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016 98

references [1]. The following traversal database has totally
6 traversals, each of which has an identifier and a sequence
of consecutive vertices.

Tid Traversal
1
2
3
4
5
6

<A>
<A, B>
<A, C>
<B, C, E>
<B, C, E, F>
<A, C, E, D>

Fig. 2 Example of traversal database

Definition 3. Subtraversal is any subsequence of
consecutive vertices in a traversal. If a pattern P is a
subtraversal of a traversal T, then we say that P is
contained in T, and vice versa T contains P.

For example, given a traversal of length 4, <B, C, E, F>,
there are only two subtraversals of length 3, <B, C, E> and
<C, E, F>. Note that non-consecutive sequences, such as
<B, C, F>, are not subtraversals.

Definition 4. The support count of a pattern Pk with length
k, denoted by scount(Pk), is the number of traversals
containing the pattern. The support of a pattern Pk,
denoted by support(Pk), is the fraction of traversals
containing the pattern. Given a traversal database D, let |D|
be the number of traversals.

D
)scount(P)support(P k

k = (1)

There is a well-known property on such support count and
support as follows.

Property 1. The support count and the support of a pattern
decrease monotonically as the length of the pattern
increases. In other word, given a k-pattern Pk and any l-
pattern containing Pk, denoted by (Pk, l), where l > k, then
scount(Pk) ≥ scount(Pk, l) and support(Pk) ≥ support(Pk,
l).

Definition 5. The length-support of a pattern Pk, denoted
by lsupport(Pk), is

)support(Pk
)support(P)length(P)lsupport(P

k

kkk

×=
×= (2)

Definition 6. A pattern Pk is said to be length-frequent,
when the length-support is greater than or equal to a given
minimum length-support (minlsup) threshold,

minlsup)lsupport(Pk ≥ (3)
For example, given a base graph and traversal database of
Fig. 1 and 2 with |D| is 6, and minlsup of 0.9, then the

pattern <B, C, E> is length-frequent since 3 × 2/6 = 1.0 ≥
0.9, but the pattern <B, C> is not since 2 × 2/6 = 0.7 < 0.9.
From equation (1), (2) and (3), a pattern P is length-
frequent when its support count satisfies:

k
Dminlsup

)scount(Pk
×

≥ (4)

We can consider the right hand side of (4) as the lower
bound of the support count for a pattern P to be length-
frequent. Such lower bound, called support bound, is given
by

 ×
=

k
Dminlsup

)sbound(Pk (5)

We take the ceiling of the value since the function
sbound(Pk) is an integer. From Equation (4) and (5), we
can say a pattern P is length-frequent when the support
count is greater than or equal to the support bound.

)sbound(P)scount(P kk ≥ (6)
Note that sbound(Pk) can be calculated from base graph
without referring traversal database. On the contrary,
scount(Pk) can be obtained by referring traversal database.

The problem concerned in this paper is stated as
follows. Given a directed graph (base graph) and a set of
path traversals on the graph (traversal database), find all
length-frequent patterns.

3. Length-frequent Pattern Mining

Traditional mining algorithms have been based on Apriori
algorithm [5]. The reason why Apriori algorithm works is
due to the downward closure property, which says all the
subsets of a large itemset must be also large. For the length
setting, however, it is not necessarily true for all the
subpatterns of a length-frequent pattern being length-
frequent. As in the previous example, although a pattern
<B, C> is a subpattern of the length-frequent pattern <B, C,
E>, it is not length-frequent. Therefore, Apriori algorithm
cannot be directly adopted for the mining of length-
frequent patterns. Instead, we will propose new approaches
by extending the notion of support bound [6].

3.1 Pruning by Support Bound

Pruning is most critical phase in mining process by
reducing the number of candidates as many as possible.
Such candidates that have no possibility to become length-
frequent in the future can be pruned. On the contrary, we
must keep such candidates that have a possibility to
become length-frequent in the future. Main concern is how
to decide such possibility.

Definition 7. A pattern Pk is said to be feasible when it has
a possibility to become length-frequent in the future if

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016

99

extended to longer patterns. In other words, when some
future patterns containing Pk will be possibly length-
frequent.
Now, the pruning problem is converted to the feasibility
problem. For the decision of such feasibility, we will
devise the support bound of longer patterns containing Pk.
Let the maximum possible length of length-frequent
patterns be u, which may be the length of longest traversal
in the traversal database. Given a k-pattern Pk, suppose l-
pattern containing Pk, denoted by (Pk, l), where k < l ≤ u.

We can derive the lower bound of the support count for l-
pattern to be length-frequent. Such lower bound, called l-
support bound of Pk, is given by

 ×
=

l
Dminlsup

l) ,sbound(Pk (7)

Lemma 1. A pattern Pk is feasible if scount(Pk) ≥
sbound(Pk, l) for some k < l ≤ u, but not feasible if
scount(Pk) < sbound(Pk, l) for all k < l ≤ u.

Proof. If scount(Pk) ≥ sbound(Pk, l), then although
scount(Pk) ≥ scount(Pk, l) by Property 1, there is still
possibility to become scount(Pk, l) ≥ sbound(Pk, l). It
means that (Pk, l) will possibly be length-frequent. On the
contrary, if scount(Pk) < sbound(Pk, l), then because
scount(Pk) ≥ scount(Pk, l) by Property 1, there is no
possibility to become scount(Pk, l) < sbound(Pk, l). It
means that (Pk, l) will definitely not be length-frequent.
If a pattern Pk is feasible then some l-patterns containing
Pk will be possibly length-frequent. In other word, Pk has a
possibility to be subpatterns of some length-frequent l-
patterns. Therefore, Pk must be kept to be extended to
longer patterns for possible length-frequent patterns in the
coming passes. On the contrary, if a pattern Pk is not
feasible, then all l-patterns containing Pk will not be
length-frequent. In other word, Pk certainly has no
possibility to be subpattern of any length-frequent l-
patterns. Therefore, Pk must be pruned.

For example, referring to Fig. 1 and Fig. 2, given a 2-
pattern <B, C>, suppose 3-pattern <B, C, v>. For the
additional vertex ‘v’, the 3-support bound of <B, C> is

2
3

60.93) ,CB,sbound(=

 ×

=><

It means if the support count of <B, C> is greater than or
equal to 2, some 3-patterns will be possibly length-frequent.
In other word, <B, C> has a possibility to be subpatterns of
some length-frequent 3-patterns. Because the support count
of the pattern <B, C> is actually 2, the pattern must be
extended to 3-patterns for possible length-frequent patterns.

According to Lemma 1, we can devise a pruning algorithm,
called ‘pruning by support bounds’, as follows.

Algorithm. Pruning by support bounds

 for each pattern Pk in candidates set Ck {
for (l = k+1; l ≤ u; l++) {

 estimate sbound(Pk, l);
 if (scount(Pk) ≥ sbound(Pk, l))
 break; // Pk is feasible. Keep it
 }
 if (l > u)
 Ck = Ck – {Pk}; // Pk is not feasible. Prune it
 }

Fig.3 Algorithm for pruning by support bounds

3.2 Mining Algorithm

By combing the pruning algorithm as a whole, we can
devise an algorithm for mining length-frequent patterns.
Fig. 3 shows the algorithm proposed in this paper, which
performs in a level-wise manner.

Algorithm. Mining length-frequent patterns

Inputs: Base graph G, Traversal database D, Minimum length-

support minlsup

Output: List of length-frequent patterns Lk
{
 // 1. maximum length of length-frequent patterns
 u = max(length(t)), t ∈ D;

 // 2. initialize candidate patterns of length 1
 C1 = V(G);
 for (k = 1; k ≤ u and Ck ≠ ∅; k++) {

 // 3. obtain support counts of candidate patterns
 for each pattern Pk ∈ Ck {
 for each traversal t ∈ D
 if Pk is contained in t, then scount(Pk)++;
 }

// 4. determine length-frequent patterns
 Lk = { Pk | Pk ∈ Ck, lsupport(Pk) ≥ minlsup};
 (equivalently, scount(Pk))≥
sbound(Pk))

// 5. prune candidate patterns
 C’k = Pruning(Ck, G);

 // 6. generate new candidate patterns for next pass

for each Pk = <v1, v2, …, vk> in C’k {
 for each edge <vk, v> in G
 Pk is extended to Pk+1 = <v1, v2, …, vk, v>;
 }
 }
}

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016 100

Fig.4 Algorithm for mining length-frequent patterns

In the algorithm, Step 1 is to find out the maximum
possible length of length-frequent patterns, which is
limited by the maximum length of traversals. Step 2
initializes candidate patterns of length 1 with the vertices
of base graph. In Step 3, traversal database is scanned to
obtain the support counts of candidate patterns. Step 4 is to
determine support-frequent patterns if the length-support is
greater than or equal to the specified minimum value.
Equivalently, if the support count is greater or equal to the
support bound. In Step 5, the subroutine Pruning(Ck, G) is
to prune candidate patterns as described in Fig. 3. Step 6
generates new candidate patterns of length k+1 from the
pruned candidate patterns of length k for next pass.

4. Estimations of Support Bound

Given a k-pattern Pk, l-pattern containing Pk is denoted by
(Pk, l), where k < l ≤ u. The sbound(Pk, l), defined by
Equation (7), should be estimated as described in the
pruning algorithm of Fig. 3. We propose two approaches
for the estimation of such support bound.

4.1 Estimation by All Vertices

In this approach, we assume any (l-k) vertices in the base
graph can be chosen to extend Pk to (Pk, l). Because
sbound(Pk, l) decreases monotonically as l increases, we
only need sbound(Pk, u) to decide the feasibility of Pk,
where u is the length of longest traversal in the traversal
database.

For example, refer to Fig. 1 and Fig. 2, the 4-support
bound for the pattern <A> is

2
4

60.94) ,Asbound(=

 ×

=><

Example.
From the Fig. 1 and 2, we will show how the length-
frequent patterns can be mined from the traversal database,
where |D| is 6. Suppose the minimum length-support
threshold (minlsup) is 0.9.

1. In the upperLimit() subroutine, the algorithm will scan
the length of traversals, and returns the maximum length,
which is 4 in this example. The maximum length is the
upper limit of the length of length-frequent patterns.

2. During the initialization step, the candidate patterns of
length 1 are generated with all vertices of the base graph.

C1 = {<A>, , <C>, <D>, <E>, <F>}

3. The algorithm repeats as follows.

pattern

P1
scount(P1) sbound(P1) length-

frequent sbound(P1,4) feasible

<A> 4

6

2

 3
<C> 4
<D> 1
<E> 3
<F> 1

pattern

P2
scount(P2) sbound(P2) length-

frequent sbound(P2,4) feasible

<A, B> 1

3

2

<A, C> 2
<B, C> 2
<B, D> 0
<C, E> 3
<D, F> 0
<E, D> 1
<E, F> 1

pattern

P3
scount(P3) sbound(P3) length-

frequent sbound(P3,4) feasible

<A, C, E> 1

2

2

<B, C, E> 2
<C, E, D> 1
<C, E, F> 1

pattern

P4
scount(P4) sbound(P4

)
length-

frequent
<B, C, E, D> 0 2
<B, C, E, F> 1

The length-frequent patterns are {<C, E>, <B, C, E>}.

4.2 Estimation by Reachable Vertices

To prune unnecessary candidates as many as possible, the
support bounds need to be estimated as high as possible.
The previous approach, however, has a tendency to under-
estimate the support bounds. This tendency is mainly due
to the non-consideration of the topology of base graph.
Specifically, any vertices are chosen even though they can
not be reached from the corresponding pattern. To cope
with this problem, we will propose another approach which
takes into account the graph topology, specifically
reachable vertices.

Definition 8. Given a base graph G, r-reachable vertices
from a vertex v is all the vertices reachable from v within
the distance r.

Such r-reachable vertices can be regarded as the vertices
within the radius r from v. Therefore, r-reachable vertices
include all the (r-1)-reachable vertices.
Given a k-pattern Pk, let R(Pk, l), k < l ≤ u, be the (l-k)-
reachable vertices from the head vertex of Pk. They can be

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016

101

obtained by a level wise manner. For example, from Fig. 1,
R(<A>, 2) is {B, C}, and R(<A>, 3) is {B, C, D, E}.

Algorithm. Reachable vertices: R(Pk, l)

 S = {head vertex of Pk} for l = k+1, Nl-1 for l > k+1;
 Nl = ∅; // new reachable vertices
 for each vertex v in S
 for each edge <v, w> in G
 if w is not in Pk and R(Pk, l-1) and Nl,

 then append w to Nl;
 R(Pk, l) = R(Pk, l-1) ∪ Nl

Fig.5 Algorithm for reachable vertices

If R(Pk, l) is not empty, (l-k) vertices among the vertices in
R(Pk, l) can be chosen to extend Pk to (Pk, l). Therefore,
we can estimate sbound(Pk, l). For example, refer to Fig. 1
and Fig. 2, the R(<A>, 2) is {B, C}, therefore the 2-
support bound for the pattern <A> is

3
2

60.92) ,Asbound(=

 ×

=><

If R(Pk, l) is empty, Pk cannot be extended to (Pk, l).
Therefore, we cannot estimate sbound(Pk, l). For example,
the R(<F>, 2) is empty, therefore the 2-support bound for
the pattern <F> is not applicable.

2) ,Fsbound(>< : not applicable
Example.

pattern
P1

scount(P1) sbound(P1

)
length-

frequent
sbound(P1,l) feasible

l = 2 l = 3 l = 4
<A> 4

6

 3 - -
 3 3 - -
<C> 4 3 - -
<D> 1 3 × ×
<E> 3 3 - -
<F> 1 × × ×

In the above table, ‘-’ denotes ‘no need’ and ‘×’ denotes ‘not applicable’.

pattern
P2

scount(P2) sbound(P2

)
length-

frequent
sbound(P2,l) feasible

l = 3 l = 4
<A, B> 1

3

 2 2
<A, C> 2 2 -
<B, C> 2 2 -
<B, D> 0 - -
<C, E> 3 2 -
<D, F> 0 - -
<E, D> 1 2 ×
<E, F> 1 × ×

pattern

P3
scount(P3) sbound(P3) length-

frequent
sbound(P3,l) feasible

l = 4
<A, C, E> 1

2

 2
<B, C, E> 2 2
<C, E, D> 1 2
<C, E, F> 1 ×

pattern

P4
scount(P4) sbound(P4) length-

frequent
<B, C, E, D> 0 2
<B, C, E, F> 1

The length-frequent patterns are {<C, E>, <B, C, E>}.

5. Experimental Results

This section presents experimental results of the mining
algorithm by comparing two support bound estimation
approaches, All vertices and Reachable vertices, using
synthetic dataset. During the experiment, base graph is
generated synthetically according to the parameters, i.e.,
number of vertices and average number of edges per vertex.
All the experiments use a base graph with 100 vertices and
300 edges, i.e., 3 average edges per vertex. The number of
traversals is 10,000 and the minimum length-support is 0.9.
We generated six sets of traversals, in each of which the
maximum length of traversals varies from 5 to 10.

Fig. 6 shows the trend of the number of feasible
patterns with respect to the max length of traversals. We
measured the number of feasible patterns when the length
of candidate patterns is (max length of traversals – 1). As
shown in the figure, the number of feasible patterns for
Reachable vertices is smaller than that of All vertices. The
difference of the number of feasible patterns between two
estimation approaches becomes smaller as the max length
of traversals increases.

Fig.6 Number of feasible patterns w.r.t diferrent max

length of traversals

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016 102

6. Conclusions

This paper proposed new problem of graph traversal
mining by considering length of patterns as well as
frequency. With this length setting, mining algorithm
should take into account the length of patterns in the
measurement of support. To cope with the problem, we
formalized new paradigm that is based on the notion of
support bound. For the estimation of support bound, two
approaches were devised, and then experimented.

References
[1] M.S. Chen, J.S. Park and P.S. Yu, “Efficient Data Mining

for Path Traversal Patterns”, IEEE Trans. on Knowledge
and Data Engineering, vol. 10, no. 2, pp. 209-221, Mar.
1998.

[2] A. Nanopoulos and Y. Manolopoulos, “Finding Generalized
Path Patterns for Web Log Data Mining”, Proc. of East-
European Conf. on Advanced Databases and Information
Systems (ADBIS), Sep. 2000.

[3] A. Nanopoulos and Y. Manolopoulos, “Mining Patterns
from Graph Traversals”, Data and Knowledge Engineering,
vol. 37, no. 3, pp. 243-266, Jun. 2001.

[4] S.D. Lee and H.C. Park, “Mining Weighted Frequent
Patterns from Path Traversals on Weighted Graph”,
International Journal of Computer Science and Network
Security, vol. 7, no. 7, pp. 140-148, Apr. 2007.

[5] R. Agrawal and R. Srikant, “Fast Algorithms for Mining
Association Rules”, Proc. of the 20th VLDB Conference,
1994.

[6] C.H. Cai, W.C. Ada, W.C. Fu, C.H. Cheng and W.W.
Kwong, “Mining Association Rules with Weighted Items”,
Proc. of International Database Engineering and
Applications Symposium (IDEAS), UK, Jul. 1998.

