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Abstract 
The importance of data mining in general and classification in 
particular has increased in recent years due to the overwhelming 
amount of digital data that is produced world-wide on a daily basis. 
In classification, data tuples are mapped to a limited number of 
classes. The classifier learns (or derives) a classification model 
from a pre-classified dataset. The learned classification model can 
be represented in different forms such as a decision tree, set of 
rules, or support vector machines, to name a few. After the 
classifier completes the learning phase, it can predict the class of 
newly added data based on the model that it learned. Quite often a 
concept drift may occur due to changes in the environment, style, 
trend, or for many other reasons. Data that used to map to, say, 
class_a before the drift, now maps to class_b. But based on the 
knowledge embodied in the model, the system will still 
wrongfully predict class_a for the same data. This difference 
between what the model would predict and the actual 
classification is a sign that a concept drift has occurred and the 
classification model has become obsolete. In this case, a new 
model needs to be generated. In this paper we introduce a new 
efficient algorithm for detecting the occurrence of a concept drift 
and introduce a way of measuring the intensity of the drift. 
Measuring the intensity of the drift is important because it impacts 
how we may choose to deal with it going forward. 
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1. Introduction 

Classification maps each data tuple in a dataset to the most 
appropriate class selected from among a small set of classes 
[1, 2, 3, 4, 5]. A column in the dataset, usually referred to 
as class label, is used to store the class name of each tuple. 
The main goal of classification and prediction is to be able 
to predict the classes of new tuples that have not been 
classified yet. This is usually performed by passing through 
a learning phase in which the system learns the 
classification criteria from a pre-classified dataset (i.e., a 
training set). The learned criteria is referred to as the 
classification model. Once the system learns the 
classification model from the training set, it can use it as a 
basis to predict the classes of newly inserted tuples [6, 7]. 
A problem occurs if the distribution of data with respect to 
the classes changes over time. Meaning that real world data 
that used to map to class_a, for example, now maps to 
class_b. But a system that learned the classification model 

before the change in data distribution will continue to 
predict class_a for the same piece of data. Thus a mismatch 
occurs between the classification that the system predicts 
and the actual classification. This is what is called concept 
drift [8, 9, 10]. Concept drift, if not detected and handled 
properly, is considered a major problem in classification 
systems because it results in producing erroneous 
predictions. 
To further demonstrate the effect of concept drift on a 
specific application, consider the sample data of Table 1. 
Suppose that this data is for a JobFinder classifier that is 
used in a recruiting agency. We assume that the classifier 
has already learned the model from a pre-classified training 
set. What JobFinder does is that it uses the job applicant’s 
information to predict whether this applicant is going to find 
a job fairly quickly or he/she will take a long time. The 
classifier’s predictions help the recruiting agency plan its 
priorities by knowing what to expect ahead of time. The 
information based on which the system makes its prediction 
are Age, Gender (G), Major, and Years_of_Experience 
(YE). The column named PCL (Predicted Class Label) 
shows the system’s prediction of how long it expects the 
applicant to take before finding a job. Three different 
classes exist in PCL, namely, short (less than two weeks), 
medium (two to six weeks), and long (over six weeks). 
Later, when the job seeker finds a job, the actual 
classification becomes known and is recorded in the column 
named ACL (Actual Class Label). 
We notice that nine out of the first ten tuples in Table 1 have 
a PCL class that matches the ACL class. The only exception 
is row number 4 where the predicted class was short 
whereas the actual class was medium. This means that the 
classification model was 90% accurate in its predictions 
(i.e., the erroneous predictions where 10%) for the first ten 
applicants. On the contrary, for the last ten applicants in the 
table (rows 11 through 20), the accuracy was 40% (i.e., the 
error rate was 60%). This indicates that a drift has occurred 
in the data distribution relative to the classes in the last 10 
tuples in Table 1 because the accuracy is very low. This 
concept drift can be due to many factors. For example 
certain jobs that were very hot in the past have become 
saturated recently. Another reason could be that universities 
have recently started to incorporate extra special training in 
their curriculum in order to better prepare their graduates, 
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which results in new graduates being able to find jobs much 
faster than used to be. 

Table 1: Sample data for a JobFinder application 
RID Age G Major YE PCL ACL 

1 middle f marketing 3 - 6 medium medium 
2 youth f IT 3 - 6 medium medium 
3 youth m engineering < 3 long long 
4 senior m IT > 6 short medium 
5 youth f nursing 3 - 6 medium medium 
6 senior m marketing > 6 short short 
7 youth m accounting < 3 long long 
8 youth f marketing < 3 long long 
9 middle f accounting > 6 short short 

10 youth f nursing 3 - 6 medium medium 
11 youth m IT < 3 long long 
12 youth m engineering < 3 long medium 
13 youth m marketing < 3 long medium 
14 middle f accounting 3 - 6 medium medium 
15 middle f accounting > 6 short short 
16 youth m IT < 3 long medium 
17 youth m IT < 3 long medium 
18 middle f engineering 3 - 6 medium medium 
19 youth m marketing < 3 long medium 
20 senior m engineering > 6 short medium 

Once a concept drift is detected, the system has to be 
retrained. For example JobFinder classifier can be given the 
last 10 tuples in Table 1 along with the actual classification 
in the ACL column (i.e. without the PCL column) as a 
training set. From this training set the system can re-learn 
the classification model in order to be more accurate in its 
future predictions. In real-world data, the number of tuples 
in a table like Table 1 can be by the thousands or even 
millions depending on the type of application it is used for. 
Several algorithms and approaches have been reported in 
the literature for detecting the existence of concept drift in 
data [11, 12, 13]. The contribution of this paper is twofold. 
First, we introduce a new concept drift detection algorithm 
that is based on the idea of binary search to be able to find 
the drift location in a dataset. This is particularly useful for 
huge datasets since binary search has better performance 
than linear search methods. The second contribution of the 
paper is that we introduce a way to quantify and measure 
the drift intensity. The drift intensity can be large if the error 
rate after the point where the drift occurred is high. Also the 
drift intensity can be low or medium. To our knowledge, 
none of the existing drift detection techniques provides a 
way to measure the intensity of the drift. 
Knowing the drift intensity can be helpful in that it provides 
some guidance as to how the concept drift should be 
handled. For example if the drift intensity is high, the 
system may choose to totally discard the old data (data 
before the drift point) when it regenerates a new 
classification model. On the other hand, if the drift intensity 
is low, the system may choose to give more weight to the 
data after the drift point and, at the same time, take into 
consideration data before the drift but give it less weight. 
Therefore the newly built classification model is influenced 

by data after the drift position more than it is influence by 
data before the drift position. This is useful when a lot of 
knowledge is embodied in the classifications performed 
before the drift and the user does not want to lose such 
knowledge.  
The remainder of this paper is organized as follows. In 
Section 2 we provide a survey of related work. Section 3 
describes the new algorithm used for detecting concept drift. 
Section 4 presents the formulas used to compute the Drift 
Intensity. Implementation results are shown in Section 5. 
Finally, conclusions are given in Section 6. 

2. Related Work 

In recent years, several studies have tried to come up with 
ways to detect the phenomenon of concept drift. The drift 
detection approach refers to the techniques used for explicit 
drift detection. The purpose of a drift detection technique is 
to identify the location in the dataset where a drift has 
occurred. Below is a brief description of some of the 
existing concept drift detection techniques.  
The approach used in [11] is based on Statistical Process 
Control (SPC), which is standard statistical mechanisms to 
control and monitor the quality of a product through a 
continuous manufacturing sector. The SPC considers 
learning model as a process, and observers the evolution of 
this task. The SPC can be implemented to measure the 
change rate as interval between warning and uncontrolled, 
where short intervals indicate fast drifts, and longer 
intervals indicate slower drifts. The change rate can also be 
measured as the rate errors to the number of instances 
through warning. The SPC depends on the estimates of the 
error variance to assign the action bounds, which shrink as 
the trust of the error estimates raises. Other drift detection 
methods based on SPC are proposed in [14, 15]. 
The authors in [12] use an Exponentially Weighted Moving 
Average (EWMA) for detecting concept drift to monitor the 
misclassification rate of a classifier. EWMA calculates a 
recent estimate of the error rate, µt, by gradually down-
weighting older data: Z0=µ0, Zt = (1 - λ)Zt-1 + λNt , t > 0, 
where Nt is the error at the current instance. It can be 
displayed that, independently of the distribution of the Xt 
variables, the mean and standard deviation of Zt equal to: 

µZt = µ t , σZt = � 𝜆𝜆
𝜆𝜆−2

 (1 − (1 − 𝜆𝜆)2𝑡𝑡) 𝜎𝜎𝑥𝑥 , where 𝜎𝜎𝑥𝑥R  is the 

standard deviation. Suppose that before the change point 
that µ t = µ0 , and the EWMA estimate Zt will fluctuate 
around this value. When a change occurs, the value of µ t 
changes to µ1 , and Zt will react to this by diverging away 
from µ0 and towards µ1. This can be used for drift detection 
by flagging that a drift has occurred when: Zt  > µ0 + LσZt , 
where L, the control limit, determines how far Zt must 
diverge from µ0 before the change alarm is flagged. 
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 In [13], the authors present another approach for detecting 
drift by monitoring distribution on two different time-
windows. This method typically uses a fixed bookmark 
window that summarizes the past information with a sliding 
detection window over the most recent instances. These two 
windows are compared over distributions with statistical 
tests based on the Chernoff  bound to decide whether the 
two distributions are not equal. The window can monitor 
single variable or multivariate raw data (independently for 
each class). The VFDTc [16] came in the same line. It has 
the capacity to transact with drift by constantly monitoring 
differences between two distribution classes. 

In [17], the authors present an entropy-based weight to 
measure the distribution difference between two sliding 
windows including respectively older and most recent 
instances. If the distributions are similar, the result of the 
entropy measure will point in a value of 1, and if they are 
completely different the result of the entropy measure will 
point in value of 0. The entropy measure is constantly 
monitored and observed the drift over time, and drift is 
marked when the entropy measure decreases under a given 
fixed user defined threshold. Another examples include 
drift detection methods proposed by [18, 19]. They use the 
Kullback-Leibler (KL) difference to measure the distance 
between the likelihood distributions of two windows (old & 
recent) to detect potential drifts. 

The ADaptive sliding WINdow (ADWIN) [20, 21] present 
another approach for detecting drift using a sliding window. 
The inputs of the algorithm are a confidence value δ ϵ (0,1), 
and let x1, x2, x3, ... , xt be a sequence of real values. Each 
xt is generated according to some distribution Dt, 
independently for every t. Denote as ut the expected value 
for xt when it is drawn according to Dt. ADWIN assumes 
that xt is always bounded in [0,1], by an easy re-scaling, 
which can handle any value in which the interval is known 
[a, b] such that a ≤ xt ≤ b with probability 1. Nothing else 
is known about the sequence of distribution Dt; in particular, 
µt is unknown for all t. 

The concept behind ADWIN can be formatted like the 
following: whenever two big enough sub windows of W 
show distinct enough averages, one can conclude that the 
corresponding expected values are different, and the older 
(sub) window is dropped. Generally, large enough and 
distinct enough are translated into the computation of a cut 
value ϵc (which rely on δ, the length of the sub windows, 
and the averages of their contents). In another words, W is 
kept as long as possible while the null hypothesis µt has 
remained constant in W is sustainable up to confidence δ. 

3. Concept Drift Detection  

This section provides a description of a new detection 
algorithm called Binary Concept Drift Detection (BCDD) 

algorithm that we propose for detecting the existence of a 
concept drift. The BCDD algorithm is meant to be 
especially useful for large datasets in Big Data applications 
because it adopts the binary search approach. 

3.1 Overview of the BCDD Algorithm 

This algorithm finds the beginning of a drift and then 
measures the drift intensity (DI) value. The following are 
the advantages of BCDD algorithms existing algorithms:  

1) The BCDD algorithm uses the binary search technique 
for detecting the phenomenon of concept drift, which is 
unlike other existing algorithms [11, 12, 21]. The binary 
search technique is fast and has a time complexity of O 
(log n). This gives a performance advantage when the 
size of data is huge. The BCDD is capable of using 
binary search because data in the dataset is ordered 
based on the insert timestamp. 

2) Not only that the BCDD algorithm detects the existence 
of a drift, but it also measures its intensity. The DI value 
can be used later at the time of handling the drift and re-
learning the model. If DI is high, much more weight is 
given to the data after the drift as compared to the weight 
given to the data before the drift. This means that data 
after the drift has a much larger influence on the newly 
generated classification model than data before the drift. 
On the other hand, if DI is low then data after the drift 
is given a moderately higher influence than data before 
the drift. Handling the concept drift by using DI is 
beyond the scope of this paper and is part of a future 
research.  

Before describing the BCDD algorithm, we define some 
terms that are used by the algorithm. 

1) ER (Error Rate): represents the error rate found in the 
predicted classifications (PCL) as compared to the 
actual classifications. 

2) TER (Tolerated Error Rate): represents the acceptable 
tolerated rate of inaccuracy. A rate above TER is 
considered a drift whereas a rate below TER is treated as 
just temporary noise.  

3) We use a Begin Window (WBegin) and an End Window 
(WEnd) as sample windows that will be examined during 
the detection process. WBegin is a set of rows taken at the 
beginning of a dataset, whereas WEnd is a set of rows 
taken at the end of the dataset. 

4) The size (WSize) of WBegin or WEnd is defend based on 
the following criteria. First, if the dataset contains more 
than 50,000 tuples, WSize is selected to be 0.2% of the 
size of the dataset. Second, if the dataset contains less 
than or equal to 50,000 tuples, WSize is fixed at 100 
tuples. We think that 0.2% for a window size is 
sufficient in large datasets. A dataset of 1M rows can 
have a window size of 2000 rows, which is considered a 
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descent sample sufficient for assessing the classification 
accuracy. However a size other than 0.2% can be 
selected if needed. 

5) As long as ER is less than TER, the algorithm assumes 
there is no concept drift. If ER is larger then TER, this 
indicates that the inaccuracy rate is higher than what is 
permissible, which in turn indicates the existence of a 
concept drift. The value of TER is supplied to the system 
by the user and depends on the type of application. Some 
applications may tolerate higher rate of inaccuracy than 
others. 

Before explaining the details of the flowchart of the BCDD 
algorithm as shown in Figure 1, we first give a brief 
overview of how it works. At the beginning, the BCDD 
algorithm divides the input dataset into two halves, and 
identifies WEnd at the end of the first half. It then examines 
the ER value within WEnd. If the value of ER is greater than 
TER, then the algorithm concludes that a concept drift 
has happened somewhere within in the first half. Therefore 
the algorithm continues searching the first half by further 
dividing it into two halves and repeating the process. On the 
other hand, if ER is less than TER, this means that the first 
half is drift-free and the algorithm moves to examine the 
second half of the dataset. It identifies WBegin at the 
beginning of the second half. If the data within WBegin 
shows a drift (by examining ER and comparing it with TER), 
then the algorithm concludes that a concept drift has started 
from WBegin of the second half. However if data within the 
WBegin is drift-free, the second half is divided into two 
halves and the process is repeated. 

3.2 Flowchart and Pseudo Code of the Algorithm  

Figure 1 shows the flowchart of the BCDD algorithm. At 
the very beginning of the algorithm, the size of WBegin and 
WEnd windows is determined based on the number of rows 
in the entire dataset. The algorithm receives the dataset 
form the system and declares new variables named as 
Input_DS and P. Input_DS is a variable that is assigned the 
dataset that will be used in the detection process. Input_Ds 
is initially set to equal the entire dataset, but later it will be 
assigned the appropriate half when the algorithm starts to 
divided the dataset. The other input, P, is the position where 
the drift has occurred, which is initially set to zero. The 
algorithm keeps updating P until it finishes. The final value 
of P is where the drift has occurred. If P stays zero till the 
end, then the entire dataset is drift-free.  

The algorithm then checks if the size of the Input_DS is 
large enough to be divided into two halves. If true, the 
Input_DS is divided into two halves. Following that, the 
algorithm selects WEnd of the 1st half and examines ER 
within this window. If the value of ER is greater than TER, 
the algorithm concludes that the concept 
drift has happened somewhere within the 1st half. Then, the 

next step is to set P to a new value, which is the row at the 
beginning of the window WEnd. If the data at the 1st half is 
large enough for further division, it will be divided and the 
process is repeated. Otherwise, the algorithm has identified 
the location of the drift.  

 
Figure 1: Flowchart of the BCDD algorithm 

If the data within WEnd of the 1st half, in any one of the 
iterations, shows no concept drift has occurred (since ER ≤ 
TER), then the algorithm moves to the 2nd half and selects 
WBegin of the 2nd half. After that, the algorithm examines 
ER inside WBegin. If the data within WBegin shows no drift 
has occurred (since ER ≤ TER), then the algorithm resets the 
Input_DS with the data of the 2nd half and re-sends the 
Input_DS to the decision diamond at the top and the process 
is repeated. If in any of these iteration we reach a point 
where the size of Input_DS < 2 * WSize, looping ends and 
the algorithm proceeds to exist. Before it exists, it checks to 
see if P > 0 (meaning a drift position has been identified), 
and in this case it calls the function Comput_DI, which  
computes the drift intensity based on the formulas 
introduced in Section 4. Otherwise the algorithm exists with 
a value of P = 0. A value of “P = 0” is used as a flag that 
indicates that no drift has occurred.  
Figure 2 shows the pseudo code of the BCDD algorithm. It 
works similar to the logic explained for the flowchart.  
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BCDD algorithm 
Inputs: • DSet  , (Dataset) List of data {x1, . . . , xn } with 

Predict Class Labels (PCL) {y1 , . . . , yn} and Actual 
Class Labels (ACL) {z1 , . . . , zn}; 

• TER  , Tolerated Error Rate; 
• P = 0; Initially to be Zero. 
• DI = 0; Initially to be Zero. 

 

Method:   
(1) Input_DS = DSet; 
(2) WSize = Set window size based on Input_DS; 
(3) WEnd, WBegin; Declare windows. 
(4) While Input_DS.Count > WSize * 2 do 
(5) Divide Input_DS into 2 halves and use Ceiling function 

for 1st half to round up to the next number; 
(6) WEnd  = Select WEnd of 1st half; 
(7) if ER of WEnd  > TER then  
(8) P = identify the beginning of drift in WEnd; 
(9) Input_DS = 1st half; 
(10) else  
(11) WBegin  = Select WBegin of the 2nd half; 
(12) if ER of WBegin > TER then  
(13) Input_DS = WBegin; 
(14) P = identify the beginning of drift in WBegin; 
(15) else  
(16) Input_DS = 2nd half; 
(17) end if 
(18) end if 
(19) end while 
(20) if P > 0 then 
(21) DI = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝐷𝐷𝐷𝐷(𝑃𝑃); 
(22) end if 
Output : P identifies the beginning of drift; DI value; 

Figure 2: Pseudo-code of the BCDD algorithm 

4. Drift Intensity (DI)  

This section introduces the formulas that can be used to 
measure the drift intensity (DI). DI measures the intensity 
of a drift of the underlying data relative to their classes. The 
DI value has special significance because, first, it gives an 
indication of how sever the drift is, and, second, it can be 
used to guide the drift handling process. A very sever drift 
as measured by DI may be handled differently from a mild 
Drift. 

4.1 Measuring DI 

To measure DI, we have developed a set of mathematical 
equations that can be used for that purpose. What we want 
to do is take a sample subset of the dataset from before the 
drift location and another sample subset from the portion 
that is after the drift location. We will use the error rate (i.e. 
the rate of discrepancies between the predicted classes and 
the actual classes) in both subsets as a way to measure the 
drift intensity.  

Let 𝐷𝐷𝐵𝐵𝐵𝐵  be a sample subset from the dataset before drift 
location and let 𝐷𝐷𝐴𝐴𝐴𝐴 be a sample subset from the dataset 
after drift location. The size that we use for each of these 
sample subsets can be around 0.5% of the entire dataset, but 

other sizes can be used. Let 𝑛𝑛𝐵𝐵𝐵𝐵  be the number of data 
tuples in 𝐷𝐷𝐵𝐵𝐵𝐵 , and 𝑛𝑛𝐴𝐴𝐴𝐴R be the number of data tuples in 
𝐷𝐷𝐴𝐴𝐴𝐴 . Let 𝑒𝑒𝐵𝐵𝐵𝐵 be the number of inaccurate classifications 
in 𝐷𝐷𝐵𝐵𝐵𝐵 , and 𝑒𝑒𝐴𝐴𝐴𝐴  be the number of inaccurate 
classifications in 𝐷𝐷𝐴𝐴𝐴𝐴R. 
We assume that the sizes of the samples 𝐷𝐷𝐵𝐵𝐵𝐵 and 𝐷𝐷𝐴𝐴𝐴𝐴  are 
sufficient to be a good representative sample of the rows 
before the drift and those after the drift, respectively. The 
reason for choosing samples instead of the entire dataset is 
to avoid scanning the entire dataset and thus improve the 
performance. Let the rate of errors in 𝐷𝐷𝐵𝐵𝐵𝐵  and in 𝐷𝐷𝐴𝐴𝐴𝐴 be 
𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵  and 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴, respectively. 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵  and 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴  can be 
computed as shown in Equation 1 and Equation 2, 
respectively. 

𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵 =  
𝑒𝑒𝐵𝐵𝐵𝐵
𝑛𝑛𝐵𝐵𝐵𝐵

 …. (1) 

𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 =  
𝑒𝑒𝐴𝐴𝐴𝐴
𝑛𝑛𝐴𝐴𝐴𝐴

 …. (2) 

We expect the value of DI to be higher if 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴  is higher. 
Also we expect DI to be higher of 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵  is lower. In other 
words, DI is a directly proportional to 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴  and inversely 
proportional to 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵 . Therefore DI can be expressed as 
shown in Equation 3. 

𝐷𝐷𝐼𝐼 =  𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴
𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵

        …. (3) 

However, since the number resulting from dividing 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴  
over 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵  can be a very large number, we modify 
Equation 3 by using log2 to attenuate the resulting value. 
The resulting formula is shown in Equation 4.  

𝐷𝐷𝐷𝐷 = log2
𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴
𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵

 =  log2(𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴) − log2(𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵) (4) 

We observe that in Equation 4 we need to avoid the 
occurrence of a zero in the denominator when 𝑒𝑒𝐵𝐵𝐵𝐵 is zero. 
Therefore we modify Equation 1 by adding one fictitious 
erroneous classification to the numerator. Hence, we 
replace Equation 1 with Equation 5 shown below.  

𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵 =  
𝑒𝑒𝐵𝐵𝐵𝐵 + 1
𝑛𝑛𝐵𝐵𝐵𝐵

 ….(5)  

In conclusion, to compute DI we need to find the values of 
𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵  and 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴  from Equations 5 and 2, then substitute 
in Equation 4. The following subsection shows an example. 

4.2 Example of Applying DI Equations  

Assume a dataset contains 1.5M data rows. The dataset has 
been sent to the BCDD algorithm for detecting if there is a 
drift. The BCDD algorithm returned that there is a drift in 
the dataset somewhere in the third quarter of the dataset. 
Assume that the size of the sample subsets 𝐷𝐷𝐵𝐵𝐵𝐵 and 𝐷𝐷𝐴𝐴𝐴𝐴  
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contain 8000 rows each (i.e., around 0.5% or the dataset). 
Also, assume that the number of inaccurate classifications 
in 𝐷𝐷𝐵𝐵𝐵𝐵 is 300 and the number of inaccurate classifications 
in 𝐷𝐷𝐴𝐴𝐴𝐴 is 2000. This data is summarized in Table 2 below.  

Table 2: Errors before and after a drift 

 No. of  
elements 

No. of inacurate  
prediction 

Before Drift 𝑛𝑛𝐵𝐵𝐵𝐵 = 8,000 𝑒𝑒𝐵𝐵𝐵𝐵 = 300 
After Drift 𝑛𝑛𝐴𝐴𝐴𝐴 = 8,000 𝑒𝑒𝐴𝐴𝐴𝐴 = 2000 

Substituting in Equations 2 and 5 to obtain: 

𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵 =  
𝑒𝑒𝐵𝐵𝐵𝐵 + 1
𝑛𝑛𝐵𝐵𝐵𝐵

 =
301

8,000
= 0.0376 

𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 =  
𝑒𝑒𝐴𝐴𝐴𝐴
𝑛𝑛𝐴𝐴𝐴𝐴

 =
2000
8,000

= 0.25 

And substituting these results in Equation 4, we obtain. 

𝐷𝐷𝐷𝐷 = log2
𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴
𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵

 = log2 6.65 =  2.73 

4.3 Zones of the DI 

Here we divide the DI range of values into three zones. If 
DI is from 0.1 to 3 then we assume that DI falls in the low 
drift intensity zone (ZoneL). If DI is from 3 to 6 then DI 
falls in the medium drift intensity zone (ZoneM). And 
finally, any DI value above 6 is considered to be in the zone 
of high DI (ZoneH). Table 3 summarizes these zones.  

Table 3: Zones of the DI 
Zones DI range Intensity of drift 
𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝑳𝑳 0.1 –  3 Low drift intensity 
𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝑴𝑴 3 - 6 Medium drift intensity 
𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝑯𝑯 Above 6 High drift intensity 

5. Implementation and Results 

This section discusses the implementation of the BCDD 
algorithm and the performance results obtained when 
comparing it with another popular detection algorithm. Our 
goal is to demonstrate that a detection algorithm based on 
the binary search technique such as BCDD achieves better 
performance than other algorithms.  
For this purpose, a classification system was developed for 
implementing and evaluating the BCDD algorithm. The 
classification system was developed on a machine with 
the specifications shown in Table 4. 

Table 4: Specifications of experimental environment 
System Model HP ProBook 450 G1 

Operating System   Microsoft Windows 10 Pro 64-bit 
Processor Intel(R) Core(TM) i7-4702MQ CPU @ 

2.20GHz, 2201 Mhz, 4 Core(s), 8 
Logical Processor(s) 

RAM Installed Physical Memory  8.00 GB 
In our implementation, the tools and programs that were 
used are as follows, 

• Microsoft .Net Framework Version 4.6. 
• Microsoft Visual Studio Enterprise 2015. 
• C# Programming Language. 
• SQL Server 2016. 

Many experiments were conducted to evaluation the 
performance of the BCDD algorithm and compare it with 
another algorithm, ADWIN algorithm [20, 21]. The 
following reasons justify the selection of ADWIN 
algorithm for comparison with the BCDD algorithm. 
• The ADWIN algorithm proved its robustness in detecting 

concept drift [22, 23]. 
• The ADWIN algorithm is incorporated into several 

predictive and clustering methods, and is integrated with 
statistical approaches such as Kernel Density Estimation 
(KDE) [24, 25]. 

5.1 Datasets Used in Evaluation 

The dataset that we used to conduct our experiments is 
based on a dataset that we imported from RapidMiner [26]. 
RapidMiner is a public software platform that is widely 
used to provide data mining tools for research and 
educational purposes. The dataset that was imported is 
called "Deals" and it contains about 1,000 tuples. The data 
in the “Deals” dataset is about customers’ predictions. It is 
basically used to predict whether a current customer is 
likely to continue to be a future customer. The prediction 
depends on a set of customer’s attributes such as: age, 
gender, and payment method. The attribute "future 
customer" is the class label. Table 5 shows sample data from 
the “Deals” dataset. 

Table 5: Sample data of "Deals" dataset 

Row No. Age Gender Payment 
Method 

Future 
Customer 

1 64 male credit card yes 
2 35 male cheque yes 
3 25 female credit card yes 
4 39 female credit card no 
5 39 male credit card yes 
6 28 female cheque no 
7 21 female credit card yes 
8 48 male credit card yes 
9 70 female credit card no 

10 36 male credit card yes 
The number of tuples in "Deals" dataset is small. A set of 
procedures were performed to increase the size of the 
dataset and create a set of versions of the “Deals” dataset 
that are huge in size. So we created ten datasets where the 
smallest one has one million row. These datasets are 
summarized in Table 6.  

For testing purposes, a drift was injected in each of these 
datasets somewhere in the fourth quarter of the dataset.  
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Table 6: Characteristics of the used dataset 
Dataset No. of Tuples Size (MB) 

DS1 1 Million 65 
DS2 2 Million 130 
DS3 3 Million 195 
DS4 4 Million 259 
DS5 5 Million 324 
DS6 6 Million 389 
DS7 7 Million 454 
DS8 8 Million 519 
DS9 9 Million 584 
DS10 10 Million 648 

5.2 Experiment Procedure and Results 

The goal of the experiments is to evaluate the performance 
of the BCDD algorithm and compare it with that of the 
ADWIN algorithm [20, 21]. Before describing the results, 
the following are some notes about the experiments we 
conducted.  
1. TER was selected to be up to 3%. If the algorithm detects 

that that ER is greater than 3%, then this indicates the 
existence of a drift.  

2. Before running any of the algorithms, a timer was set for 
measuring the execution time for each run. 

3. Each of the two algorithms, BCDD and ADWIN, was 
run against each of the datasets shown in Table 6 and 
the time it took to detect the drift in each case was 
recorded. 

The charts shown in Figure 3 depict the performance of 
each algorithm as the size of the dataset increases. We 
notice that as the size of the dataset increases, the 
performance of BCDD algorithm progressively 
outperforms that of ADWIN. In other words, the 
performance of ADWIN degrades faster than BCDD as the 
size of the dataset is increased. This is in line with what we 
expected since binary search of ordered data outperforms 
linear search and the performance becomes more obvious 
as the size of the data increases.  
 

 
Figure 3: Results of comparison BCDD algorithm with ADWIN 

algorithm performance 

6. Conclusion  

Concept drift is a major problem for classification systems. 
A concept drift prevents a classifier from producing 
accurate classifications because it makes the classification 
model either outdated or totally obsolete. Before we can 
handle the problem of concept drift, we need to be able to 
detect its existence and measure its intensity. In this paper, 
we have introduced a novel algorithm for detecting concept 
drift. It is different from existing algorithms in that it is 
based on the idea of binary search, by progressively 
dividing the dataset into halves until a drift is found or the 
dataset is declared to be drift-free. Consequently, the 
performance of our algorithm is better that of other 
algorithms especially for huge datasets as demonstrated in 
Section 5. 
Further, we introduced a set of formulas that can be used for 
measuring the drift intensity. Knowing the drift intensity 
can help us determine how we want to handle the drift. If 
the drift intensity is high, for example, then we may choose 
to recreate the classification model solely based on the data 
after the drift and totally ignore the data before the drift. If 
the drift intensity is low, then we may generate the new 
classification model based on both data before drift and data 
after drift, but with data after the drift having more 
influence (by giving it more weight) on the model 
generation process. In a future research, we will examine 
the details of how a new classification model can be 
generated by taking the drift intensity into consideration. 
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