
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016

108

Manuscript received December 5, 2016
Manuscript revised December 20, 2016

A New Approach for Detecting Concept Drift and Measuring its
Intensity in Large Datasets

Hisham Ogbah*
Computer Science Department

Abdallah Alashqur*
Software Engineering Department

*Faculty of Information Technology
Applied Science Private University, Amman, Jordan

Abstract
The importance of data mining in general and classification in
particular has increased in recent years due to the overwhelming
amount of digital data that is produced world-wide on a daily basis.
In classification, data tuples are mapped to a limited number of
classes. The classifier learns (or derives) a classification model
from a pre-classified dataset. The learned classification model can
be represented in different forms such as a decision tree, set of
rules, or support vector machines, to name a few. After the
classifier completes the learning phase, it can predict the class of
newly added data based on the model that it learned. Quite often a
concept drift may occur due to changes in the environment, style,
trend, or for many other reasons. Data that used to map to, say,
class_a before the drift, now maps to class_b. But based on the
knowledge embodied in the model, the system will still
wrongfully predict class_a for the same data. This difference
between what the model would predict and the actual
classification is a sign that a concept drift has occurred and the
classification model has become obsolete. In this case, a new
model needs to be generated. In this paper we introduce a new
efficient algorithm for detecting the occurrence of a concept drift
and introduce a way of measuring the intensity of the drift.
Measuring the intensity of the drift is important because it impacts
how we may choose to deal with it going forward.
Key words:
Classification, Concept Drift, Drift detection, Big Data

1. Introduction

Classification maps each data tuple in a dataset to the most
appropriate class selected from among a small set of classes
[1, 2, 3, 4, 5]. A column in the dataset, usually referred to
as class label, is used to store the class name of each tuple.
The main goal of classification and prediction is to be able
to predict the classes of new tuples that have not been
classified yet. This is usually performed by passing through
a learning phase in which the system learns the
classification criteria from a pre-classified dataset (i.e., a
training set). The learned criteria is referred to as the
classification model. Once the system learns the
classification model from the training set, it can use it as a
basis to predict the classes of newly inserted tuples [6, 7].
A problem occurs if the distribution of data with respect to
the classes changes over time. Meaning that real world data
that used to map to class_a, for example, now maps to
class_b. But a system that learned the classification model

before the change in data distribution will continue to
predict class_a for the same piece of data. Thus a mismatch
occurs between the classification that the system predicts
and the actual classification. This is what is called concept
drift [8, 9, 10]. Concept drift, if not detected and handled
properly, is considered a major problem in classification
systems because it results in producing erroneous
predictions.
To further demonstrate the effect of concept drift on a
specific application, consider the sample data of Table 1.
Suppose that this data is for a JobFinder classifier that is
used in a recruiting agency. We assume that the classifier
has already learned the model from a pre-classified training
set. What JobFinder does is that it uses the job applicant’s
information to predict whether this applicant is going to find
a job fairly quickly or he/she will take a long time. The
classifier’s predictions help the recruiting agency plan its
priorities by knowing what to expect ahead of time. The
information based on which the system makes its prediction
are Age, Gender (G), Major, and Years_of_Experience
(YE). The column named PCL (Predicted Class Label)
shows the system’s prediction of how long it expects the
applicant to take before finding a job. Three different
classes exist in PCL, namely, short (less than two weeks),
medium (two to six weeks), and long (over six weeks).
Later, when the job seeker finds a job, the actual
classification becomes known and is recorded in the column
named ACL (Actual Class Label).
We notice that nine out of the first ten tuples in Table 1 have
a PCL class that matches the ACL class. The only exception
is row number 4 where the predicted class was short
whereas the actual class was medium. This means that the
classification model was 90% accurate in its predictions
(i.e., the erroneous predictions where 10%) for the first ten
applicants. On the contrary, for the last ten applicants in the
table (rows 11 through 20), the accuracy was 40% (i.e., the
error rate was 60%). This indicates that a drift has occurred
in the data distribution relative to the classes in the last 10
tuples in Table 1 because the accuracy is very low. This
concept drift can be due to many factors. For example
certain jobs that were very hot in the past have become
saturated recently. Another reason could be that universities
have recently started to incorporate extra special training in
their curriculum in order to better prepare their graduates,

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016

109

which results in new graduates being able to find jobs much
faster than used to be.

Table 1: Sample data for a JobFinder application
RID Age G Major YE PCL ACL

1 middle f marketing 3 - 6 medium medium
2 youth f IT 3 - 6 medium medium
3 youth m engineering < 3 long long
4 senior m IT > 6 short medium
5 youth f nursing 3 - 6 medium medium
6 senior m marketing > 6 short short
7 youth m accounting < 3 long long
8 youth f marketing < 3 long long
9 middle f accounting > 6 short short

10 youth f nursing 3 - 6 medium medium
11 youth m IT < 3 long long
12 youth m engineering < 3 long medium
13 youth m marketing < 3 long medium
14 middle f accounting 3 - 6 medium medium
15 middle f accounting > 6 short short
16 youth m IT < 3 long medium
17 youth m IT < 3 long medium
18 middle f engineering 3 - 6 medium medium
19 youth m marketing < 3 long medium
20 senior m engineering > 6 short medium

Once a concept drift is detected, the system has to be
retrained. For example JobFinder classifier can be given the
last 10 tuples in Table 1 along with the actual classification
in the ACL column (i.e. without the PCL column) as a
training set. From this training set the system can re-learn
the classification model in order to be more accurate in its
future predictions. In real-world data, the number of tuples
in a table like Table 1 can be by the thousands or even
millions depending on the type of application it is used for.
Several algorithms and approaches have been reported in
the literature for detecting the existence of concept drift in
data [11, 12, 13]. The contribution of this paper is twofold.
First, we introduce a new concept drift detection algorithm
that is based on the idea of binary search to be able to find
the drift location in a dataset. This is particularly useful for
huge datasets since binary search has better performance
than linear search methods. The second contribution of the
paper is that we introduce a way to quantify and measure
the drift intensity. The drift intensity can be large if the error
rate after the point where the drift occurred is high. Also the
drift intensity can be low or medium. To our knowledge,
none of the existing drift detection techniques provides a
way to measure the intensity of the drift.
Knowing the drift intensity can be helpful in that it provides
some guidance as to how the concept drift should be
handled. For example if the drift intensity is high, the
system may choose to totally discard the old data (data
before the drift point) when it regenerates a new
classification model. On the other hand, if the drift intensity
is low, the system may choose to give more weight to the
data after the drift point and, at the same time, take into
consideration data before the drift but give it less weight.
Therefore the newly built classification model is influenced

by data after the drift position more than it is influence by
data before the drift position. This is useful when a lot of
knowledge is embodied in the classifications performed
before the drift and the user does not want to lose such
knowledge.
The remainder of this paper is organized as follows. In
Section 2 we provide a survey of related work. Section 3
describes the new algorithm used for detecting concept drift.
Section 4 presents the formulas used to compute the Drift
Intensity. Implementation results are shown in Section 5.
Finally, conclusions are given in Section 6.

2. Related Work

In recent years, several studies have tried to come up with
ways to detect the phenomenon of concept drift. The drift
detection approach refers to the techniques used for explicit
drift detection. The purpose of a drift detection technique is
to identify the location in the dataset where a drift has
occurred. Below is a brief description of some of the
existing concept drift detection techniques.
The approach used in [11] is based on Statistical Process
Control (SPC), which is standard statistical mechanisms to
control and monitor the quality of a product through a
continuous manufacturing sector. The SPC considers
learning model as a process, and observers the evolution of
this task. The SPC can be implemented to measure the
change rate as interval between warning and uncontrolled,
where short intervals indicate fast drifts, and longer
intervals indicate slower drifts. The change rate can also be
measured as the rate errors to the number of instances
through warning. The SPC depends on the estimates of the
error variance to assign the action bounds, which shrink as
the trust of the error estimates raises. Other drift detection
methods based on SPC are proposed in [14, 15].
The authors in [12] use an Exponentially Weighted Moving
Average (EWMA) for detecting concept drift to monitor the
misclassification rate of a classifier. EWMA calculates a
recent estimate of the error rate, µt, by gradually down-
weighting older data: Z0=µ0, Zt = (1 - λ)Zt-1 + λNt , t > 0,
where Nt is the error at the current instance. It can be
displayed that, independently of the distribution of the Xt
variables, the mean and standard deviation of Zt equal to:

µZt = µ t , σZt = � 𝜆𝜆
𝜆𝜆−2

 (1 − (1 − 𝜆𝜆)2𝑡𝑡) 𝜎𝜎𝑥𝑥 , where 𝜎𝜎𝑥𝑥R is the

standard deviation. Suppose that before the change point
that µ t = µ0 , and the EWMA estimate Zt will fluctuate
around this value. When a change occurs, the value of µ t
changes to µ1 , and Zt will react to this by diverging away
from µ0 and towards µ1. This can be used for drift detection
by flagging that a drift has occurred when: Zt > µ0 + LσZt ,
where L, the control limit, determines how far Zt must
diverge from µ0 before the change alarm is flagged.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016

110

 In [13], the authors present another approach for detecting
drift by monitoring distribution on two different time-
windows. This method typically uses a fixed bookmark
window that summarizes the past information with a sliding
detection window over the most recent instances. These two
windows are compared over distributions with statistical
tests based on the Chernoff bound to decide whether the
two distributions are not equal. The window can monitor
single variable or multivariate raw data (independently for
each class). The VFDTc [16] came in the same line. It has
the capacity to transact with drift by constantly monitoring
differences between two distribution classes.

In [17], the authors present an entropy-based weight to
measure the distribution difference between two sliding
windows including respectively older and most recent
instances. If the distributions are similar, the result of the
entropy measure will point in a value of 1, and if they are
completely different the result of the entropy measure will
point in value of 0. The entropy measure is constantly
monitored and observed the drift over time, and drift is
marked when the entropy measure decreases under a given
fixed user defined threshold. Another examples include
drift detection methods proposed by [18, 19]. They use the
Kullback-Leibler (KL) difference to measure the distance
between the likelihood distributions of two windows (old &
recent) to detect potential drifts.

The ADaptive sliding WINdow (ADWIN) [20, 21] present
another approach for detecting drift using a sliding window.
The inputs of the algorithm are a confidence value δ ϵ (0,1),
and let x1, x2, x3, ... , xt be a sequence of real values. Each
xt is generated according to some distribution Dt,
independently for every t. Denote as ut the expected value
for xt when it is drawn according to Dt. ADWIN assumes
that xt is always bounded in [0,1], by an easy re-scaling,
which can handle any value in which the interval is known
[a, b] such that a ≤ xt ≤ b with probability 1. Nothing else
is known about the sequence of distribution Dt; in particular,
µt is unknown for all t.

The concept behind ADWIN can be formatted like the
following: whenever two big enough sub windows of W
show distinct enough averages, one can conclude that the
corresponding expected values are different, and the older
(sub) window is dropped. Generally, large enough and
distinct enough are translated into the computation of a cut
value ϵc (which rely on δ, the length of the sub windows,
and the averages of their contents). In another words, W is
kept as long as possible while the null hypothesis µt has
remained constant in W is sustainable up to confidence δ.

3. Concept Drift Detection

This section provides a description of a new detection
algorithm called Binary Concept Drift Detection (BCDD)

algorithm that we propose for detecting the existence of a
concept drift. The BCDD algorithm is meant to be
especially useful for large datasets in Big Data applications
because it adopts the binary search approach.

3.1 Overview of the BCDD Algorithm

This algorithm finds the beginning of a drift and then
measures the drift intensity (DI) value. The following are
the advantages of BCDD algorithms existing algorithms:

1) The BCDD algorithm uses the binary search technique
for detecting the phenomenon of concept drift, which is
unlike other existing algorithms [11, 12, 21]. The binary
search technique is fast and has a time complexity of O
(log n). This gives a performance advantage when the
size of data is huge. The BCDD is capable of using
binary search because data in the dataset is ordered
based on the insert timestamp.

2) Not only that the BCDD algorithm detects the existence
of a drift, but it also measures its intensity. The DI value
can be used later at the time of handling the drift and re-
learning the model. If DI is high, much more weight is
given to the data after the drift as compared to the weight
given to the data before the drift. This means that data
after the drift has a much larger influence on the newly
generated classification model than data before the drift.
On the other hand, if DI is low then data after the drift
is given a moderately higher influence than data before
the drift. Handling the concept drift by using DI is
beyond the scope of this paper and is part of a future
research.

Before describing the BCDD algorithm, we define some
terms that are used by the algorithm.

1) ER (Error Rate): represents the error rate found in the
predicted classifications (PCL) as compared to the
actual classifications.

2) TER (Tolerated Error Rate): represents the acceptable
tolerated rate of inaccuracy. A rate above TER is
considered a drift whereas a rate below TER is treated as
just temporary noise.

3) We use a Begin Window (WBegin) and an End Window
(WEnd) as sample windows that will be examined during
the detection process. WBegin is a set of rows taken at the
beginning of a dataset, whereas WEnd is a set of rows
taken at the end of the dataset.

4) The size (WSize) of WBegin or WEnd is defend based on
the following criteria. First, if the dataset contains more
than 50,000 tuples, WSize is selected to be 0.2% of the
size of the dataset. Second, if the dataset contains less
than or equal to 50,000 tuples, WSize is fixed at 100
tuples. We think that 0.2% for a window size is
sufficient in large datasets. A dataset of 1M rows can
have a window size of 2000 rows, which is considered a

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016

111

descent sample sufficient for assessing the classification
accuracy. However a size other than 0.2% can be
selected if needed.

5) As long as ER is less than TER, the algorithm assumes
there is no concept drift. If ER is larger then TER, this
indicates that the inaccuracy rate is higher than what is
permissible, which in turn indicates the existence of a
concept drift. The value of TER is supplied to the system
by the user and depends on the type of application. Some
applications may tolerate higher rate of inaccuracy than
others.

Before explaining the details of the flowchart of the BCDD
algorithm as shown in Figure 1, we first give a brief
overview of how it works. At the beginning, the BCDD
algorithm divides the input dataset into two halves, and
identifies WEnd at the end of the first half. It then examines
the ER value within WEnd. If the value of ER is greater than
TER, then the algorithm concludes that a concept drift
has happened somewhere within in the first half. Therefore
the algorithm continues searching the first half by further
dividing it into two halves and repeating the process. On the
other hand, if ER is less than TER, this means that the first
half is drift-free and the algorithm moves to examine the
second half of the dataset. It identifies WBegin at the
beginning of the second half. If the data within WBegin
shows a drift (by examining ER and comparing it with TER),
then the algorithm concludes that a concept drift has started
from WBegin of the second half. However if data within the
WBegin is drift-free, the second half is divided into two
halves and the process is repeated.

3.2 Flowchart and Pseudo Code of the Algorithm

Figure 1 shows the flowchart of the BCDD algorithm. At
the very beginning of the algorithm, the size of WBegin and
WEnd windows is determined based on the number of rows
in the entire dataset. The algorithm receives the dataset
form the system and declares new variables named as
Input_DS and P. Input_DS is a variable that is assigned the
dataset that will be used in the detection process. Input_Ds
is initially set to equal the entire dataset, but later it will be
assigned the appropriate half when the algorithm starts to
divided the dataset. The other input, P, is the position where
the drift has occurred, which is initially set to zero. The
algorithm keeps updating P until it finishes. The final value
of P is where the drift has occurred. If P stays zero till the
end, then the entire dataset is drift-free.

The algorithm then checks if the size of the Input_DS is
large enough to be divided into two halves. If true, the
Input_DS is divided into two halves. Following that, the
algorithm selects WEnd of the 1st half and examines ER
within this window. If the value of ER is greater than TER,
the algorithm concludes that the concept
drift has happened somewhere within the 1st half. Then, the

next step is to set P to a new value, which is the row at the
beginning of the window WEnd. If the data at the 1st half is
large enough for further division, it will be divided and the
process is repeated. Otherwise, the algorithm has identified
the location of the drift.

Figure 1: Flowchart of the BCDD algorithm

If the data within WEnd of the 1st half, in any one of the
iterations, shows no concept drift has occurred (since ER ≤
TER), then the algorithm moves to the 2nd half and selects
WBegin of the 2nd half. After that, the algorithm examines
ER inside WBegin. If the data within WBegin shows no drift
has occurred (since ER ≤ TER), then the algorithm resets the
Input_DS with the data of the 2nd half and re-sends the
Input_DS to the decision diamond at the top and the process
is repeated. If in any of these iteration we reach a point
where the size of Input_DS < 2 * WSize, looping ends and
the algorithm proceeds to exist. Before it exists, it checks to
see if P > 0 (meaning a drift position has been identified),
and in this case it calls the function Comput_DI, which
computes the drift intensity based on the formulas
introduced in Section 4. Otherwise the algorithm exists with
a value of P = 0. A value of “P = 0” is used as a flag that
indicates that no drift has occurred.
Figure 2 shows the pseudo code of the BCDD algorithm. It
works similar to the logic explained for the flowchart.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016

112

BCDD algorithm
Inputs: • DSet , (Dataset) List of data {x1, . . . , xn } with

Predict Class Labels (PCL) {y1 , . . . , yn} and Actual
Class Labels (ACL) {z1 , . . . , zn};

• TER , Tolerated Error Rate;
• P = 0; Initially to be Zero.
• DI = 0; Initially to be Zero.

Method:
(1) Input_DS = DSet;
(2) WSize = Set window size based on Input_DS;
(3) WEnd, WBegin; Declare windows.
(4) While Input_DS.Count > WSize * 2 do
(5) Divide Input_DS into 2 halves and use Ceiling function

for 1st half to round up to the next number;
(6) WEnd = Select WEnd of 1st half;
(7) if ER of WEnd > TER then
(8) P = identify the beginning of drift in WEnd;
(9) Input_DS = 1st half;
(10) else
(11) WBegin = Select WBegin of the 2nd half;
(12) if ER of WBegin > TER then
(13) Input_DS = WBegin;
(14) P = identify the beginning of drift in WBegin;
(15) else
(16) Input_DS = 2nd half;
(17) end if
(18) end if
(19) end while
(20) if P > 0 then
(21) DI = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶_𝐷𝐷𝐷𝐷(𝑃𝑃);
(22) end if
Output : P identifies the beginning of drift; DI value;

Figure 2: Pseudo-code of the BCDD algorithm

4. Drift Intensity (DI)

This section introduces the formulas that can be used to
measure the drift intensity (DI). DI measures the intensity
of a drift of the underlying data relative to their classes. The
DI value has special significance because, first, it gives an
indication of how sever the drift is, and, second, it can be
used to guide the drift handling process. A very sever drift
as measured by DI may be handled differently from a mild
Drift.

4.1 Measuring DI

To measure DI, we have developed a set of mathematical
equations that can be used for that purpose. What we want
to do is take a sample subset of the dataset from before the
drift location and another sample subset from the portion
that is after the drift location. We will use the error rate (i.e.
the rate of discrepancies between the predicted classes and
the actual classes) in both subsets as a way to measure the
drift intensity.

Let 𝐷𝐷𝐵𝐵𝐵𝐵 be a sample subset from the dataset before drift
location and let 𝐷𝐷𝐴𝐴𝐴𝐴 be a sample subset from the dataset
after drift location. The size that we use for each of these
sample subsets can be around 0.5% of the entire dataset, but

other sizes can be used. Let 𝑛𝑛𝐵𝐵𝐵𝐵 be the number of data
tuples in 𝐷𝐷𝐵𝐵𝐵𝐵 , and 𝑛𝑛𝐴𝐴𝐴𝐴R be the number of data tuples in
𝐷𝐷𝐴𝐴𝐴𝐴 . Let 𝑒𝑒𝐵𝐵𝐵𝐵 be the number of inaccurate classifications
in 𝐷𝐷𝐵𝐵𝐵𝐵 , and 𝑒𝑒𝐴𝐴𝐴𝐴 be the number of inaccurate
classifications in 𝐷𝐷𝐴𝐴𝐴𝐴R.
We assume that the sizes of the samples 𝐷𝐷𝐵𝐵𝐵𝐵 and 𝐷𝐷𝐴𝐴𝐴𝐴 are
sufficient to be a good representative sample of the rows
before the drift and those after the drift, respectively. The
reason for choosing samples instead of the entire dataset is
to avoid scanning the entire dataset and thus improve the
performance. Let the rate of errors in 𝐷𝐷𝐵𝐵𝐵𝐵 and in 𝐷𝐷𝐴𝐴𝐴𝐴 be
𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵 and 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴, respectively. 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵 and 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 can be
computed as shown in Equation 1 and Equation 2,
respectively.

𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵 =
𝑒𝑒𝐵𝐵𝐵𝐵
𝑛𝑛𝐵𝐵𝐵𝐵

 …. (1)

𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 =
𝑒𝑒𝐴𝐴𝐴𝐴
𝑛𝑛𝐴𝐴𝐴𝐴

 …. (2)

We expect the value of DI to be higher if 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 is higher.
Also we expect DI to be higher of 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵 is lower. In other
words, DI is a directly proportional to 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 and inversely
proportional to 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵 . Therefore DI can be expressed as
shown in Equation 3.

𝐷𝐷𝐼𝐼 = 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴
𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵

 …. (3)

However, since the number resulting from dividing 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴
over 𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵 can be a very large number, we modify
Equation 3 by using log2 to attenuate the resulting value.
The resulting formula is shown in Equation 4.

𝐷𝐷𝐷𝐷 = log2
𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴
𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵

 = log2(𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴) − log2(𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵) (4)

We observe that in Equation 4 we need to avoid the
occurrence of a zero in the denominator when 𝑒𝑒𝐵𝐵𝐵𝐵 is zero.
Therefore we modify Equation 1 by adding one fictitious
erroneous classification to the numerator. Hence, we
replace Equation 1 with Equation 5 shown below.

𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵 =
𝑒𝑒𝐵𝐵𝐵𝐵 + 1
𝑛𝑛𝐵𝐵𝐵𝐵

 ….(5)

In conclusion, to compute DI we need to find the values of
𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵 and 𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 from Equations 5 and 2, then substitute
in Equation 4. The following subsection shows an example.

4.2 Example of Applying DI Equations

Assume a dataset contains 1.5M data rows. The dataset has
been sent to the BCDD algorithm for detecting if there is a
drift. The BCDD algorithm returned that there is a drift in
the dataset somewhere in the third quarter of the dataset.
Assume that the size of the sample subsets 𝐷𝐷𝐵𝐵𝐵𝐵 and 𝐷𝐷𝐴𝐴𝐴𝐴

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016

113

contain 8000 rows each (i.e., around 0.5% or the dataset).
Also, assume that the number of inaccurate classifications
in 𝐷𝐷𝐵𝐵𝐵𝐵 is 300 and the number of inaccurate classifications
in 𝐷𝐷𝐴𝐴𝐴𝐴 is 2000. This data is summarized in Table 2 below.

Table 2: Errors before and after a drift

 No. of
elements

No. of inacurate
prediction

Before Drift 𝑛𝑛𝐵𝐵𝐵𝐵 = 8,000 𝑒𝑒𝐵𝐵𝐵𝐵 = 300
After Drift 𝑛𝑛𝐴𝐴𝐴𝐴 = 8,000 𝑒𝑒𝐴𝐴𝐴𝐴 = 2000

Substituting in Equations 2 and 5 to obtain:

𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵 =
𝑒𝑒𝐵𝐵𝐵𝐵 + 1
𝑛𝑛𝐵𝐵𝐵𝐵

 =
301

8,000
= 0.0376

𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴 =
𝑒𝑒𝐴𝐴𝐴𝐴
𝑛𝑛𝐴𝐴𝐴𝐴

 =
2000
8,000

= 0.25

And substituting these results in Equation 4, we obtain.

𝐷𝐷𝐷𝐷 = log2
𝑅𝑅𝑅𝑅𝐴𝐴𝐴𝐴
𝑅𝑅𝑅𝑅𝐵𝐵𝐵𝐵

 = log2 6.65 = 2.73

4.3 Zones of the DI

Here we divide the DI range of values into three zones. If
DI is from 0.1 to 3 then we assume that DI falls in the low
drift intensity zone (ZoneL). If DI is from 3 to 6 then DI
falls in the medium drift intensity zone (ZoneM). And
finally, any DI value above 6 is considered to be in the zone
of high DI (ZoneH). Table 3 summarizes these zones.

Table 3: Zones of the DI
Zones DI range Intensity of drift
𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝑳𝑳 0.1 – 3 Low drift intensity
𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝑴𝑴 3 - 6 Medium drift intensity
𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝒁𝑯𝑯 Above 6 High drift intensity

5. Implementation and Results

This section discusses the implementation of the BCDD
algorithm and the performance results obtained when
comparing it with another popular detection algorithm. Our
goal is to demonstrate that a detection algorithm based on
the binary search technique such as BCDD achieves better
performance than other algorithms.
For this purpose, a classification system was developed for
implementing and evaluating the BCDD algorithm. The
classification system was developed on a machine with
the specifications shown in Table 4.

Table 4: Specifications of experimental environment
System Model HP ProBook 450 G1

Operating System Microsoft Windows 10 Pro 64-bit
Processor Intel(R) Core(TM) i7-4702MQ CPU @

2.20GHz, 2201 Mhz, 4 Core(s), 8
Logical Processor(s)

RAM Installed Physical Memory 8.00 GB
In our implementation, the tools and programs that were
used are as follows,

• Microsoft .Net Framework Version 4.6.
• Microsoft Visual Studio Enterprise 2015.
• C# Programming Language.
• SQL Server 2016.

Many experiments were conducted to evaluation the
performance of the BCDD algorithm and compare it with
another algorithm, ADWIN algorithm [20, 21]. The
following reasons justify the selection of ADWIN
algorithm for comparison with the BCDD algorithm.
• The ADWIN algorithm proved its robustness in detecting

concept drift [22, 23].
• The ADWIN algorithm is incorporated into several

predictive and clustering methods, and is integrated with
statistical approaches such as Kernel Density Estimation
(KDE) [24, 25].

5.1 Datasets Used in Evaluation

The dataset that we used to conduct our experiments is
based on a dataset that we imported from RapidMiner [26].
RapidMiner is a public software platform that is widely
used to provide data mining tools for research and
educational purposes. The dataset that was imported is
called "Deals" and it contains about 1,000 tuples. The data
in the “Deals” dataset is about customers’ predictions. It is
basically used to predict whether a current customer is
likely to continue to be a future customer. The prediction
depends on a set of customer’s attributes such as: age,
gender, and payment method. The attribute "future
customer" is the class label. Table 5 shows sample data from
the “Deals” dataset.

Table 5: Sample data of "Deals" dataset

Row No. Age Gender Payment
Method

Future
Customer

1 64 male credit card yes
2 35 male cheque yes
3 25 female credit card yes
4 39 female credit card no
5 39 male credit card yes
6 28 female cheque no
7 21 female credit card yes
8 48 male credit card yes
9 70 female credit card no

10 36 male credit card yes
The number of tuples in "Deals" dataset is small. A set of
procedures were performed to increase the size of the
dataset and create a set of versions of the “Deals” dataset
that are huge in size. So we created ten datasets where the
smallest one has one million row. These datasets are
summarized in Table 6.

For testing purposes, a drift was injected in each of these
datasets somewhere in the fourth quarter of the dataset.

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016

114

Table 6: Characteristics of the used dataset
Dataset No. of Tuples Size (MB)

DS1 1 Million 65
DS2 2 Million 130
DS3 3 Million 195
DS4 4 Million 259
DS5 5 Million 324
DS6 6 Million 389
DS7 7 Million 454
DS8 8 Million 519
DS9 9 Million 584
DS10 10 Million 648

5.2 Experiment Procedure and Results

The goal of the experiments is to evaluate the performance
of the BCDD algorithm and compare it with that of the
ADWIN algorithm [20, 21]. Before describing the results,
the following are some notes about the experiments we
conducted.
1. TER was selected to be up to 3%. If the algorithm detects

that that ER is greater than 3%, then this indicates the
existence of a drift.

2. Before running any of the algorithms, a timer was set for
measuring the execution time for each run.

3. Each of the two algorithms, BCDD and ADWIN, was
run against each of the datasets shown in Table 6 and
the time it took to detect the drift in each case was
recorded.

The charts shown in Figure 3 depict the performance of
each algorithm as the size of the dataset increases. We
notice that as the size of the dataset increases, the
performance of BCDD algorithm progressively
outperforms that of ADWIN. In other words, the
performance of ADWIN degrades faster than BCDD as the
size of the dataset is increased. This is in line with what we
expected since binary search of ordered data outperforms
linear search and the performance becomes more obvious
as the size of the data increases.

Figure 3: Results of comparison BCDD algorithm with ADWIN

algorithm performance

6. Conclusion

Concept drift is a major problem for classification systems.
A concept drift prevents a classifier from producing
accurate classifications because it makes the classification
model either outdated or totally obsolete. Before we can
handle the problem of concept drift, we need to be able to
detect its existence and measure its intensity. In this paper,
we have introduced a novel algorithm for detecting concept
drift. It is different from existing algorithms in that it is
based on the idea of binary search, by progressively
dividing the dataset into halves until a drift is found or the
dataset is declared to be drift-free. Consequently, the
performance of our algorithm is better that of other
algorithms especially for huge datasets as demonstrated in
Section 5.
Further, we introduced a set of formulas that can be used for
measuring the drift intensity. Knowing the drift intensity
can help us determine how we want to handle the drift. If
the drift intensity is high, for example, then we may choose
to recreate the classification model solely based on the data
after the drift and totally ignore the data before the drift. If
the drift intensity is low, then we may generate the new
classification model based on both data before drift and data
after drift, but with data after the drift having more
influence (by giving it more weight) on the model
generation process. In a future research, we will examine
the details of how a new classification model can be
generated by taking the drift intensity into consideration.

 References
[1] A. Alashqur , "Representation Schemes Used by Various

Classification Techniques–A Comparative Assessment,"
International Journal of Computer Science Issues (IJCSI), vol.
12, no. 6, pp. 55-63, November 2015.

[2] A. Alashqur, "A Novel Methodology for Constructing Rule-
Based Naïve Bayesian Classifiers," International Journal of
Computer Science & Information Technology (IJCSIT), vol.
7, no. 1, pp. 139-151, February 2015.

[3] H. Ogbah, A. Alashqur and H. Qattous, "Predicting Heart
Disease by Means of Associative Classification,"
International Journal of Computer Science and Network
Security (IJCSNS), vol. 16, pp. 24-32, September 2016.

[4] J. B. Gray and G. Fan , "Classification tree analysis using
TARGET," Computational Statistics & Data Analysis, vol.
52, no. 3, pp. 1362-1372, 2008.

[5] D. AL-Dlaeen and A. Alashqur , "Using Decision Tree
Classification to Assist in the Prediction of Alzheimer’s
Disease," in In Computer Science and Information
Technology (CSIT), 2014 6th International Conference on
(pp. 122-126). IEEE., March 2014.

[6] S. B. Kotsiantis, "Supervised Machine Learning: A Review
of Classification Techniques," Informatica, vol. 31, pp. 249-
268, 2007.

[7] M. Goudbeek and D. Swingley, "Supervised and
Unsupervised Learning of Multidimensional Acoustic
Categories," Journal of Experimental Psychology: Human

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016

115

Perception and Performance, vol. 35, no. 6, p. 1913–1933,
2009.

[8] R. Elwell and R. Polikar, "Incremental Learning of Concept
Drift in Nonstationary Environments," IEEE
TRANSACTIONS ON NEURAL NETWORKS, vol. 22, no.
10, pp. 1517-1531, OCTOBER 2011.

[9] I. Zliobaite, M. Pechenizki and J. Gama, "An overview of
concept drift applications," Springer International Publishing,
vol. 16, no. 978-3-319-26989-4, pp. 91-114, 2016.

[10] I. Zliobaite, "Learning under Concept Drift: an Overview,"
arXiv, 2010.

[11] C. Lanquillon, "Enhancing text classification to improve
information filtering," Kunstliche Intelligenz, vol. 16, no. 2,
pp. 37-38, 2002.

[12] G. J. Ross, N. M. Adams, D. K. Tasoulis and D. J. Hand,
"Exponentially weighted moving average charts for detecting
concept drift," Pattern Recognition Letters, vol. 33, no. 2, p.
191–198, 15 January 2012.

[13] D. Kifer, S. Ben-David and J. Gehrke, "Detecting change in
data streams," Proceeding VLDB '04 Proceedings of the
Thirtieth international conference on Very large data bases,
pp. 180-191 , 2004.

[14] J. Gama, P. Medas, G. Castillo and P. Rodrigues, "Learning
with Drift Detection," In Proc. of the 17th Brazilian symp. on
Artif. Intell. SBIA, p. 286–295, 2004.

[15] E. Ikonomovska, J. Gama and S. Džeroski, "Learning model
trees from evolving data streams," Data Min Knowl Disc, vol.
23, no. 1, p. 128–168, 2011.

[16] J. Gama, R. Fernandes and R. Rocha, "Decision trees for
mining data streams," Intelligent Data Analysis , vol. 10, no.
1, pp. 23-45 , 2006.

[17] P. Vorburger and A. Bernstein, "Entropy-based Concept
Shift Detection," Sixth International Conference on Data
Mining (ICDM'06), pp. 1113 - 1118, 2006.

[18] T. Dasu, S. Krishnan, S. Venkatasubramanian and K. Yi, "An
Information-Theoretic Approach to Detecting Changes in
Multi-Dimensional Data Streams," In Proc. Symp. on the
Interface of Statistics, Computing Science, and Applications,
2006.

[19] R. Sebastião and J. Gama, "Change Detection in Learning
Histograms from Data Streams," Progress in Artificial
Intelligence: 13th Portuguese Conference on Aritficial
Intelligence, pp. 112-123, 2007.

[20] A. Bifet and R. Gavaldà, "Kalman Filters and Adaptive
Windows for Learning in Data Streams," In Proc. of the 9th
International Conference on Discovery Science, pp. 29-40,
2006.

[21] A. Bifet and R. Gavalda, "Learning from Time-Changing
Data with Adaptive Windowing," In Proc. of SIAM
international conference on Data Mining, p. 443–448, 2007.

[22] I. ˇZliobait˙, J. Bakker and M. Pechenizkiy, "OMFP: An
Approach for Online Mass Flow Prediction in CFB Boilers,"
12th International Conference, DS, p. 272–286, 2009.

[23] J. Bakker , M. Pechenizkiy, I. Žliobaitė, A. Ivannikov and T.
Kärkkäinen, "Handling outliers and concept drift in online
mass flow prediction in CFB boilers," In Proceedings of the
Third International Workshop on Knowledge Discovery
from Sensor Data, pp. 13-22, 2009.

[24] A. Bifet, G. Holmes, B. Pfahringer and R. Gavalda,
"Improving Adaptive Bagging Methods for Evolving Data

Streams," In Asian Conference on Machine Learning, pp. 23-
37, 2009.

[25] A. Al-Mamun, A. Kolokolova and D. Brake, "Detecting
Contextual Anomalies from Time-Changing Sensor Data
Streams," Proceedings of the ECMLPKDD Doctoral
Consortium, 2015 .

[26] "rapidminer," 19 Nov. 2016. [Online]. Available:
https://rapidminer.com/.

Hisham Ogbah is currently working
towards the MSc degree in Computer
Science at the Applied Science University
(ASU) in Amman, Jordan. He received his
B.Sc. degree in Computer Science from
Sikkim Manipal University, India, in 2008.
Between 2009 and 2013 he worked as a
software developer in Yemen. His research
interests include classification techniques
and concept drift.

Abdallah Alashqur is an associate
professor in the Software Engineering
Department at the Faculty of IT, Applied
Science University (ASU), Amman,
Jordan. Dr. Alashqur holds a Master’s and
a Ph.D. degrees from the University of
Florida, Gainesville. After obtaining his
Ph.D. degree in 1989, he worked for
around seventeen years in industry (in the
USA). He joined ASU in 2006. His

research interests include data mining and database systems.

