
IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016

144

Manuscript received December 5, 2016
Manuscript revised December 20, 2016

Evaluating the Impact of Client based CPU Scheduling Policies
on the Application’s Performance in Desktop Grid Systems

Muhammad Khalid Khan and Danish Faiz

College of Computing & Information Sciences, PAF - Karachi Institute of Economics & Technology, Karachi, Pakistan

Summary
Desktop grid systems are distributed computing paradigms
which use the idle and underutilized processing cycles and
memory of the desktop machines (hosts) to support large scale
computations. These systems have inherent uncertainties because
the hosts do not work under one administrative domain and can
become unavailable at any given point in time. Desktop grid
frameworks are based on client server model and employ various
scheduling policies at both ends to handle the hostile desktop
grid environment. At server end, task scheduling policies are
deployed whereas work fetch and CPU scheduling policies are
implemented at client end. Task scheduling policy decides which
job will be send to client depending upon client and task
preferences. Work fetch policy determines when the client can
ask for more work from server and CPU scheduling policy
selects the job for execution from the jobs available on client.
This policy works on top of local operating system’s scheduler.
In this paper, we evaluated the impact of CPU scheduling
policies on the application’s performance by using BOINC
Client and BOINC Client Emulator (BCE). We analyzed two
most widely used CPU scheduling mechanisms by using four
scenarios and five performance measures. We found that Early
Deadline First (EDF) works better as compared to traditional
Round Robin (RR) mechanism in most of the cases.
Keyword:
Desktop Gird Systems; CPU Scheduling Policies; BOINC;
BOINC Client Emulator

1. Introduction

Desktop grid systems utilize idle processing cycles and
memory of millions of users connected through Internet,
or through any other type of network. This requires
decomposition of computationally infeasible problems
into smaller problems, distribution of smaller problems to
the host / volunteer computers and aggregation of results
from these volunteers to from solutions to large-scale
problems. Desktop grid systems can be divided into two
categories (Vladoiu 2010). When the computers of an
enterprise are used to increase the turnaround time of a
compute intensive application, it is called enterprise wide
desktop grids or simply desktop grids. The other category
is volunteer computing in which home and enterprise
computers take part by volunteering idle processing cycles
to achieve high through put.
The desktop grid system infrastructure consists of N
number of desktop machines in which one would be

termed as master and the others would be known as
hosts/workers. Practically a desktop grid system project
has several servers to create tasks, distribute them, record
the tasks and corresponding results, and finally, aggregate
the results of a set of tasks. The tasks and corresponding
work units (evaluating data sets) are distributed by the
server to the hosts (client installed computer), typically
through a software which permits people to participate in
the project. Normally, when a host is idle (i.e., the
computer’s screensaver is running), then it is time to work
on the tasks assigned by server. After finishing the tasks,
the results are sent to the server. In case the computer that
is running a client gets busy again then the client pauses
the processing immediately so that the user can executes
its own programs. The client continues processing the task
as soon as the computer becomes idle again.
Desktop grid system frameworks simplify and automate
various functions performed by master and client. Master
is responsible for user and job management, client
management, tasks management, results verification,
security and performance management. Whereas, the
client is responsible for collection of hardware statistics
from machine, requesting and collecting tasks, task
execution, sending back results and allowing users to set
preferences. Some of the more popular desktop grid
systems frameworks are BOINC (Anderson 2004),
XtremWeb (Fedak et al., 2001), OurGrid (Andrade et al.,
2003), SZTAKI (Balaton et al., 2007) and HT Condor
(Fajardo et al., 2015).
Scheduling is one the most important issue of desktop grid
system because this is only way to handle the inherent
uncertainties of desktop grid systems. Different
scheduling policies are implemented in a typical desktop
grid system that can be broadly categorized into three
categories (Kondo 2007):

• Server based task scheduling policy takes care
of tasks assignment to server and is based on
clients and tasks preferences (for example size of
the job, speed of the host, particular operating
system, amount of disk space etc). A scoring-
based scheduling policy assigns values to
individual parameters to calculate the overall
impact.

• Client based CPU scheduling policy is related
to CPU scheduling of desktop grid application’s

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016 145

tasks (works on top of the local operating
system's scheduler) and addresses issues such as
selection of particular task for execution from the
currently runnable tasks, and keeping a particular
task in memory from the list of preempted tasks.

• Client based work fetch policy determines
when a client can ask for more work and the
amount of work that can be requested by a client.

The impact of server based task scheduling policies
(Kondo et al., 2007) and client based work fetch policies
(Toth & Finkel 2009) has been studied in detail but to the
best of our knowledge, there is almost no work on the
impact of CPU scheduling polices at client end. CPU
scheduling policies work on top of host’s operating system
and process the desktop grid tasks on the host. These
policies are enforced by the desktop grid framework’s
client that communicates with the local operating system.
CPU scheduling policies answers the questions such as
which job to run among the available jobs? Which jobs to
keep in memory among the preempted jobs? Poorly
performing or incorrectly implemented CPU scheduling
policies can reduce system throughput; equally
importantly, they can frustrate and de-motivate volunteers,
possibly causing them to stop volunteering. In this paper,
we are evaluating the impact of CPU scheduling policies
on the application’s performance.

2. Evaluating CPU Scheduling Policies

To evaluate the impact of CPU scheduling policies, we
have used the leading desktop grid framework BOINC
which consists of server and client applications. BOINC
server is responsible for task scheduling whereas BOINC
client is responsible to fetch jobs from the server and get it
executed on worker by using various CPU scheduling
policies. We have also used BOINC Client Emulator
(BCE) to emulate various CPU scheduling policies used
by BOINC Client (Anderson 2011). BOINC Client can be
connected to one or more projects, each project having
one or more Applications. The client runs these
applications through host’s operating system and hardware
resources. All network communication in BOINC is
initiated by the client. Getting new jobs from the server
and running them on the hosts OS is governed by a set of
work fetch and CPU scheduling polices respectively. The
structure of the BOINC Client is given in Figure 2.
The client performs CPU scheduling (implemented on top
of the local operating system's scheduler; at the OS level,
BOINC runs applications at zero priority). It may preempt
applications either by suspending them (and leaving them
in memory) or by instructing them to quit. All network
communication in BOINC is initiated by the client. A
client communicates with a project's task server via HTTP.
The request is an XML document that includes a

description of the host hardware and availability, a list of
completed jobs, and a request for a certain amount
(expressed in terms of CPU time) of additional work. The
reply message includes a list of new jobs (each described
by an XML element that lists the application, input and
output files, including a set of data servers from which
each file can be downloaded).
Historically, BOINC development has relied on a group of
volunteers “alpha testers” who monitor the actions of their
BOINC clients, communicate problems via email or
message boards. This approach,

Figure 1: BOINC Client Structure

however, has significant limitations. For example, when
an alpha tester reports a scheduling-related problem, it can
be difficult to obtain information, such as trace message
logs, needed to understand and fix the problem. In
addition, the alpha tester approach doesn’t help us design
scheduling policies for hypothetical situations in which,
for example, the GPU/CPU speed disparity is greatly
increased, or projects have much tighter latency
requirements. Developing and evaluating client policies is
made difficult by the unique properties of volunteer
computing:
The volunteered computers vary widely on many factors
that influence scheduling such as hardware, availability,
number and properties of attached projects, and so on. A
combination of these factors is called a scenario.
Scheduling policies should perform well across the entire
population of scenarios.
The volunteer computers are not directly accessible to
BOINC software developers. We are not able to deploy
new software on these computers, or log in to them.
BCE addresses these issues by providing a new way of
studying BOINC scheduling policies. It takes as an input a
description of a usage scenario, emulates (using the actual
BOINC client code) the behavior of the client over some
period of time, and calculates various performance metrics.
In addition Volunteers can run BCE by pasting their
BOINC client state files into a web form. Hence, when an
alpha tester notices a bug or anomaly, they can, in many
cases, reproduce it using BCE, and report it (together with

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016 146

their state files) to BOINC developers, who can then
examine the problem under a debugger and fix it easily.
BCE uses a mix of emulation and simulation as shown in
Figure 2. The implementation of job scheduling, job fetch
and preference enforcement uses the same source code as
of the BOINC client. In terms of scheduling, BCE
reproduces the exact behavior of the client; hence it
“emulates” the client whereas the other components of the
system are simulated:

• job execution is simulated, and run times are
normally distributed;

• host availability is modeled as a random process
in which available and unavailable periods have
exponentially distributed lengths.

• BOINC schedulers are simulated with a
simplified model.

Figure 1: BOINC Client Emulator (BCE)

3. Experimental Methodology
To evaluate that the affect of CPU scheduling policies on
the application’s performance (turnaround time and
throughput), we designed four scenarios by using
combination of various task scheduling policies as shown
in Table 1:

Table 1: Experiment Scenarios

We used the most commonly used CPU scheduling
policies i.e. Round Robin and Early Deadline First (EDF).
Round robin can be harmful to jobs having short deadlines.
To overcome this impact, we have also used EDF. We
have used the similar work fetch policy for all scenarios

i.e. work fetch hysteresis which relies not only on the
current client state but also on the past behavior in making
work fetch decisions. Our goal is to analyze the different
figures of merits (Anderson 2011) and study the
differences in the throughputs of attached applications for
each case. The figures of merits are:

• Idle fraction: the fraction of processing capacity
(as measured by peak FLOPS of all processor
types) that was idle during the emulation period.

• Wasted fraction: the fraction of processing
capacity (as measured by peak FLOPS) that was
used for jobs that did not complete by their
deadline.

• Resource share violation: the RMS over
projects P of the difference between P’s share of
processing resources and the amount it actually
received.

• Monotony: a measure of the extent to which the
system ran jobs of a single project for long
periods (such behavior is undesirable for many
volunteers).

• RPCs per job: the average number of RPCs per
job. The lower this is, the less load is placed on
project servers.

We have used two different applications; first is a a locally
running project with title Cplan1 which is configured on
our development BOINC server machine and runs a
sample application named UpperCase which consists of
jobs with homogenous work units. The second project is a
live project with title PrimaBoinca. This project is
concerned with estimations for the identification of prime
number and reducing the time of a deterministic prime test.
The resource share settings and applications specs are
given below:

Project 1: Cplan1 (locally running project)

• Resource share: 50%
• Application and version: app example_app
• Job params: fpops_est 1000G fpops mean 1000G

std_dev 0G
• Latency: 85794.00 weight 1.00
• App version: 24253 ()
• CPU: 1 with 2 GFLOPS
• App version: 22489 ()
• CPU: 1 with 3 GFLOPS

Project 2: PrimaBoinca (live project)

• Resource share: 50%
• Application and version: app primaboinca
• Job params: fpops_est 1000G fpops mean 1000G

std_dev 0G
• Latency: 604754.54 weight 1.00
• App version: 705 ()
• CPU: 1 with 3 GFLOPS

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016 147

We run simulations for four different scenarios keeping
the Hardware configuration same, Hardware configuration
used for simulation is: 4 CPUs, 2.5 GFLOPS. The Client
is simulated to run for 10 days, host availability is
modeled as a random process in which available and
unavailable periods have exponentially distributed lengths,
the mean of the activity periods can be controlled with
on_lambda parameter in client_state.xml, in our case we
have kept it to a default value of 1 hour.

4. Results

The output given in Table 2(a) & (b) shows that the
scenarios using EDFsimulation depicted slight increase in
share violation. The high level of monotony found in all
scenarios is due to the fact that project "Cplan1" and
project "PRIMABOINCA" consists of jobs with
considerably smaller work units. Wasted fraction values
for all scenarios are considerably less counter intuitive to
the fact that scenario 1 and scenario 2 have a very high
ratio of deadlines missed which should result in high
levels of wasted fraction. This may be due to the fact that
deadlines are only missed for project Cpan1 and for
Project "Primaboinca" deadlines missed in all scenarios
remains zero. So the combined effect may have resulted
low wasted fraction values in scenario 1 and scenario 2.
Apart from these differences levels of wasted fraction, idle
fraction, share violation and monotony do not vary by
very large margins for all scenarios, but a visible
difference is observed in application throughputs as shown
in Table 2(b). It is observed that disabling EDF (Early
Deadline First) results in larger no of missed deadlines
(Scenario 1 and 2) as compared to (Scenario 3 and 4)
having considerably less missed deadlines. Scenario 3 and
4 show that using weighted round robin increased
throughput by 30% and 8% for Cpan1 and Primaboinca
respectively.

Figure 2(a): Output of given scenarios

Figure 2(b): Application Throughput

5. Conclusion

We presented a thorough evaluation of the two most
commonly used CPU scheduling policies i.e. round Robin
and Early Deadline First. We kept the work fetch policy
same for all the scenarios i.e. Work Fetch Hysteresis. We
designed four scenarios, used two different types of
applications and performed evaluations on five measures.
It is concluded that EDF in most cases results in less
wasted fractions and low missed deadlines but may cause
high share violation and monotony in favor of some
projects leaving others starving for resources yielding low
throughput. However, EDF is only optimal for
uniprocessor environment. As a future work, it is desirable
to study multiprocessor scheduling policies and compare
the results with EDF.

References
[1] Vladoiu, M. (2010). Has Open Source Prevailed in Desktop

Grid and Volunteer Computing?. Petroleum-Gas University
of Ploiesti Bulletin, Mathemat-ics-Informatics-Physics
Series, 62(2).

[2] Anderson, D. P. (2004, November). Boinc: A system for
public-resource computing and storage. In Grid Computing,
2004. Proceedings. Fifth IEEE/ACM International
Workshop on (pp. 4-10). IEEE.

[3] Fedak, G., Germain, C., Neri, V., & Cappello, F. (2001).
Xtremweb: A generic global computing system. In Cluster
Computing and the Grid, 2001. Proceedings. First
IEEE/ACM International Symposium on (pp. 582-587).
IEEE.

[4] Andrade, N., Cirne, W., Brasileiro, F., & Roisenberg, P.
(2003, June). OurGrid: An approach to easily assemble
grids with equitable resource sharing. In Workshop on Job
Scheduling Strategies for Parallel Processing (pp. 61-86).
Springer Berlin Heidelberg.

[5] Balaton, Z., Gombás, G., Kacsuk, P., Kornafeld, A., Kovács,
J., Marosi, A. C., ... & Kiss, T. (2007, March). Sztaki
desktop grid: a modular and scalable way of building large
computing grids. In 2007 IEEE International Parallel and
Distributed Processing Symposium (pp. 1-8). IEEE.

[6] Fajardo, E. M., Dost, J. M., Holzman, B., Tannenbaum, T.,
Letts, J., Tiradani, A., ... & Mason, D. (2015). How much
higher can HTCondor fly?. In Journal of Physics:
Conference Series (Vol. 664, No. 6, p. 062014). IOP
Publishing.

[7] Kondo, D., Chien, A. A., & Casanova, H. (2007).
Scheduling task parallel applications for rapid turnaround
on enterprise desktop grids. Journal of Grid Computing,
5(4), 379-405.

[8] Kondo, D., Anderson, D. P., & McLeod, J. (2007,
December). Performance evaluation of scheduling policies
for volunteer computing. In e-Science and Grid Computing,
IEEE International Conference on (pp. 415-422). IEEE.

[9] Toth, D., & Finkel, D. (2009). Improving the productivity
of volunteer computing by using the most effective task
retrieval policies. Journal of Grid Computing, 7(4), 519-535.

[10] Anderson, D. P. (2011, May). Emulating volunteer
computing scheduling policies. In Parallel and Distributed

IJCSNS International Journal of Computer Science and Network Security, VOL.16 No.12, December 2016 148

Processing Workshops and Phd Forum (IPDPSW), 2011
IEEE International Symposium on (pp. 1839-1846). IEEE.

Muhammad Khalid Khan received the
M.S. degree in Computer Science from
SZABIST, Karachi in 2005, MBA degree
from PAF-KIET in 2008. He is currently
associated with the college of computing
and information science at PAF-KIET,
Karachi as a PhD candidate. He also look
after BSCS program at PAF-KIET. He has
more than 10 years experience in academia

and close to 5 year in software industry. He has more than 20
publications on his accord.

