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Summary 
This paper formalizes new graph representation and graph 
algorithms based on the well-developed relational database 
theory. In this formalization, graphs are represented in the form 
of relations which can be visualized as relational tables. Each 
vertex and edge of a graph is represented as a tuple in the tables. 
Graph algorithms are also defined in terms of relational algebraic 
operations such as projection, selection, and join. They can be 
implemented with the database language, SQL. This database 
implementation has many advantages compared with traditional 
approaches. Very large amount of graphs, for example, can be 
efficiently managed and concurrently shared among users by 
virtue of the capability of databases. 
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1. Introduction 

Graphs are most powerful methodology to solve the real 
world problems. A graph, G, consists of two sets: a finite, 
nonempty set of vertices, and a finite, possibly empty set of 
edges. V(G) and E(G) represent the sets of vertices and 
edges of G, respectively. We may write G = (V, E) to 
represent a graph [1]. 
While several representations for graphs are possible, 
adjacency matrix, adjacency list, and adjacency multilist 
are most commonly used in practical applications [1]. 
Although the representations have been successfully 
applied to most of applications, they have some limitations 
because of their in-memory property. First of all, the 
lifetime of graph objects are all transient, but not persistent. 
The representation of graphs are effective only during the 
program run-time and vanishes when the program 
terminates. Next, some applications require concurrent 
access to graphs by several users. In such environment, 
interactions of concurrent updates may result in 
inconsistent graphs. Finally, the size of graphs may be 
limited by the size of memory. In such environment, part 
of graphs must be repeatedly saved to and retrieved from 
files. 
To cope with the limitations, this paper proposes a 
relational formalization of graph representation and 
algorithms. In the formalism, graphs are represented as 
relations based on the concept of the relational data model 
[2, 3]. These relations, in turn, can be visualized in the 
form of relational tables and then saved in a relational 
database. Graph algorithms are defined in terms of 

relational algebraic operations such as projection, selection, 
and join. These algorithms, also in turn, implemented with 
relational database languages such as SQL [4, 5]. This 
database implementation has many advantages compared 
with traditional approaches. Very large amount of graphs, 
for example, can be efficiently managed and concurrently 
shared among users by virtue of the capability of databases. 

2. Relational Algebra 

Cartesian product of domains D1, D2, …, Dn, written D1 
× D2 × … × Dn, is a set of n-tuples <v1, v2, …, vn> such 
that v1 is in D1, v2 is in D2, and so on. Relation is any 
subset of the cartesian product of one or more domains, 
and each element of the relation is called tuple. Relation 
can be represented as a table where each row is tuple and 
each column has a distinct name called attribute. Each 
attribute has an associated domain. A relation R with a set 
of attributes A = {A1, A2, …, An} is denoted by R[A] or 
R[A1, A2, …, An]. Let t be a tuple in R[A]. Then the part 
of t corresponding to a set of attributes X⊆A is denoted by 
t[X] [5]. 
There is a family of operations usually associated with 
relations. They can be coded by using algebraic notations, 
called relational algebra. Fundamental operations in 
relational algebra are projection(π), selection(σ), union(∪), 
difference(-), and cartesian product(×). In addition to the 
five fundamental operations, there are some other useful 
operations, such as intersection(∩), natural join(⋈), theta 
join(⋈θ), and aggregation(G), that can be defined in terms 
of the fundamental operations [5]. Some of the operations 
are explained in more detail below. 

  
1) Projection (π): projection of a relation R, denoted πX(R), 
chooses a subset of the columns. Let R be a relation on a 
set of attributes A = {A1, A2, …, An} and X is a subset of 
A. Then projection πX(R) is obtained by dropping columns 
with attributes not in the set X and removing duplicate 
tuples in what remains. 

πX(R) = {t[X] | t ∈ R} 

Generalized-projection operation extends the projection 
operation by allowing arithmetic functions to be used in 
the projection list. 

πF1, F2, …, Fn(R) 
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where, each of F1, F2, …, Fn are arithmetic expressions 
involving constants and attributes in the schema of R [5]. 

 
2) Selection (σ): selection of relation R, denoted σF(R), is 
a subset of tuples of R that satisfy the formula F. 

σF(R) = {t | F(t) ∧ t ∈ R} 
 

3) Natural join (⋈): natural join of two relations R and S, 
denoted R⋈S, combines two relations on their common 
attributes. Let R[XW] and S[YW] be two relations where 
X, Y and W are disjoint sets of attributes. 

R⋈S = {t[XYW] | t[XW] ∈ R ∧ t[YW] ∈ S} 
  

4) Theta join (⋈θ): theta join of two relations R[X] and 
T[Z], denoted R⋈θT, is the subset of tuples of cartesian 
product R×T that satisfy the formula θ. 

 R⋈θT = {t | θ(t) ∧ t[X] ∈ R ∧ t[Z] ∈ T} 
           = σθ(R × T) 
 

5) Aggregation (G): the general form of aggregation 
operation G is as follows. 

G1,G2,…,Gn G F1(A1), F2(A2),…, Fm(Am) (R) 

where, G1, G2, …, Gn constitute a list of attributes on 
which to group, each Fi is an aggregate function, and each 
Ai is an attribute name. The meaning of the operation is 
defined as follows. The tuples in R are partitioned into 
groups such that all tuples in a group have the same values 
for G1, G2, …, Gn, and tuples in different groups have 
different values for G1, G2, …, Gn. Thus the groups can 
be identified by the values of attributes G1, G2, …, Gn. 
For each group (g1, g2, …, gn), the result has a tuple (g1, 
g2, …, gn, a1, a2, …, am) where, for each i, ai is the result 
of applying the aggregate function Fi on the multiset of 
values for attribute Ai in the group [5]. 

3. Relational Algebraic Graph Algorithms 

This section proposes a graph representation based on the 
relational data model, and then proposes graph algorithms 
based on the relational algebra. In the relational graph 
representation, vertices of a graph are represented as the 
vertex relation V[vid, v_attr], and edges are represented as 
the edge relation E[eid, vid1, vid2, e_ttr].  
These relations, in turn, can be visualized in the form of 
tables. The graph in Fig. 1(a), for example, is visualized as 
the tables in Fig. 1(b). The column ‘vid’ of the vertex table 
‘V’ represents the identifier of each vertex. The column 
‘eid’ of the edge table ‘E’ represents the identifier of each 
edge, and the column ‘vid1’ and ‘vid2’ represent vertices. 
The pair (v1, v2), where v1 is a value of ‘vid1’ and v2 is a 

value of ‘vid2’, represents an edge connecting the vertex 
v1 and v2. The pair (v1, v2) is unordered for undirected 
graphs, and the pair <v1, v2> is ordered for directed 
graphs. We may consider other columns such as ‘v_attr’ 
for the attribute of vertices and ‘e_attr’ for the attribute of 
edges. They depend on the characteristics of graphs to be 
modeled for a given problem. 

 

 
(a) graph 

 
V   E    
vid v_attr  eid vid1 vid2 e_attr 
v1 48  e1 v1 v2 30 
v2 11  e2 v2 v3 15 
v3 83  e3 v3 v4 24 
v4 25  e4 v4 v1 90 
v5 34  e5 v1 v3 56 
v6 72  e6 v5 v6 29 
v7 68  e7 v6 v7 17 
   e8 v7 v5 47 

 
(b) relational tables 

Fig. 1 Graph and its relational tables 

Graph operations and algorithms may depend on the 
representation of graphs. Under the relational 
representation of graphs, these are defined in terms of 
relational algebraic operations such as projection, selection, 
and selection. We only consider the vertex identifier ‘vid’ 
of the vertex table ‘V’, and ‘vid1’ and ‘vid2’ of the edge 
table ‘E’ in the following algorithms. The core of 
algorithms may be similar in spite of extra columns.  
There may be a variety of operations to retrieve 
information from graphs. Some basic ones are defined in 
the simple relational algebra as the followings. 

 
1) Number of vertices: πcount(*)V  

 
2) Number of edges: πcount(*)E  

 
3) Vertices adjacent with a vertex v: πvid2(σvid1=v(E)) ⋃ 
πvid1(σvid2=v(E))  

 
4) Vertices adjacent with a vertex set S: πvid2(σvid1∈S(E)) ⋃ 
πvid1(σvid2∈S(E)) 

 

90 

v4 
25 

v3 
83 

v6 
72 

v7 
68 

48 

v1 
11 

v2 

15 56 

34 

v5 

29 47 

30 

24 17 



IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017 

 

27 

 

5) Vertices adjacent to a vertex v for digraphs: 
πvid1(σvid2=v(E)) 

 
6) Vertices adjacent from a vertex v for digraphs: 
πvid2(σvid1=v(E)) 

 
7) Edges incident with a vertex v: σvid1=v⋁vid2=v(E) 

 
8) Degree of a vertex v: πcount(*)(σvid1=v⋁vid2=v(E)) 

 
Although there are many graph operations which result in 
new graphs [6], some of such operations can be defined in 
the relational algebra as the followings.  

 
9) Complement of a graph G has V(G) as its vertex set, but 
two vertices are adjacent in  if and only if they are not 
adjacent in G. 

V' = V 
E' = (V × V) - E 
 

10) Union G = G1 ⋃ G2. 
V = V1 ⋃ V2   
 E = E1 ⋃ E2 
 

11) Join G = G1 + G2 consists of G1 ⋃ G2 and all edges 
joining V1 with V2. 

V = V1 ⋃ V2 
E = E1 ⋃ E2 ⋃ (V1 × V2) 
 

12) Product G = G1 × G2. Consider any two vertices u = 
(u1, u2) and v = (v1, v2) in V = V1 × V2. Then u and v are 
adjacent in G1 × G2 whenever [u1 = v1 and u2 adj v2] or 
[u2 = v2 and u1 adj v1]. 

 
V[vid1, vid2] = V1 × V2 

/* where, a tuple <vid1, vid2> represents a vertex */ 
E[vid11, vid12, vid21, vid22] = V × V 
 /* where, a tuple <vid11, vid12, vid21, vid22> 

represents an edge connecting the vertex <vid11, vid12> and 
<vid21, vid22> */ 

E = ((σvid11=vid21E) ⋈vid12=vid1∧vid22=vid2 E2)  /* [u1 = v1 
and u2 adj v2] */ 

       ⋃ ((σvid12=vid22E) ⋈vid11=vid1∧vid21=vid2 E1)  /* [u2 = 
v2 and u1 adj v1] */ 

 
13) Composition G = G1[G2] also has V = V1 × V2 as its 
vertex set, and u = (u1, u2) is adjacent with v = (v1, v2) 
whenever [u1 adj v1] or [u1 = v1 and u2 adj v2]. 

V[vid1, vid2] = V1 × V2 
E[vid11, vid12, vid21, vid22] = V × V 
E = (E ⋈vid11=vid1∧vid21=vid2 E1)  /* [u1 adj v1] */ 
       ⋃ ((σvid11=vid21E) ⋈vid12=vid1∧vid22=vid2 E2)  /* [u1 = 

v1 and u2 adj v2] */ 
 

The followings are fundamental graph algorithms defined 
with relational algebraic operations and C-like 
programming structures.  

 
14) Breadth first search algorithm [1] is defined as the 
following relational algebraic algorithm. 

 
Algorithm breadth_first_search(v) 
{   

S[vid] = {v};  /* starting vertex */ 
print S; Visited[vid] = S; 
while (V - Visited != ∅) {  /* exists not visited vertices 

*/ 
S = πvid2(σvid1∈S(E)) ⋃ πvid1(σvid2∈S(E))  /* next 

vertices */ 
S = S - Visited;  /* vertices not yet visited */ 
print S; Visited = Visited ⋃ S; 

} 
} 

 
15) Minimum cost spanning tree is defined as the 
following, where the Kruskal's algorithm is used [7]. 

 
Algorithm minimum_cost_spanning_tree() 
{ /* Emst[vid1, vid2, ecost] contains the edges of the 

minimum spanning tree */ 
Emst[vid1, vid2, ecost] = {} 
Group[gid, vid] = πvid,vidV  /* each vertex is in 

different group, group is used for cycle-test */ 
while ((πcount(*)Emst < πcount(*)V - 1) && πcount(*)E > 

0) { 
  <v1, v2, mincost> = (πmin(ecost)E) ⋈ E  /* least cost 

edge */ 
  E = E - {<v1, v2, mincost>}  /* delete it from the 

edge table */ 
   <g1> = πgid(σvid=v1Group)  /* group of v1 */ 
   <g2> = πgid(σvid=v2Group)  /* group of v2 */ 
   if (<g1> != <g2>) {  /* if the least cost edge does 

not create a cycle */ 
       Emst = Emst ⋃ {<v1, v2, mincost>} 
             /* change the group of v2 with the group of v1 */ 

       Group = Group - {<g2, v2>} ⋃ {<g1, v2>} 
   } 
    if (πcount(*)Emst < πcount(*)V - 1) 
       print("No spanning tree"); 
   } 
} 
 

16) Single source all destinations shortest path for digraphs 
is defined as the following, where the Dijstra's algorithm is 
adapted [1]. 

 
Algorithm shortest_path(v) 
{ /* D[vid, cost] contains the shortest distance to every 

vertex */ 
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n = πcount(*)(V)  /* number of vertices */ 
D[vid, cost] = πvid,∞(σvid!=vV) ⋃ {<v, 0>}  /* initial 

distance ∞ */ 
F[vid] = {}  /* found vertices */ 
for ( i = 0; i < n-1; i++) { 

  <mincost> = πmin(cost)(D - (D ⋈ F))  /* smallest not 
yet checked */ 

  <minvid>= πvid(σcost=mincostD) 
  Dnew[vid, cost] = πvid2,ecost+mincost(σvid1=minvid E)  

/* new distances */ 
  D = vidGmin(cost)(D ⋃ Dnew)  /* select lower 

distance */ 
  F = F ⋃ {<minvid>} 

} 
} 

4. Implementation of Graph Algorithms 

In general, relational formalization of graphs and 
algorithms can be easily implemented on top of relational 
database system. The relations representing a graph, which 
can be visualized in the form of tables, are saved in and 
retrieved from a relational database. The relational 
algebraic algorithms on the graph, which is defined in 
terms of relational algebraic operations, can be 
implemented with the database language, SQL [4]. For 
example, the vertices adjacent on a vertex v, defined in 
πvid2(σvid1=v(E)) ⋃ πvid1(σvid2=v(E)), can be implemented as 
the following simple SQL statement. 

select vid2 from E where vid1 = v 
union 
select vid1 from E where vid2 = v; 
 

The relational algebraic algorithms with programming 
language features can be implemented with the embedded 
SQL, which mixes programming language with SQL 
statements [5]. Actually, the proposed graph algorithms are 
implemented on Oracle database with database language 
such as SQL and embedded SQL. Fig. 2 shows an 
implementation of the shortest path algorithm. 
 

void shortest_path(v) 
{ 

int i, n; 
int mincost, minvid; 

 
/* connect to the graph database */ 
EXEC SQL CONNECT :username 

 
/* calculate the number of vertices */ 
EXEC SQL select count(*) into :n from V; 

 
/* create the distance table D and initialize */ 
EXEC SQL create table D (vid int, cost int); 
EXEC SQL insert into D values(:v, 0); 

 

/* create the found table F */ 
EXEC SQL create table F (vid int); 

 

for (i = 0; i < n - 1; i++) { 
/* find smallest distance vertex among not yet found */ 
EXEC SQL create table D1 (vid, cost) 

as (select vid, cost from D) minus 
(select vid, cost from D, F where D.vid = F.vid); 

EXEC SQL select min(cost) into :mincost  
from D1; 

EXEC SQL select vid into :minvid from D1  
where cost = :mincost; 

 
/* recalculate new distances */ 
EXEC SQL create table Dnew (vid int, cost int) 

as (select vid2, cost + :mincost  
from E where vid1 = :minvid; 

 
/* select smaller distance */ 
EXEC SQL create table D2 (vid, cost) 

as (select * from D) union  
(select * from Dnew); 

EXEC SQL create table D (vid, cost) 
as (select vid, min(cost) from D2  

group by vid); 
 

/* add the vertex into the found table F */ 
EXEC SQL insert into F values(:minvid); 

} 
} 

Fig. 2 Implementation of shortest path algorithm 

The implementation was conducted on several experiments. 
During the experiments, graphs are generated synthetically 
according to the parameters, such as number of vertices 
and edges. Fig. 3 shows an experimental result of the 
shortest path algorithm, in which the number of vertices is 
fixed with 1,000. And the number of edges varies from 
50,000 to 1,000,000 that is, from 1% of complete graph to 
100%. As shown in the figure, the run time has some 
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overhead for the cases of lower number of edges, but it has 
more benefit for the cases of higher number of edges. For 
example, the run time increases from 90 to 140, that is only 
1.6 times, even though the number of edges increase from 
100,000 to 500,000, that is 5 times. This benefit is due to 
the power of database. 

 

Fig. 3 Experimental result for short path algorithm 

5. Conclusions 

This paper showed graph algorithms can be modeled and 
implemented on top of relational database. It is based on 
the well-developed relational data model and relational 
algebra. Graph is first modeled in the form of relations of 
the relational data model. Graph algorithms are then 
formalized in terms of the relational algebraic operations.  
This database formalization has many advantages 
compared with traditional approaches. Very large amount 
of graphs, for example, can be efficiently managed and 
concurrently shared among users by virtue of the capability 
of databases.  
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