
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017

25

Manuscript received January 5, 2017
Manuscript revised January 20, 2017

Relational Algebraic Graph Algorithms

 Hyu Chan Park
Department of Computer Engineering, Korea Maritime and Ocean University, Korea

Summary
This paper formalizes new graph representation and graph
algorithms based on the well-developed relational database
theory. In this formalization, graphs are represented in the form
of relations which can be visualized as relational tables. Each
vertex and edge of a graph is represented as a tuple in the tables.
Graph algorithms are also defined in terms of relational algebraic
operations such as projection, selection, and join. They can be
implemented with the database language, SQL. This database
implementation has many advantages compared with traditional
approaches. Very large amount of graphs, for example, can be
efficiently managed and concurrently shared among users by
virtue of the capability of databases.
Key words:
Graph algorithm, Relational Algebra, Database

1. Introduction

Graphs are most powerful methodology to solve the real
world problems. A graph, G, consists of two sets: a finite,
nonempty set of vertices, and a finite, possibly empty set of
edges. V(G) and E(G) represent the sets of vertices and
edges of G, respectively. We may write G = (V, E) to
represent a graph [1].
While several representations for graphs are possible,
adjacency matrix, adjacency list, and adjacency multilist
are most commonly used in practical applications [1].
Although the representations have been successfully
applied to most of applications, they have some limitations
because of their in-memory property. First of all, the
lifetime of graph objects are all transient, but not persistent.
The representation of graphs are effective only during the
program run-time and vanishes when the program
terminates. Next, some applications require concurrent
access to graphs by several users. In such environment,
interactions of concurrent updates may result in
inconsistent graphs. Finally, the size of graphs may be
limited by the size of memory. In such environment, part
of graphs must be repeatedly saved to and retrieved from
files.
To cope with the limitations, this paper proposes a
relational formalization of graph representation and
algorithms. In the formalism, graphs are represented as
relations based on the concept of the relational data model
[2, 3]. These relations, in turn, can be visualized in the
form of relational tables and then saved in a relational
database. Graph algorithms are defined in terms of

relational algebraic operations such as projection, selection,
and join. These algorithms, also in turn, implemented with
relational database languages such as SQL [4, 5]. This
database implementation has many advantages compared
with traditional approaches. Very large amount of graphs,
for example, can be efficiently managed and concurrently
shared among users by virtue of the capability of databases.

2. Relational Algebra

Cartesian product of domains D1, D2, …, Dn, written D1
× D2 × … × Dn, is a set of n-tuples <v1, v2, …, vn> such
that v1 is in D1, v2 is in D2, and so on. Relation is any
subset of the cartesian product of one or more domains,
and each element of the relation is called tuple. Relation
can be represented as a table where each row is tuple and
each column has a distinct name called attribute. Each
attribute has an associated domain. A relation R with a set
of attributes A = {A1, A2, …, An} is denoted by R[A] or
R[A1, A2, …, An]. Let t be a tuple in R[A]. Then the part
of t corresponding to a set of attributes X⊆A is denoted by
t[X] [5].
There is a family of operations usually associated with
relations. They can be coded by using algebraic notations,
called relational algebra. Fundamental operations in
relational algebra are projection(π), selection(σ), union(∪),
difference(-), and cartesian product(×). In addition to the
five fundamental operations, there are some other useful
operations, such as intersection(∩), natural join(⋈), theta
join(⋈θ), and aggregation(G), that can be defined in terms
of the fundamental operations [5]. Some of the operations
are explained in more detail below.

1) Projection (π): projection of a relation R, denoted πX(R),
chooses a subset of the columns. Let R be a relation on a
set of attributes A = {A1, A2, …, An} and X is a subset of
A. Then projection πX(R) is obtained by dropping columns
with attributes not in the set X and removing duplicate
tuples in what remains.

πX(R) = {t[X] | t ∈ R}

Generalized-projection operation extends the projection
operation by allowing arithmetic functions to be used in
the projection list.

πF1, F2, …, Fn(R)

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017 26

where, each of F1, F2, …, Fn are arithmetic expressions
involving constants and attributes in the schema of R [5].

2) Selection (σ): selection of relation R, denoted σF(R), is
a subset of tuples of R that satisfy the formula F.

σF(R) = {t | F(t) ∧ t ∈ R}

3) Natural join (⋈): natural join of two relations R and S,
denoted R⋈S, combines two relations on their common
attributes. Let R[XW] and S[YW] be two relations where
X, Y and W are disjoint sets of attributes.

R⋈S = {t[XYW] | t[XW] ∈ R ∧ t[YW] ∈ S}

4) Theta join (⋈θ): theta join of two relations R[X] and
T[Z], denoted R⋈θT, is the subset of tuples of cartesian
product R×T that satisfy the formula θ.

 R⋈θT = {t | θ(t) ∧ t[X] ∈ R ∧ t[Z] ∈ T}
 = σθ(R × T)

5) Aggregation (G): the general form of aggregation
operation G is as follows.

G1,G2,…,Gn G F1(A1), F2(A2),…, Fm(Am) (R)

where, G1, G2, …, Gn constitute a list of attributes on
which to group, each Fi is an aggregate function, and each
Ai is an attribute name. The meaning of the operation is
defined as follows. The tuples in R are partitioned into
groups such that all tuples in a group have the same values
for G1, G2, …, Gn, and tuples in different groups have
different values for G1, G2, …, Gn. Thus the groups can
be identified by the values of attributes G1, G2, …, Gn.
For each group (g1, g2, …, gn), the result has a tuple (g1,
g2, …, gn, a1, a2, …, am) where, for each i, ai is the result
of applying the aggregate function Fi on the multiset of
values for attribute Ai in the group [5].

3. Relational Algebraic Graph Algorithms

This section proposes a graph representation based on the
relational data model, and then proposes graph algorithms
based on the relational algebra. In the relational graph
representation, vertices of a graph are represented as the
vertex relation V[vid, v_attr], and edges are represented as
the edge relation E[eid, vid1, vid2, e_ttr].
These relations, in turn, can be visualized in the form of
tables. The graph in Fig. 1(a), for example, is visualized as
the tables in Fig. 1(b). The column ‘vid’ of the vertex table
‘V’ represents the identifier of each vertex. The column
‘eid’ of the edge table ‘E’ represents the identifier of each
edge, and the column ‘vid1’ and ‘vid2’ represent vertices.
The pair (v1, v2), where v1 is a value of ‘vid1’ and v2 is a

value of ‘vid2’, represents an edge connecting the vertex
v1 and v2. The pair (v1, v2) is unordered for undirected
graphs, and the pair <v1, v2> is ordered for directed
graphs. We may consider other columns such as ‘v_attr’
for the attribute of vertices and ‘e_attr’ for the attribute of
edges. They depend on the characteristics of graphs to be
modeled for a given problem.

(a) graph

V E
vid v_attr eid vid1 vid2 e_attr
v1 48 e1 v1 v2 30
v2 11 e2 v2 v3 15
v3 83 e3 v3 v4 24
v4 25 e4 v4 v1 90
v5 34 e5 v1 v3 56
v6 72 e6 v5 v6 29
v7 68 e7 v6 v7 17
 e8 v7 v5 47

(b) relational tables

Fig. 1 Graph and its relational tables

Graph operations and algorithms may depend on the
representation of graphs. Under the relational
representation of graphs, these are defined in terms of
relational algebraic operations such as projection, selection,
and selection. We only consider the vertex identifier ‘vid’
of the vertex table ‘V’, and ‘vid1’ and ‘vid2’ of the edge
table ‘E’ in the following algorithms. The core of
algorithms may be similar in spite of extra columns.
There may be a variety of operations to retrieve
information from graphs. Some basic ones are defined in
the simple relational algebra as the followings.

1) Number of vertices: πcount(*)V

2) Number of edges: πcount(*)E

3) Vertices adjacent with a vertex v: πvid2(σvid1=v(E)) ⋃
πvid1(σvid2=v(E))

4) Vertices adjacent with a vertex set S: πvid2(σvid1∈S(E)) ⋃
πvid1(σvid2∈S(E))

90

v4
25

v3
83

v6
72

v7
68

48

v1
11

v2

15 56

34

v5

29 47

30

24 17

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017

27

5) Vertices adjacent to a vertex v for digraphs:
πvid1(σvid2=v(E))

6) Vertices adjacent from a vertex v for digraphs:
πvid2(σvid1=v(E))

7) Edges incident with a vertex v: σvid1=v⋁vid2=v(E)

8) Degree of a vertex v: πcount(*)(σvid1=v⋁vid2=v(E))

Although there are many graph operations which result in
new graphs [6], some of such operations can be defined in
the relational algebra as the followings.

9) Complement of a graph G has V(G) as its vertex set, but
two vertices are adjacent in if and only if they are not
adjacent in G.

V' = V
E' = (V × V) - E

10) Union G = G1 ⋃ G2.
V = V1 ⋃ V2
 E = E1 ⋃ E2

11) Join G = G1 + G2 consists of G1 ⋃ G2 and all edges
joining V1 with V2.

V = V1 ⋃ V2
E = E1 ⋃ E2 ⋃ (V1 × V2)

12) Product G = G1 × G2. Consider any two vertices u =
(u1, u2) and v = (v1, v2) in V = V1 × V2. Then u and v are
adjacent in G1 × G2 whenever [u1 = v1 and u2 adj v2] or
[u2 = v2 and u1 adj v1].

V[vid1, vid2] = V1 × V2

/* where, a tuple <vid1, vid2> represents a vertex */
E[vid11, vid12, vid21, vid22] = V × V
 /* where, a tuple <vid11, vid12, vid21, vid22>

represents an edge connecting the vertex <vid11, vid12> and
<vid21, vid22> */

E = ((σvid11=vid21E) ⋈vid12=vid1∧vid22=vid2 E2) /* [u1 = v1
and u2 adj v2] */

 ⋃ ((σvid12=vid22E) ⋈vid11=vid1∧vid21=vid2 E1) /* [u2 =
v2 and u1 adj v1] */

13) Composition G = G1[G2] also has V = V1 × V2 as its
vertex set, and u = (u1, u2) is adjacent with v = (v1, v2)
whenever [u1 adj v1] or [u1 = v1 and u2 adj v2].

V[vid1, vid2] = V1 × V2
E[vid11, vid12, vid21, vid22] = V × V
E = (E ⋈vid11=vid1∧vid21=vid2 E1) /* [u1 adj v1] */
 ⋃ ((σvid11=vid21E) ⋈vid12=vid1∧vid22=vid2 E2) /* [u1 =

v1 and u2 adj v2] */

The followings are fundamental graph algorithms defined
with relational algebraic operations and C-like
programming structures.

14) Breadth first search algorithm [1] is defined as the
following relational algebraic algorithm.

Algorithm breadth_first_search(v)
{

S[vid] = {v}; /* starting vertex */
print S; Visited[vid] = S;
while (V - Visited != ∅) { /* exists not visited vertices

*/
S = πvid2(σvid1∈S(E)) ⋃ πvid1(σvid2∈S(E)) /* next

vertices */
S = S - Visited; /* vertices not yet visited */
print S; Visited = Visited ⋃ S;

}
}

15) Minimum cost spanning tree is defined as the
following, where the Kruskal's algorithm is used [7].

Algorithm minimum_cost_spanning_tree()
{ /* Emst[vid1, vid2, ecost] contains the edges of the

minimum spanning tree */
Emst[vid1, vid2, ecost] = {}
Group[gid, vid] = πvid,vidV /* each vertex is in

different group, group is used for cycle-test */
while ((πcount(*)Emst < πcount(*)V - 1) && πcount(*)E >

0) {
 <v1, v2, mincost> = (πmin(ecost)E) ⋈ E /* least cost

edge */
 E = E - {<v1, v2, mincost>} /* delete it from the

edge table */
 <g1> = πgid(σvid=v1Group) /* group of v1 */
 <g2> = πgid(σvid=v2Group) /* group of v2 */
 if (<g1> != <g2>) { /* if the least cost edge does

not create a cycle */
 Emst = Emst ⋃ {<v1, v2, mincost>}
 /* change the group of v2 with the group of v1 */

 Group = Group - {<g2, v2>} ⋃ {<g1, v2>}
 }
 if (πcount(*)Emst < πcount(*)V - 1)
 print("No spanning tree");
 }
}

16) Single source all destinations shortest path for digraphs
is defined as the following, where the Dijstra's algorithm is
adapted [1].

Algorithm shortest_path(v)
{ /* D[vid, cost] contains the shortest distance to every

vertex */

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017 28

n = πcount(*)(V) /* number of vertices */
D[vid, cost] = πvid,∞(σvid!=vV) ⋃ {<v, 0>} /* initial

distance ∞ */
F[vid] = {} /* found vertices */
for (i = 0; i < n-1; i++) {

 <mincost> = πmin(cost)(D - (D ⋈ F)) /* smallest not
yet checked */

 <minvid>= πvid(σcost=mincostD)
 Dnew[vid, cost] = πvid2,ecost+mincost(σvid1=minvid E)

/* new distances */
 D = vidGmin(cost)(D ⋃ Dnew) /* select lower

distance */
 F = F ⋃ {<minvid>}

}
}

4. Implementation of Graph Algorithms

In general, relational formalization of graphs and
algorithms can be easily implemented on top of relational
database system. The relations representing a graph, which
can be visualized in the form of tables, are saved in and
retrieved from a relational database. The relational
algebraic algorithms on the graph, which is defined in
terms of relational algebraic operations, can be
implemented with the database language, SQL [4]. For
example, the vertices adjacent on a vertex v, defined in
πvid2(σvid1=v(E)) ⋃ πvid1(σvid2=v(E)), can be implemented as
the following simple SQL statement.

select vid2 from E where vid1 = v
union
select vid1 from E where vid2 = v;

The relational algebraic algorithms with programming
language features can be implemented with the embedded
SQL, which mixes programming language with SQL
statements [5]. Actually, the proposed graph algorithms are
implemented on Oracle database with database language
such as SQL and embedded SQL. Fig. 2 shows an
implementation of the shortest path algorithm.

void shortest_path(v)
{

int i, n;
int mincost, minvid;

/* connect to the graph database */
EXEC SQL CONNECT :username

/* calculate the number of vertices */
EXEC SQL select count(*) into :n from V;

/* create the distance table D and initialize */
EXEC SQL create table D (vid int, cost int);
EXEC SQL insert into D values(:v, 0);

/* create the found table F */
EXEC SQL create table F (vid int);

for (i = 0; i < n - 1; i++) {
/* find smallest distance vertex among not yet found */
EXEC SQL create table D1 (vid, cost)

as (select vid, cost from D) minus
(select vid, cost from D, F where D.vid = F.vid);

EXEC SQL select min(cost) into :mincost
from D1;

EXEC SQL select vid into :minvid from D1
where cost = :mincost;

/* recalculate new distances */
EXEC SQL create table Dnew (vid int, cost int)

as (select vid2, cost + :mincost
from E where vid1 = :minvid;

/* select smaller distance */
EXEC SQL create table D2 (vid, cost)

as (select * from D) union
(select * from Dnew);

EXEC SQL create table D (vid, cost)
as (select vid, min(cost) from D2

group by vid);

/* add the vertex into the found table F */
EXEC SQL insert into F values(:minvid);

}
}

Fig. 2 Implementation of shortest path algorithm

The implementation was conducted on several experiments.
During the experiments, graphs are generated synthetically
according to the parameters, such as number of vertices
and edges. Fig. 3 shows an experimental result of the
shortest path algorithm, in which the number of vertices is
fixed with 1,000. And the number of edges varies from
50,000 to 1,000,000 that is, from 1% of complete graph to
100%. As shown in the figure, the run time has some

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017

29

overhead for the cases of lower number of edges, but it has
more benefit for the cases of higher number of edges. For
example, the run time increases from 90 to 140, that is only
1.6 times, even though the number of edges increase from
100,000 to 500,000, that is 5 times. This benefit is due to
the power of database.

Fig. 3 Experimental result for short path algorithm

5. Conclusions

This paper showed graph algorithms can be modeled and
implemented on top of relational database. It is based on
the well-developed relational data model and relational
algebra. Graph is first modeled in the form of relations of
the relational data model. Graph algorithms are then
formalized in terms of the relational algebraic operations.
This database formalization has many advantages
compared with traditional approaches. Very large amount
of graphs, for example, can be efficiently managed and
concurrently shared among users by virtue of the capability
of databases.

References
[1] E. Horowitz, S. Sahni, S. Anderson-Freed, Fundamentals of

Data Structures in C, Computer Science Press, New York,
1993.

[2] E.F. Codd, A relational model of data for large shared data
banks, Comm. ACM 13(6) (1970) 377-387.

[3] E.F. Codd, Extending the database relational model to
capture model meaing, ACM Trans. Database Systems 4(4)
(1979) 397-434.

[4] C.J. Date, A Guide to The SQL Standard, Addison-Wesley,
Reading, MA, 1989.

[5] A. Silberschatz, H.F. Korth, S. Sudarshan, Database System
Concepts, 3rd ed., McGraw-Hill, New York, 1997.

[6] F. Harary, Graph Theory, Addison-Wesley, Reading, MA,
1972.

[7] J.A. Mchugh, Algorithmic Graph Theory, Prentice-Hall,
1990.

