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Summary 
Fuzzy co-clustering is a basic tool for extracting pair-wise 
clusters of familiar objects and items from cooccurrence 
information. A promising improvement of the conventional fuzzy 
co-clustering algorithms is achieved by introducing exclusive 
nature to item partition with the goal of the improvement of 
interpretability of co-clusters. However, in practice, some items 
are quite popular and to be shared by multiple clusters, and only 
a selected part of items should be exclusively assigned to unique 
clusters. In this paper, a partially exclusive item partition model 
is introduced into multinomial mixture models-induced fuzzy co-
clustering and a two phase implementation is proposed for 
determining the optimal set of items to be exclusively assigned. 
Its characteristic features are demonstrated through a numerical 
experiment with a real-world benchmark data set.  
Key words: 
Fuzzy clustering, Co-clustering, Multinomial mixture, Exclusive 
partition, Classification. 

1. Introduction 

Cooccurrence information analysis is a basic step of many 
web system analysis and is utilized in such areas as 
document-keyword analysis or customer-product market 
analysis. Fuzzy co-clustering [1, 2] reveals the intrinsic 
pair-wise cluster structures of mutually familiar objects 
and items from cooccurrence information among them, 
such that two types of fuzzy memberships for objects and 
items are estimated for representing their cluster 
assignment. In a co-cluster, it is expected that objects and 
items that have high cooccurrences will have high 
memberships. In the same manner with fuzzy c-means 
(FCM) [3, 4], object memberships often represent the 
exclusive assignment to a cluster under the sum-to-one 
condition with respect to the cluster index, such that each 
object belongs to at most one cluster with a large 
membership. On the other hand, item memberships 
represent the relative typicality in each cluster under the 
sum-to-one condition with respect to the item index, such 
that the typicality of items is independently estimated in 
each cluster.  
Fuzzy co-clustering induced from multinomial mixture 
models (FCCMM) [5] is a practical method that is 
motivated by multinomial mixture models (MMMs) [6] 
and can easily tune the degrees of fuzziness of object 
partition and item partition through comparison with the 
statistical MMMs.  

In many fuzzy co-clustering models, however, because of 
the nonexclusive nature of item partitions, characteristics 
that are unique to particular clusters are often concealed by 
item sharing in multiple clusters. In order to improve the 
partition quality and interpretability, some previous works 
[7, 8] introduced the exclusive nature into item partition, 
where an additional penalty for exclusive item partition 
was added to the FCCMM objective function. By 
assigning some selected items to at most a single cluster 
with a large membership, typical items can be utilized to 
emphasize the peculiar features of each cluster. 
In this paper, the FCCMM model is further investigated by 
introducing a two phase implementation procedure for 
selecting the optimal set of items to be exclusively 
assigned from the classification viewpoint. The first stage 
is devoted to selecting the items to be exclusively 
partitioned through an item-wise single penalization test. 
The second stage performs FCCMM by forcing the 
selected items to be exclusive.  
The remaining parts of this paper are organized as follows: 
Section 2 reviews the FCCMM algorithm, and Section 3 
proposes its extension with an exclusive item partition 
penalty in conjunction with its two phase implementation. 
Some experimental results are presented in Section 4, and 
summary conclusions are given in Section 5. 

2. MMMs-induced Fuzzy Co-clustering 

Assume that we have cooccurrence information for a set of 
objects and items, such as document-keyword 
cooccurrence frequencies in a document analysis, where 

}{ ijrR =  is an mn×  cooccurrence information matrix for 
n objects and m items, and where rij is the degree of 
cooccurrence for object i and item j. The goal of co-
clustering is to reveal the intrinsic information about co-
cluster structures, in which mutually familiar objects are 
grouped into clusters that contain their typical items.  
Honda et al. [5] proposed the fuzzy co-clustering 
algorithm known as FCCMM. MMMs [6] is a statistical 
co-clustering model for estimating mixtures of C 
component multinomial distributions, but it can also be 
interpreted as a soft partition model with an intrinsic 
fuzziness penalty. In the following discussion, the 
clustering models will be considered in the fuzzy co-
clustering context.  
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Assume that each object i belongs to cluster c with fuzzy 
membership uci under the probabilistic constraint of 

1
1

=∑ =

C

c ciu . Additionally, each item j is also assumed to 

have fuzzy membership wcj to cluster c but obeys a 
different constraint of 1

1
=∑ =

m

j cjw , i.e., wcj corresponds to 

the typicality of item j in cluster c rather than to its cluster 
indicator. The pseudo-log-likelihood to be maximized in 
MMMs is given as:  
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cα  is the a priori probability (volume) of component c 
under 1

1
=∑ =

C

c cα . Using the EM algorithm [9], cα , ciu  

and 
cjw  are iteratively updated until convergence. 

In the same way as in Gaussian mixture models [10], 
MMMs can also be interpreted as a soft partition model. 
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measure for object-item pairs in co-clusters, and mutually 
familiar pairs will have large memberships ciu  and 

cjw  in a 

particular cluster c . This is maximized in }1,0{∈ciu  
because of the linearity of the objective function with 
respect to 

ciu ; i.e., the hard clustering principle. Then, 
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logα  is used for the fuzzification of ciu . 

On the other hand, the fuzzy feature of 
cjw is due to the 

nonlinearity of the log function.   
Following the soft partitioning interpretation, FCCMM 
introduces additional fuzziness tuning penalties in the 
same manner as used in the entropy-based or K-L 
information-based fuzzification schemes in FCM [11, 12], 
in conjunction with nonlinearity tuning of the log function: 
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In this objective function, the nonlinear degree is tuned by 
two types of adjustable penalty weights. uλ  tunes the 
responsibility of the K-L information-based penalty. Note 
that 0=uλ  implies a crisp object partition, and a larger 
value for 

uλ  results in a fuzzier object memberships. On 
the other hand, wλ  tunes the nonlinear degree of the 
aggregation criterion. Following the definition of the log 
function: 
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the objective function in Eq.(2) reduces to MMMs with 
0→wλ  while 1=wλ  implies a crisp linear objective 

function. Then, 0<wλ  results in fuzzier item memberships. 

3. Exclusive Item Partition 

3.1 Exclusive Partition Penalty on Item Memberships 

Because item memberships are independently estimated 
for each cluster, some items may have large memberships 
in multiple clusters and others may not belong to any 
clusters. This item-sharing feature often results in the 
concealing of items unique to a particular cluster. In order 
to improve the quality of the partitions and the 
interpretability, some previous studies [7, 8] have made 
the item partitions exclusive.  
In order to evaluate the degree of sharing of item j  in 
cluster c , the sharing penalty weight is calculated as: 
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Note that 
cjs  is small when item j  belongs to other 

clusters, and β  tunes the sensitivity, such that a large β  
causes a rapid decrease in 

cjs , while a small β  brings a 
small change in 

cjs .  
In many co-clustering tasks, some items are quite popular 
and should be shared by multiple clusters, while others 
should be unique to a particular cluster. For example, in 
document analysis, some general terms are quite common, 
but topic-sensitive terms should be used for emphasizing 
features of particular clusters. This exclusive nature should 
be applied to only certain items. Assume that EI is a set of 
items to be exclusively assigned to co-clusters, and other 
items can be shared by multiple clusters. The item-sharing 
penalty 

cjs  is assumed to be 
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By applying the weight 
cjs  to the cluster-wise aggregation, 

the typicality of the items to be exclusively assigned can 
be adjusted, and the objective function of FCCMM is 
modified as follows: 
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The clustering algorithm uses a four-step iterative process 
to update 

cjs , cα , ciu , and 
cjw as follows:  
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For 0≠wλ , 
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For 0=wλ , Eq.(3) gives 
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Note that the penalty weight 

cjs  is also updated in the 
iterative process. This trick is often utilized in relational 
clustering, such as relational fuzzy c-means [13]. 
Here, it is obvious that as 0→β , 1→cjs ; i.e., the 
conventional FCCMM model without item exclusive 
penalty, while a larger β  results in a local search for 
exclusive items. Thus, a practical approach for setting β  is 
to start with 0=β  and gradually increase it until it reaches 
a prefixed maximum value maxβ , such that 

}),1(1.0min{ maxβτβ −×=  with iteration index τ  [7, 8]. In 
this way, the initial partitioning obtained by the 
conventional FCCMM is gradually relaxed until an 
exclusive item partition model is obtained. 

3.2 Two Phase Implementation for Selecting 
Exclusive Items 

The quality of the partitions obtained with the modified 
FCCMM algorithm is strongly influenced by which items 
have been selected to be exclusively assigned. In this 
paper, in order to find the cluster-wise unique items to be 
exclusive and improve the quality of the clusters, a two 
phase implementation procedure is proposed from the 
classification viewpoint by utilizing a priori information 
about the classes. The two phases include a single-
penalization test to select the items and successive partial 
exclusive penalizations on the selected items. 
Assume that we have cooccurrence information for a set of 
objects and items, and that the objects were drawn from C 

components with their supervised class labels. In the 
context of data mining, unsupervised clustering models are 
often better at revealing the natural data distribution than is 
a supervised class-wise analysis. In the following, the data 
distribution is obtained by unsupervised clustering, and the 
class labels are used only secondarily.  
In the first phase, the applicability of an exclusive partition 
is evaluated for each item by forcing an item-wise 
exclusive penalty onto each item in a separate FCCMM 
trial; i.e., the effects of the exclusive penalty are tested 
separately for each item by item-wise penalization in 
FCCMM. The classifications can then be improved over 
those of the conventional nonexclusive model by forcing 
exclusive penalties onto items that are regarded as peculiar 
to a particular cluster. 
In the second phase, the partially exclusive FCCMM is 
implemented, and penalties are applied to each of the 
items selected in the previous phase. These items are 
emphasized by the penalties, and it can be expected that 
this will improve the quality of the clusters. 
This two phase implementation procedure is summarized 
as follows: 
[Two Phase Implementation for Selecting Items to be 
Exclusive] 
I. Item-wise single-penalization test: 

i. The conventional nonexclusive FCCMM is 
applied for deriving a base result. 

ii. The partially exclusive FCCMM is applied by 
forcing an exclusive penalty on item j . 

iii. If the classification quality is improved with 
penalty for j  than the base result of the non-
exclusive model, item j is selected to be 
exclusive:  

.EIj →  
II. Partial exclusive penalization of the selected 

items: 
The partially exclusive FCCMM is applied by forcing 
an exclusive penalty on each of the selected items in 
EI. 

4. Numerical Experiment 

4.1 Experimental Design 

In this section, the proposed two phase implementation 
procedure is applied to a social network dataset, and the 
results are shown to demonstrate that the proposed 
approach is useful for selecting items peculiar to a cluster.  
The Terrorist Attacks dataset, which is available from the 
LINQS webpage of the Statistical Relational Leaning 
Group at the University of Maryland, College Park 
(http://linqs.cs.umd.edu/project//index.shtml), consists of 
1293 terrorist attacks, each of which is assigned to one of 
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six labels that indicate the type of attack. Each attack is 
characterized by 106 distinct features, which are indicated 
in a vector of attributes that contains zero or unity for its 
absence or presence, respectively. The goal of this 
experiment is to use unsupervised co-clustering to reveal 
the intrinsic class distribution; note that the actual class 
information is withheld in distribution estimation. In this 
experiment, the minor classes were removed, and we 
considered only the three major classes of bombing, 
kidnapping, and weapon attacks; thus, 3=C . 
In order to evaluate the best classification performances 
without initialization problems, fuzzy co-clustering models 
were operated in a supervised initialization scheme, where 
the initial object memberships were given following the 
correct class labels but they were updated in unsupervised 
manners.  
In this experiment, three different FCCMM models were 
applied and compared as follows: (i) without an exclusive 
penalty on any items (Non-exclusive), (ii) with an 
exclusive penalty on all items (Fully exclusive), and (iii) 
with an exclusive penalty on selected items (Partially 
exclusive; note that this is the proposed two-phase 
implementation procedure).  
The quality of the co-cluster partitions was evaluated by 
calculating the ratio of the number of correct matches 
among the supervised class labels and maximum 
membership classification in co-cluster solutions. In order 
to study the influence of both object and item fuzziness 
tunings, the FCCMM models were applied in three degrees 
of object fuzziness, { }5.1,1,5.0 　　∈uλ  and five degrees of 
item fuzziness, { }2.0,1.0,0,1.0,2.0 　　　　−−∈wλ . For the 
exclusive partitions, the penalty weight 10max =β  was 
adopted. 

Table 1: Comparison of unsupervised classification quality ( 1=uλ ) 

model ( )wu λλ ,  

(1, 0.2) (1, 0.1) (1, 0) (1, -0.1) (1, -0.2) 

Non-exclusive 0.816 0.673 0.663 0.788 0.792 
Fully exclusive 0.617 0.608 0.628 0.595 0.718 

Partially exclusive 0.691 0.871 0.862 0.805 0.847 
The number of  
exclusive items 19 37 43 21 14 

Table 2: Comparison of unsupervised classification quality ( 5.0=uλ ) 

model ( )wu λλ ,  

(0.5, 0.2) (0.5, 0.1) (0.5, 0) (0.5, -0.1) (0.5, -0.2) 

Non-exclusive 0.695 0.677 0.787 0.782 0.794 
Fully exclusive 0.645 0.626 0.652 0.529 0.730 

Partially exclusive 0.865 0.892 0.849 0.856 0.852 
The number of  
exclusive items 37 31 14 16 5 

Table 3: Comparison of unsupervised classification quality ( 5.1=uλ ) 

model ( )wu λλ ,  

(1.5, 0.2) (1.5, 0.1) (1.5, 0) (1.5, -0.1) (1.5, -0.2) 

Non-exclusive 0.733 0.676 0.657 0.794 0.789 
Fully exclusive 0.586 0.602 0.599 0.453 0.651 

Partially exclusive 0.688 0.857 0.855 0.809 0.838 
The number of  
exclusive items 23 47 23 21 13 

 

4.2 Comparison of Co-cluster Quality 

The ratios of correct classification by maximum 
membership classification are compared in Tables 1-3.  
First, the conventional nonexclusive FCCMM model was 
applied with all combinations of degree of object fuzziness 
and degree of item fuzziness. The classification ratios are 
shown in the top rows of Tables 1-3. For a particular 
degree of object fuzziness, the fuzzier and crisper item 
partition models achieved a slightly better classification 
quality than did the model with 0=wλ , which is 
equivalent to the item fuzziness of MMMs. 
Second, the fully exclusive FCCMM model was 
implemented by forcing the exclusive partition penalty on 
all 106 items. The classification ratios are shown in the 
second row of Tables 1-3. The quality of the classification 
was reduced for all degrees of fuzziness, because the fully 
exclusive penalty distorts the co-cluster structure. We note 
that this shows the importance of appropriately selecting 
the items that are to be exclusive.  
Finally, the partially exclusive FCCMM was conducted 
using the proposed two phase implementation. In the item 
selection phase, the exclusive penalty was applied to each 
of the 106 items in a separate trial. The classification ratio 
was improved by at least 0.001 compared to that of the 
nonexclusive model; the numbers of items selected are 
shown in the last rows of Tables 1-3. In the next phase, the 
partially exclusive model was applied, and exclusive 
penalties were applied to only the items selected by the 
single-penalization test. The third rows of Tables 1-3 show 
that better classification ratios were obtained, except when 
( ) ( )2.0,5.1, 　=wu λλ . While the graph of the classification 
quality produced a valley shape with respect to wλ  in the 
conventional non-exclusive cases, it produced a mountain 
shape in the proposed partial model; the best result 
occurred when ( ) ( )1.0,5.0, 　=wu λλ . 
This shows that it is very important to select appropriate 
items to be exclusively assigned when estimating an 
intrinsic co-cluster distribution. 

4.3 Evaluation of Selected Items 

Finally, the validity of the item selection was intuitively 
evaluated through visual inspection of the degree of 
uniqueness of each item. Here, the best case with 
( ) ( )1.0,5.0, 　=wu λλ  is investigated, where 31 out of 106 
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items were selected to be exclusive. Figure 1 shows a 
visual comparison of the class-wise uniqueness of each 
item in the three supervised classes. The degree of shading 
indicates the percentage of the total number of degrees of 
co-occurrence in each class; black indicates 100%, and 
white indicates 0%. In this figure, 31 items are arranged in 
the order of their percentage in the bombing class.  
We can see in Figure 1 that many of the selected items 
have large degrees of cooccurrence in only a single class, 
and thus these can be used to emphasize the peculiar 
characteristics of that class; i.e., they are meaningful in the 
context of data mining. These results show the advantage 
of the proposed two phase implementation procedure 
composed of the item selection based on item-wise 
penalization test and the successive partial exclusive 
penalization on the selected items. 
 

 

Figure 1: Percentage of cooccurrence degree for exclusive items 

( 5.0=uλ , 1.0=wλ ) 

5. Conclusion 

In this paper, a two phase implementation procedure that 
selects items by using an item-wise penalization test and 
then applies partial exclusive penalization on the selected 
items was proposed for improving the MMMs-induced 
fuzzy co-clustering model. Some experimental results 
demonstrated that the peculiar items were selected and the 
classification quality was improved by placing an 
exclusive penalty on the selected items. 
An area for future work is to investigate the results of this 
method for various applications, such as collaborative 
filtering based on fuzzy co-clustering [14]. Another 
direction is to develop a mechanism for automatically 
tuning the degree of fuzziness in conjunction with the 
exclusive penalty weight and based on the intrinsic 
fuzziness of the data. 
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