
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017

93

Manuscript received January 5, 2017
Manuscript revised January 20, 2017

An Expert System for Design Patterns Recognition

Omar AlSheikSalem1 and Hazem Qattous2

1 Department of Software Engineering, Applied Science University, Amman, Jordan
2 Department of Computer Information Systems, Applied Science University, Amman, Jordan

Summary
Several design problems are faced during the designing process of
systems. Many of these problems are faced several times
throughout the work of designers and programmers during the
design and development stage of different systems. Through their
work, experts can notice similarities between different design
problems contexts and reuse the same previous designed solutions
each time. They can notice similarities between different problems
contexts because they have the experience to do so. Unfortunately,
novices in design cannot recognize these similarities to benefit
from using previous solutions to solve their current problem(s).
Design patterns are one of the ways to encapsulate the experience
of experts as they are considered to be design solutions for
recurrent design problems. To use design patterns in solving
design problems, a designers should have the experience to
discover and recognize the applicability of a specific design
pattern that is suitable to solve a specific design problem. This
experience is not available to novices in the design and
programming fields. Reading documentations of the design
patterns from their catalogues is almost the only way that could be
followed by novices to take the advantages of applying design
patterns solutions to their design problems.
This paper investigates the involvement of a rule-based system to
assist novices in exploring their design problems. The developed
system operates by the dependence on asking the user some
questions through which the system can notice the similarities
between the current problem and one of the previously solved
problems using design patterns. As a result, the developed system,
by answering the questions, can recognize a specific suitable
design pattern to solve a specific design problem. Throughout the
paper, ten design patterns are selected as a representative sample
to conduct the investigation.
Keywords:
Design patterns, Novice, Rule based system, Expert Systems.

1. Introduction

Experience gained by programmers and designers through
their work allows them to identify similar problems in
different situations. That would help them in applying the
same standard solutions for the identical problems that they
have solved in the past. This is reflected on their work in
being more effective as they save the effort required for
analyzing the problem again to be solved [7]. Therefore, the
experience provides the experts with reusable, elegant and
high quality design solutions
These solutions are not available to novice programmers
and designers because they have not faced many problems

that required solutions. Consequently, they do not have the
ability to notice the similarities between various problems
and provide the best solution(s) to their design problems.
Such a problem may cause a delay in work, consume time,
and characterize the work with a low efficiency and a poor
quality. Part of the experts experience in the design
problems and solutions field has been documented and
encapsulated into a software design patterns. Software
design patterns are design solutions that can be used
repetitively to solve similar problems that are encountered
during the design process. Their importance arises from the
fact that they provide constant solutions for problems that
different designers may face. Their importance is extended
to include providing a very high quality reusable design
solutions and provide these solutions to designers and
programmers who are not aware of it [7].
Novices’ problem of not having the required experience to
solve their design problems using previously designed
solutions could be solved by providing novices with the
software design patterns. Providing experience through
design patterns is something common and documented, as
of the examples by [7] [6]. Grand [7] says that one of the
benefits of “putting patterns into words” or describing them
is giving the experience to novice designers and
programmers who have not discovered the patterns yet.
It could be noticed that design patterns documentation is
almost the only way that is common for design patterns
presentation. Attaching an example to clarify the context
into which a design pattern is used, is a common thing
throughout the documentation of design patterns. Design
patterns documentation in Gamma’s et. al. and Grand’s [6]
[7] contains an example attached to each design pattern,
which indicates the importance of these examples in
clarifying the use of design patterns.
To recognize a design pattern applicability into a specific
design problem, a novice should read a design pattern
documentation. This leads to a waste of his/her time, effort
and delays the work. In addition, reading design patterns
and understanding them is not an easy task for novices who
do not know about design patterns and have no experience
in the background knowledge that is required to understand
what has been documented. As an example, many
literatures include the knowledge of object-oriented
programming as the main base to understand and be able to
apply design patterns. Astrachan et. al. [2] criticizes the way
of presenting design patterns in literatures including the

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017 94

catalogues, as they are not easy to be understood by people
who are unfamiliar with object-oriented programming.
Stuurman and Florijn [12] also presented the same problem
of design patterns.
It could be easily concluded that there is a problem facing
novice programmers and designers in acquiring the required
experience to adopt previously solved problems into their
design solutions. This is the motivation to investigate and
introduce a tool that supports design patterns recognition in
problem contexts. It is also an encouragement to make it
easier for novices to handle design patterns and adopt them
as solutions for their design problems.
This paper aims to find a step towards helping, assisting and
guiding novice designers and programmers in solving
design problems that already have possible solutions
through recognizing the applicability of a specific design
pattern into a specific design problem. This paper
introduces rule-based system (Expert System) as a solution
for the problem. However, the question is how can rule
based system help novices to identify and recognize a
software design pattern applicable to a particular software
design problem? From the literature, an Expert System is
defined “as a computer system (hardware and software) that
simulates human experts in a given area of specialization”
[8].
This paper, as an introduction, investigates a sample of ten
design patterns. The chosen design patterns are those which
are used extensively as examples in teaching design patterns
to novices, especially students, as they are considered the
novice designers and programmers in different researches.
The same way of choosing a design patterns sample was
followed by Lewis et. al.[9].
From different literatures, mainly the GoF book [6], it could
be concluded that the following design patterns are of the
most used and useful for novice designers and programmers:
1. Creational Design Patterns

• Factory Method.
• Singleton.

2. Structural Design Patterns
• Façade.
• Decorator.
• Composite.

3. Behavioral Design Patterns
• Observer.
• Visitor.
• Iterator.
• Command.
• Strategy.

The above design patterns are adopted to be investigated for
the purpose this paper. Each design pattern problem
characteristics are discussed and formalized into a questions
format. For each design pattern, several questions are
suggested and discussed. They are tailored to be easily

answered and understood by novices. Their creation also
depends on their ability to express the design pattern from
which they are extracted. Their ability to distinguish a
design pattern from others is also taken into consideration.
The main contributions of this paper can be summarized as
following:
1) Extracting the required questions to identify selected
design patterns from each design pattern documentation.
2) Implementing an expert system that can help novice
programmers and designers to solve their design problems
by directing them to use the suitable design patterns where
appropriate.

2. Design Patterns Under Investigation

2.1 Creational Design Patterns

Creational patterns provide procedures to create objects
when their creation requires making decisions. These
decisions will dynamically decide which class to be
instantiated or to which object an object will delegate the
responsibility. The value of creational patterns is that they
provide a way to structure and encapsulate these decisions
[7].
Suggested Questions:
• Do you need to create an object, which could be a part

of a hierarchy class structure or you need to create an
object and ensure that it is only created once?

• Do you need to create objects or instances and their
creation needs decisions?

2.1.1 Factory Method Design Pattern

In this pattern, the decision of which class object is needed
to be created is encapsulated in its own class. Therefore,
neither the client nor the data source will be aware of the
actual type of object created [7]. This pattern helps in
creating an object, which at a creation time, can allow its
subclasses decide which class to instantiate [11].
Suggested Questions:
• Do you need to create an object to represent external

data or process an external event where another object
is responsible for creating and determining the type of
this object?

• Do you need to create different object types using an
object responsible for determining the object type to be
created?

• Do you need to instantiate an object in a class hierarchy
where the number of subclasses of this hierarchy is not
so big?

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017 95

2.1.2 Singleton Design Pattern

The intent to use singleton design pattern is the need to
provide a single instance of a class and ensure that this
instance is only created once. Its intent could be extended
to provide a global single point of entry or access to this sole
instance or object. The use of it is common in the context
where it is important to create exactly one instance from a
class and this instance should be easily accessible by all
other objects, use the singleton object [6][7].
Suggested Questions:
• Do you need to create an exactly one instance from a

class and ensure that it is the only instance created from
this class and no more instances will be created from
the same class?

• Do you need to create an instance from a class and
provide only one access point to it so all other instances
or objects of other classes can access it through the
same solely entry point?

• Do you need to create an instance from a class, ensure
that no more instances will be created from the same
class, and provide a single point of entry to it for all
other instances?

• Do you need to create a single instance from a class and
provide global point of access to it?

2.2 Structural Design Patterns

This type of patterns generally provides different ways to
allow different objects to communicate with each other in
an organized manner [7]. They also provide a way to
compose objects and classes to form larger structures.
Structural design patterns compose interfaces or
implementations through using inheritance, an example of
that is the multiple inheritance [6] [7].
Suggested Questions:
• Do you need to create an object that is composed from

different objects?

• Do you need to compose different objects at run time?

• Do you need to compose a class from different classes
through inheritance (multiple inheritance as an
example)?

• Do you need to create a class that is considered as a
composite of different other classes as it has all their
properties (using multiple inheritance as an example)?

• Do you need to create an object that is composed from
different other objects and this object has new
functionalities over all the other of its components
objects?

• Do you need to create an object that could be composed
from different other objects at run time?

2.2.1 Composite Design Pattern

Composite pattern provides a solution for organizing a
hierarchy of objects. This pattern is applicable in the case of
the ability to organize objects in a tree-like manner. It adds
the consistency advantage in manipulating objects by
supplying a common interface or super class to all of them
in the tree-like structure [7]. The intent of it is to represent
a part-whole structure by composing an object into a tree
structures. Composite pattern describes and solves two
main problems in classes and objects relations. The first is
the ability to compose an object from other objects, which
are inherited from the same interface. The second is dealing
and solving the recursive composition into a simpler
manner [6].
Suggested Questions:
• Do you need to build complex objects, which may

compose similar objects?

• Do you want to represent a tree like connected objects
that consist of objects containing similar objects in a
recursive manner?

• Do you need to create an object or objects that
composed from other objects inherit the same interface
that the object you want to create also inherits?

• Do you need to create an object(s) that is a part of a
hierarchy structure and it is considered as a node in this
structure that is composed of or has leaves which are
also part of the upper node that the object need to be
created is a chilled of?

• Do you need to create an object or objects that inherit
an interface and composed from other objects that
inherit the same interface?

• Do you need to create an object, which is part of a tree
like structure and is composed from other objects in the
same tree like structure?

• Do you need to create an object that has a recursive
relationship as one of its subclasses is itself?

• Do you have the situation where some classes inherit a
main super class and one of these classes has children
which including the same other classes that inherit the
main super class?

2.2.2 Façade Design Pattern

Façade pattern offers the design the advantage of hiding the
complexity of related objects communications. It provides
an interface that contains all the needed specifications to
deal with the other objects. Other objects will use that

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017 96

interface to communicate with a set of objects that are
hidden by it [7]. In general, façade provides a single point
of entry to a subsystem or shows the services that can be
provided by a subsystem and determine its use through the
provided functionalities [6].
Suggested Questions:
• Do you have a big system and you want to divide it into

smaller, simpler and easier to be managed subsystems?

• Do you need to reduce the complexity and
communication dependencies between different
subsystems?

• Do you have a subsystem (could be a package)
composed of set of classes or objects and you need to
provide a single way to communicate with them
through an interface?

• Do you have a subsystem that other objects or
subsystems need to communicate with it?

2.2.3 Decorator Design Pattern

The intent of the decorator pattern is to provide an
additional functionalities and responsibilities dynamically
to an object. It provides a flexible alternative for sub-
classing to extend the functionality of an object [6]. It
extends the functionality of an object in a transparent way
to its client so; it will not affect other objects [7].
Suggested Questions:
• Do you have too big hierarchy class structures and too

many sub-classing because of too big alternatives in
responsibilities and behaviors of an object?

• Do you need to create an object that needs different
functionalities and responsibilities to be added to and
withdrawn from it dynamically at run time?

• Do you have a situation that needs to let user to choose
different functionalities to be added to or withdrawn
from an object dynamically at run time?

2.3 Behavioral Design Patterns

This class of design patterns contains patterns that describe
the communication between objects and the assignment of
responsibilities between them in addition to that it is
concerned of algorithms. It uses inheritance relationship
between classes and object composition to distribute
behavior between them [6].
Suggested Questions:
• Do you need to provide some algorithms into your

program or do you need to distribute a specific
behavior between classes and make it specific or do
you need to perform a task through cooperation
between different objects where one object cannot
perform it?

• Do you have several objects need to be interacted
which may lead to provide a tightly coupled design?

2.3.1 Iterator Design Pattern

The Iterator pattern provides a way for sequentially
accessing a collection of objects by another object. The
object that accesses the collection does not realize the
structure or class of the collection and can only access the
collection through an interface that this pattern provides. Its
access will be performed independently from the class that
implements the interface and the class of the collection [7].
Freeman et. al. [5] introduce this pattern as it provides the
ability to access an array and manage that access by
controlling the movement of the iterator itself.
Suggested Questions:
• Do you need to access an aggregation object contents

without exposing the internal structures of that object?

• Do you need to access an aggregation object
sequentially?

• Do you have an array or a list or any type of such
aggregation structure that you need to access it
sequentially?

2.3.2 Observer Design Pattern

This pattern provides the ability of objects to register with
another single object. Registering means that when the state
of that object change, the registered objects will be notified
[7]. Observer pattern defines the one-to-many relationship
between objects [6]. In general, such design pattern is used
when there are several objects, which depends on each other.
To eliminate their dependencies on each other, an object,
which is the subject, is created. Each of the registered
objects transfer its dependency to the subject object. One
example of using observer pattern is thread programming.
Suggested Questions:
• Do you have a situation where some objects are

depending on the states of other objects?

• Do you have objects that need to monitor or observe
the changes in the state of each other and need to be
notified whenever the state of any of them has been
changed?

2.3.3 Visitor Design Pattern

The Visitor pattern provides a way of separating the logic
of an operation implementation that involves a complex
structure. If visitor pattern is not used then the logic is
needed to be implemented in each class of that complex
structure to support that operation [7] [6]. Optimal visitor
design pattern is expressed as two class hierarchies. One is
for the visitor and its subclasses and the other is for the
element and its subclasses. The element hierarchy is the one

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017 97

on which the methods or functions in the visitor hierarchy
are applied. The main point that both, [7] [6], concentrates
on, is the use of visitor design pattern whenever there is a
complex structure. Gamma et. al. [6] defines the complex
structure as either composite (meaning Composite design
pattern) or a collection such as the array or the list.
Suggested Questions:
• Do you have a class hierarchy where there are functions,

methods or behaviors that are shared between all of the
subclasses; however, there is a need to implement these
functions, methods or behaviors differently in each
subclass?

• Do you have a class hierarchy and need to apply
different functions, methods or behaviors on it where
each function, method or behavior is applied on all
concrete classes of the class hierarchy?

• Do you have a complex structure (a hierarchy class
structure or an array or list) that contains different
elements and need to apply the same different functions,
methods, behaviors on these elements?

2.3.4 Strategy Design Pattern

The Strategy design pattern provides a way to encapsulate
different algorithms [7] or a family of them [6]. Grand [7]
replace the term “family” with the term “related algorithms”.
Both terms gives the impression that the algorithms this
pattern deals with, in general performs the same task but in
different manner. Strategy pattern could be used if there are
many related classes and they are different only in their
behavior or if there is an algorithm and has different
variants. It also could be used to separate between the client
that uses an algorithm in different variant and the algorithm
itself. Therefore, the client is not concerned or knows about
the structure of the algorithm or its specific data structures
[6].
Suggested Questions:
• Do you have several related classes that are different in

their behavior?

• Do you need to provide a choice of related classes’
collection that almost have the same responsibilities
but perform them in different manners?

• Do you have different algorithms that are performing
almost the same task but in different behavior or
manner?

• Do you need to hide the complexity of different
algorithms from the client?

• Do you have a class hierarchy that represent different
algorithms?

• Do you need to use a family of algorithms and make
them interchangeable?

• Do you have the situation where there are many
behaviors or algorithms that are separated by
conditional statements and can be separated into
different classes?

• Do you have a family of different related classes or
algorithms that perform almost the same task into
different manners and you need to use them
interchangeably?

2.3.5 Command Design Pattern

The Command pattern is used when there is a need for
storing a command and there is a need to use this command
several times later on. The pattern also is used when there
is a need to perform some other operations on a command
such as queuing, undoing or redoing it. Command pattern
provides a way to invoke all transactions in the same
manner because of its common Command interface [6] [7].
Suggested Questions:
• Do you have the situation where there is an action(s)

needed to be issued or performed several times, so it is
needed to be stored and recalled when needed later on?

• Do you have the situation where there is an action(s)
and you want to provide the ability to queue (and/or)
undo (and/or) redo this action(s)?

• Do you have the situation where you need to design,
support or program transactions?

According to the above analysis and suggested questions
that encapsulates the knowledge of applying design patterns,
this paper investigates the ability to build a system that
facilitates the use of design patterns by novices to solve
their design problems that already have been solved by
experts. The proposed system is considered as an expert
system because it contains the required knowledge to apply
design patterns where appropriate. The system is discussed
in the following section.

3. The Expert System

To assist novice programmers and designers in applying a
suitable design patterns where appropriate, an expert system
prototype has been developed. The extracted and suggested
questions presented above were inserted into the expert
system to be able to guide the user. How the system works,
simply, depends on asking questions to the user and then
he/she replies. Each time the system asks a question and
gets a reply, the system should be able to infer something,
which is part of the solution. Therefore, with each answer,
the system is gaining more knowledge about the problem
and consequently, about its solution. The process can be
described as, the system with the help of the user, searches
the space of design patterns to find the suitable one to be

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017 98

applied for solving the current design problem. The
implemented expert system has been investigated against its
suitability to be used as a guide to help novices in solving
their design problem(s) using design patterns in a simple
manner.
The structure of the expert system is composed of three
main modules, a knowledge base, an inference engine and
a user interface. Since this architecture is recommended by
literature as Cawsey and Darlington [3] [4], it was adopted
to be followed in developing the required expert system.
The architecture is presented in the following figure (Fig. 1)
as a package diagram. The prototype was developed using
Java language. The architecture of the system was divided
into three main components, Knowledge Base, Inference
Engine, and User Interface. Components architecture
facilitated the extendibility and traceability of the program.
The knowledge base of the system contains all of the
questions emerged from the above analysis. One of the
challenges faced implementing the system was to represent
knowledge in a knowledge base. A Rule and Fact classes
were used for this purpose. Rules were represented as
strings into the Rule class where objects of it were hold into
the knowledge base. That was applied also to Facts; Facts
were also used in this prototype to represent and express the
questions.
The prototype works as follows; first, the rules were
transferred from the knowledge base to the inference engine.
This process came up with good results and eliminated the
concern regarding inefficiency of evaluating IF statements.
This process also converts the concrete rules format from
writing each rule as standalone rule to a format of
procedural connected rules.
Connecting rules in this format allows better efficiency in
searching the goal state. This is because it takes the
advantage of concentrating the search for the required
design pattern within the design patterns under the same
class or classification. As an example, the search for a
Factory Method design pattern will be only within the class
of Creational design patterns. Consequently, the search will
be concentrated within the rules that lead to conclude one
of the Creational design patterns instead of searching all of
the rules of the system. This process reduces the search
space for the required design pattern.
Another challenge faced during implementing the expert
system is that the questions are too long, as text, to be
represented into the prototype. It was noticed that
introducing the actual questions into the rules leads to
complexity and reduces the ability of tracing. To solve this
problem, logical rules with logical names for questions were
introduced. As an example, the logical name of the question
that asks about Creational design patterns is ‘creational
question’. Adopting the questions logical names allows
introducing them in the logical structure of IF/THEN/ELSE
in the inference engine and leaves the concrete questions in
the knowledge base. Knowledge base kept the facts as

strings into a HashMap data structure, which has two
columns, key and value. Facts represents the questions that
will be asked to the user and they are considered as the value
in the HashMap. The keys are the logical names of the
questions.

Fig. 1 Rule Based System Architecture

The implemented system also allows the user to ask 'Why?'
and 'How?' questions. The 'Why?' question allows the user
to query about the purpose of the current question
introduced by the system. Which means if the system
introduces a question to the user to be able to recognize a
design pattern, the user can ask the system 'Why do you ask
this question?'. In return, the system provides explanation
for introducing such a question. Of course, the 'Why?'
feature is only available after the user answers the first
question to allow the system infers something before being
able to provide justification for introducing the second
question. The 'How?' question allows the user to query
about 'how did the system reach to this conclusion?'.
Apparently, the user can ask this question only when the
system reached the conclusion, which is the recognized
design pattern. The 'Why?' and 'How?' questions provide the
transparency of the system work, questions, and its
inference steps. It should be noticed that the system does
not always provide a conclusion. This can happen for
several reasons. One is that the user does not provide correct
answers on the system questions. Another reason is that the
required design pattern does not exist in the knowledge base
of the system. A third reason is that the design problem does
not need a design pattern application. In such cases where
the system is not able to infer, it shows an apology message
to the user.
The system components work can be summarized as the
following. Knowledge Base component in the system holds
all the questions that should be asked to the user to

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017 99

recognize the required design pattern. It also shows all the
design patterns that could be recognized by the system
through holding logical names of the design patterns.
Inference Engine component holds all the rules that are
applied to reach the required design pattern. It uses the
questions from the knowledge base and the answers on them
from the user through GUI to infer a specific design pattern
that solve a specific design problem. GUI component takes
the responsibility of providing the user with interface
through which he/she can see questions, answer them, and
ask the system ‘Why?’ and ‘How?’ questions. It also shows
the user different inferences done by the inference engine,
the final result or conclusion which is the recognized design
pattern and explanations of the user questions to the system
(‘Why?’ and ‘How?’ questions).
The following is a demonstration of an example that shows
part of the functionalities of the developed expert system.

Fig. 1 Step 1, the user run the program and step2, the user press the
Expert button.

Fig. 2 Screen after the user has pressed Expert button and the first
question is shown to him/her. Step 3, the user answer the first question by

pressing ‘Yes’ button.

Fig. 3 The screen after answering the first question by ‘yes’. The
inference is shown in the back screen and the second question is shown in
the fore screen. Step 4, the user answers the second question by pressing

the button ‘Yes’.

Fig. 4 The screen after answering the second question as ‘yes’. The
results are shown; the system inferred the need for Factory Method

Design Pattern and shows a message telling that to the user.

4. Evaluation

To evaluate the prototype, a task of designing a small
mobile controlling application was formulated. The
requirements of the mobile application were documented.
The documentation took into consideration including the
applicability of three design patterns from those of which
the prototype can recognize. The three design patterns are
the Factory method, the Iterator and the Decorator. Four
novice software engineering students at a University were

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017 100

exercised as subjects. The subjects were selected from those
who have finished the software design course in which
design patterns are discussed briefly. The course is a third
year level. The subjects were asked to make a class diagram
design for the mobile controlling application. They were
also instructed to use the expert system to improve their
design by applying design patterns. The subjects were
trained to use the prototype to be able to deal with it during
the task. A time limit of two hours were given to the
students and the four students were conducted the
experiment in one session. They were not allowed to talk to
each other during the session.
Analyzing the design generated from the students showed
that only one student could apply the three required design
patterns. The other three students could apply two of the
three required design patterns. During an interview with
each subject alone after the task, all the students were
positive regarding the help they gained from the prototype.
They believe that the expert system directed them to apply
design patterns where appropriate. However, they also
commented that some questions were not easy to be
understood. They also mentioned that the prototype in many
cases could not infer anything.

5. Conclusion

Throughout this paper, an investigation was conducted to
study the ability of providing novice designers and
programmers with the required experience to perform and
solve their design problems that already have been solved
by others. This is done by introducing the design patterns to
them in a simpler manner than the design patterns
catalogues do. The investigation took the following steps to
be conducted:
Ten design patterns were investigated as a sample and one
or more questions were evolved for each of them. The
questions of each design pattern asks about the design
problem context into which the design pattern is applied or
created to solve. These questions are selected and formed to
be simple, as they will be directed to novices, and can
express the problems that design pattern can solve. So, the
questions of each design pattern should be able, if answered
correctly, to recognize the need to apply the design pattern
into the design.
To proof the concept, an expert system prototype was
implemented to be able to recognize ten of the most
common design patterns. The system has three components,
the knowledge base, inference engine and the GUI. Java
was used as a programming language for system
implementation. In general, the system works by
introducing questions to the user. From the user replies, the
system can search the space for the appropriate design
pattern that can be applied. The developed expert system
has a transparency feature as it allows the user to ask the

system ‘Why do you ask the current question?’ and also
allows the user to ask ‘How did you reach your conclusion?’.
The system, when used, either provides the user with a
design pattern to solve the design problem or shows an
apology message for not being able to recognize the pattern.
The inability to recognize all of the documented design
patterns and it’s in ability to recognize design patterns
correctly if the user does not answer all of the questions
correctly, are the main weakness of the system.
One of the most important conclusions that were noticed
throughout the investigation of this paper is the difficulty of
evolving some questions that satisfy the requirements of
keeping it simple and express the design pattern at the same
time. It is concluded that such questions evolving need long
experience in both, dealing with design patterns and dealing
with their catalogues. Actually, this part of the research was
the most difficult and time consuming.
The developed system was evaluated through a small
empirical study. The study examines the use of the system
in solving a real design problem by providing the subjects
with a task of developing a class diagram design for a
simple mobile controlling application. Results and
interviews with subjects shows that the implemented expert
system helped novices and directed them for applying the
suitable design patterns.

Acknowledgement

The authors are grateful to the Applied Science Private
University, Amman, Jordan, for the full financial support
granted to this research.

References
[1] Sommerville, I., 2015. Software Engineering, 10th edition.

Pearson Education.
[2] Astrachan, O., Berry, G., Cox, L., Mitchener, G., 1998.

Design Patterns: an essential component of CS curricula
[online]. Technical Symposium on Computer Science
Education, Proceedings of the twenty-ninth SIGCSE
technical symposium on Computer Science education, pp
153-160. Available from
http://doi.acm.org/10.1145/273133.273182. [Accessed 14
January 2017]

[3] Cawsey A., 1998. The essence of artificial intelligence. UK:
Prentice Hall.

[4] Darlington Keith, 2000. The essence of expert systems.
England: Prentice Hall.

[5] Freeman, E., Freeman, E., Robson, E., Bates, B., and Sierra,
K., 2004. Head First Design Patterns. O’Reilly Media, Inc.

[6] Gamma, Erich, Helm, Richard, Johnson, Ralph and Vlissides,
John, 1994. Design patterns elements of reusable object-
oriented software. UK: Addison Wesley.

[7] Grand, Mark, 2002. Patterns in Java, volume 1. USA: Wiley
Publishing Inc.

[8] Castillo, E., Gutierrez, J., and Hadi, A., 2012. Expert Systems
and Probabilistic Network Models. Springer Science &
Business Media.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017 101

[9] Lewis, T, Rosson, M., and Quinones, M., 2004. What do the
experts say? Teaching introductory design from an expert’s
perspective [online]. Technical symposium on computer
science education, Proceedings of the 35th SIGCSE technical
symposium on computer science education, pp 296-300.
Available from http://doi.acm.org/10.1145/971300.971405.
[Accessed 14 January 2017].

[10] Pressman, R., 2010. Software engineering: a practitioner's
approach, 7th edition. London: McGraw-Hill Higher
Education.

[11] Raj, Gopalan, 1999. The Factory Method (Creational) Design
Pattern [online] available from:
http://gsraj.tripod.com/design/creational/factory/factory.htm
l [Accessed 14 January 2017].

[12] Stuurman, S., Florijn, G., 2004. Experiences with teaching
design patterns [online]. Annual Joint Conference Integrating
Technology into Computer Science Education, Proceedings
of the 9th annual SIGCSE conference on Innovation and
technology in computer science education, pp 151 – 155.
Available from
http://doi.acm.org/10.1145/1007996.1008037. [Accessed 14
January 2017]

Omar AlSheikSalem is currently an
Assistant Professor at Applied Science
Private University in Amman, Jordan. Dr.
AlSheikSalem holds a Ph.D. degree in
Computing from Bradford University, UK.
His research interests are in Mobile TV,
especially in the context of consumer needs
and mobile advertisements, E-commerce,
multimedia, Mobile TV content, and new

ways of advertising and interactive video.

Hazem Qattous is currently an assistant
professor at Applied Science University in
Amman, Jordan. Dr. Qattous holds a Ph.D.
degree in Computing from Glasgow
University, UK. His research interests are in
Human-Computer Interaction.

