
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017

151

Manuscript received January 5, 2017
Manuscript revised January 20, 2017

An Improved Model for Model based Software Testing

Abdul Rauf

College of Computer and Information Sciences
Al-Imam Muhammad ibn Saud Islamic University (IMSIU)

Riyadh. Saudi Arabia

Summary
Generation of test cases is the conflicting issue in software
industry. There are different methods, techniques and models are
proposed to generate the test cases and minimize the test cases
and cost of testing and improving the effectiveness and
efficiency of the test cases. Test case generation is a method to
identify the defects form the software. MBST test case
generation is involved to generate the test case by the usage of
models. These models can help to generate the automated test
cases for SUT.
Main goal of this literature survey is to identify the models,
techniques and model which are used for generation of
automated test cases.
Keywords:
Software testing, Test cases, MBST, Test Case Generation.

1. Introduction

MBST requires a subset of the requirements be modeled
using a formal notation like FSM, UML etc. MBST
describe the Software testing in abstract terms.
MBST is a sub part of Grammar based testing which
includes the string mutation using FSM, Model checking,
Valid Strings and Traces are tests.
Section 2 provides a literature survey of MBST methods
and models. Section 3 Provides conclusion.

2. Literature Review

Y. Yin, B. Liu, et al [1] highlight the relationship of
embedded real time system testing with UML and then
propose the test case generation mechanism for real time
embedded system by using extended UML. The proposed
method of automated test case generation of real time
embedded system testing is effective, efficient and
maintainable, so it also reduces the testing cost.
Researchers extend the UML Class Diagram, Sequence
Diagram and Activity Diagram to fulfill the requirement
of test-case model and propose the model-based test case
generation for real time embedded systems testing. They
verify this proposed model by implementing it on avionic
system.
In embedded real time system class diagram shows the
static behavior of test case generation. By analyzing the

system researchers use extended class diagram in
modeling of SUT by using OO methodology.
For the description of the complicated functions of the real
time system used layer activity diagram in which upper
layer represents the main work flow and the lower layer
represents expanded activity nodes. During the test case
generation search activity diagram is used to extract all
independent paths for specific functions from staring node
to ending node.
The sequence diagram is used to describe the dynamic
behavior during test case generation.
The activity diagram is micro description of the test case
generation because it cannot explain the interaction
between objects. While sequence diagram is microscopic
description of the test case generation because it can
explain the interaction between objects.
The process of the test case generation includes the static
modeling, dynamic modeling, searching interacting
scenario and generation of formal description of the test
case.
C. Lizhi, Z. Juan, L. Zhenyu [2] proposed the technique to
generate test cases using Color Petri Net (CPN) model.
Their proposed technique based on three testing coverage
criteria. MBST generates test cases from high level
software specification via a model in formal methods like.,
FSM, UML, CPN etc. But the researcher proposed
approach focused on test data generation from CPN. As
compare to FSM, UML, CPN provides a dynamic
simulation and automated analysis of the state space.
For the generation of test cases state coverage criteria
requires all states in the state space to cover the test cases.
CPN combines the strengths of ordinary Petri Net with the
high-level programming language and it is often used for
the analysis and simulation. The proposed techniques of
test case generation all the state space of the model
generating automatic states by using CPN Tool.
W. Bang, Z. Chunhua et al [3] propose the improved
automated unit test frame work i-N unit. Which resolve
the redundancy problem in test method based on MDA to
generate unit test cases by seperating the test code and test
data.
MDA based approach generate automatic test cases for the
SUT on .Net Platform. The idea of i-N unit is explained by
the figure.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017 152

Fig. 1 Class Diagram of the i-NUnit.

The main steps of generating test cases for I-N unit are as
follows:

 Build a platform –independent model of SUT.

 Transform platform- independent model in to the

i-Nunit model called horizontal transformation.

 Transform the model built in step 2 in to test

called vertical transformation.

Fig. 2 Model of MDA –Based automated Test Case generation

of Test cases

The TDC (Test Data Container) is added in i-N unit frame
work to isolate the test data from test code. i-N unit
generate test cases automatically through two layer model
transformation.
P. Simon, J. Claude et al [4] propose a method and tool for
automatic synthesis of test case from scenario and a state-

based design model of the application by using UML
framework.
The method described by the researchers is prototype tool
that support the automated synthesis of UML test cases
from UML Test objectives and a UML System Model.
Researchers focus on the following issues which are
concerning the conformance testing in a UML frame work.

 A complete process with a formal basis to

synthesize the test cases from UML model.

 A formal operational semantic for UML model.

 A scenario based language with in the UML

frame work to express test objective and test

cases.

The proposed synthesis method has four main parts i.e.,
 Formal specification derivation.

 Formal objective derivation.

 Test synthesis on the formal method.

 UML Test case derivation.

Figure 3 represents the semantics of the UML model and
the test objective.

Fig. 3 The synthesis Method

For tool purpose researchers use Umlaut frame work to
automatically compile UML model. TGV Tool is used to
derive the automated test case generation.
M. Zhong, J. Xingan et al [5] propose Partheno-Genetic
Algorithm (PGA) for test case generation problem. This
paper based on the test instruction generation project of
DC16Vo1 Chip and use PGA to address the instruction-set
test generation problem.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017 153

Fig. 4 Flow Chart of the algorithms (PGA)

Y. Yuan, L. Zhongjie, S. Wei [6] propose a graph search
based approach to BPEL test case generation. For the
representation of BPEL this approach extends the CFG &
BFG. The proposed BPEL test generation method contains
four steps.

 Transform BPEL to BFG.

 Transverse the BFG to generate Test Path.

 Filter in feasible test paths and generate test

data for feasible test path.

 Generate abstract test case by combining

Test Data and Path.

Fig. 5 Process of the proposed test generation method

When test path and test data are ready then they combined
into test case automatically.
R. Matthias, H. Michael [7] propose a method of
Traceability Driven Model Refinement for Test Case
Generation to reduce the gap between manual technique
and automatic technique.
The method of test case generation has four steps.
 Requirement Specification

 Activity diagram of the behavioral model

 Behavioral model consist of state charts

 Test cases are processed automatically

Fig. 6 Overview the Test Case Generation Process

H. Ying, C. Rong, D. Zhenjun [8] propose an automated
GUI testing method for J2ME software. They adopt the
automated test cases generation based on FSM. The test
cases are translated from the script which drives J2ME
Program under test.
For J2ME software GUI testing is more difficult because
of weak language characteristics. To overcome this
difficulty FSM-Based automated testing approach is used.
In this approach the SUT and the specification file are
taken as Input and FSM model is structured automatically.

Fig. 7 FSM based testing Method

The method for test case generation is based on WP-
method in FSM-Based testing. The advantage of test case
generation is general applicability and full fault-detection
capability.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.1, January 2017 154

K. Hyungchoul, K. Sungwon et al [9] propose the method
of test case generation by UML activity diagram that
reduce the number of test cases generated for a particular
test case. Researchers design an I/O explicit Activity
Diagram Model from an ordinary UML activity diagram
and then transform it into directed graph.
The directed graph is used to extract test scenarios and test
cases. The IOAD explicitly shows external input and
external output.
To generate test cases from IOAD model has two
principles i.e.,

 Principles of black box testing

 Single stimulus principle

The test case generation procedure is:

 Drive a system of activity Diagram

 Drive IOAD model activity Diagram model

 On the basis of principles construct graph from

IOAD Model

 Transverse nodes based on all path test coverage

criterion

 Generate test scenarios

This method avoids the state explosion problem.
L.P. Beatriz et al [10] propose a model driven testing
approach for automatic test case generation for SPL. The
proposed approach is based on UML 2.0, UML Testing
profile and QVT language.
The proposal of MD Testing for SPL is explained in
figure8.

Fig. 8 Model driven testing for SPL

The approach is implemented for PIM model in domain
and application engineering using QVT language.

3. Conclusion

Automated test case generation is major challenge in
software industry for test case generation of SUT.
Different researchers focus on Model based test case
generation and they propose different testing models for
test case generation. Like., UML, extended UML, class
diagram for i-Nunit based on MDA test method, PGA,
BPEL test case generation method etc.
All these methods and models are implemented in
different environment and produce efficient and effective
results in their specific environment. These models and
methods are reducing the test case and effort for
generating test cases.
There is need to develop a meta model for test case
generation which is used to produce test cases for all type
of environments and reduce the effort of test case
generation and for the selecting the model for the
particular environment.

References
[1] Y. Yin, B. Lin et al, “Test Cases Generation for Embedded

Real-time Software Based on Extended UML”, 2009,
International Conference on Information Technology and
Computer Science, IEEE.

[2] C. Lizhi, Z. Juan et al, “Generating Test Case Using Colored
Petri Net” 2010, IEEE.

[3] W. Bing, Z. Chunhua et al, “MDA-Based Automated
Generation Methoid of Test Cases and Supporting
Framework”, 2010, IEEE

[4] P.Simon, J. Claude et al, “Test Synthesis from UML Models
of Distributed Software”, 2007, IEEE Transactions on
Software Engineering

[5] M.Zhong, et al “Partheno-Genetic Algorithm for test
Instruction Generation”, 2008, IEEE, The 9th International
Conference for Young Computer Scientists

[6] Y. Yuan et al, “A Graph-Search Based Approach to
BPEL4WS Test Generation”, 2006, International
Conference on Software Engineering Advances

[7] R. Matthias, H. Michael, “Traceability-Driven Model
Refinement for Test Case Generation”, 2005, IEEE, 12th
International Conference and Workshops on the
Engineering of Computer-Based Systems

[8] H. Ying et al, “Automated GUI Testing for J2ME Software
Based in FSM”, 2009, IEEE

[9] K. Hyungchoul et al, “Test Cases Generation from UML
Activity Diagrams” , 2007, IEEE 8th ACIS International
Conference on Software Engineering, AI, NW and Parallel/
Distributed Computing

[10] L.P. Beatriz, “Model-Driven Testing in Software Product
Lines”, 2009, IEEE

