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Abstract: 
There exist many types of contraction mappings in the case of 

single valued and multi- valued that researchers are interested 
in proving fixed point theorems. Now, I consider two types of 
contraction:  (φ − k) − B contraction and  bn-contraction .  In 
this paper, after presenting  the definition of  (φ − k) − B 
contraction, I prove a lemma about continuity of        (φ − k) − 
B contraction and by using it I prove a unique single valued 
fixed point theorem for (φ − k) − B contraction with t-norm 
which is φ-convergent in probabilistic metric space. Then  
multi-valued bn-contraction definition is illustrated. I obtain  
first multi-valued theorem  with new assumptions. Finally, I 
prove another fixed point theorem for multi-valued case by the 
definition of a large class of mappings called weakly 
demicompact mappings.  
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Probabilistic metric space, bn-contraction, (φ − k) − B 
contraction, fixed point. 

1. Introduction 

The notion of a probabilistic metric space was introduced 
by Menger [1]. There exist many types of fixed point 
theorems in the field of contraction mappings [2]. One such 
theorem was formulated by Sehgal and Bharucha-Reid [3] 
who introduced the B-contraction mapping in probabilistic 
metric spaces. Hicks [4] established C-contractions in 
probabilistic metric spaces while Radu generalized C-
contraction [5]. One of the contractions which is introduced 
by Mihet is (φ−k)−B contraction [6]. He demonstrated that 
every (φ−k)−B contraction is a B-contraction. The multi-
valued contraction in probabilistic metric spaces was 
introduced by Hadzic and Pap [7]. Pap et. al generalized the 
C-contraction to multi-valued ( ψ − C)- contraction [8]. 
They also obtained fixed point theorems for multi-valued 
cases in different settings [9]. Mihet in [10] introduced the 
notion of bn-contraction. He proved a fixed point theorem 
for multi-valued version of the strict probabilistic bn-
contractions [10,11]. Previously, we also considered multi-
valued (ψ , φ, ε, λ)-contraction in probabilistic metric spaces 
[12]. 
The sub-divisions of this paper as follows: In section 2, 
some notions and concepts in probabilistic metric spaces 
and probabilistic contractions are recalled. In section 3, 
some theorems for (φ − k) − B contraction and multi-valued 
bn-contraction will be illustrated. 

2 Preliminary Notes 

We recall some concepts from probabilistic metric space, 
convergence and contraction. For more details, we refer the 
reader to [13, 14]. 
Let D+ be the set of all distribution of functions F such that 
F(0) = 0 (F is a non-decreasing, left continuous mapping 
from R into [0, 1] such that lim

𝑥𝑥→∞
F(x) = 1 ). 

The ordered pair (S, F) is said to be a probabilistic metric 
space if S is a nonempty set and F : S × S → D+ (F(p, q) 
written by Fpq for every (p, q) ∈  S × S) satisfies the 
following conditions: 

1) Fuv (x) = 1 for every x > 0 ⇒ u = v (u, v  ∈  S), 
2) Fuv = Fvu for all u, v  ∈  S, 
3) Fuv (x) = 1 and Fvw(y) = 1 ) Fuw(x + y) = 1 for all u, 
v,w ∈ S, and all x, y ∈  R+. 
A Menger space is a triple (S, F, T) where (S, F) is a 
probabilistic metric space , T is a triangular norm 
(abbreviated t-norm ) and the following inequality holds 
Fuv (x + y) ≥ T(Fuw (x), Fwv(y)) for all u, v,w ∈ S, and all 
x, y ∈ R+. 
Recall that the mapping T : [0, 1] × [0, 1] → [0, 1] is called 
a triangular norm (a t-norm) if 
the following conditions are satisfied: 
T(a, 1) = a for every a ∈ [0, 1]; T(a, b) = T(b, a) for all a, b∈ 
[0, 1]; a ≥ b, c ≥ d ) 
T(a, c) ≥ T(b, d) a, b, c, d ∈ [0, 1]; T(T(a, b), c) = T(a, T(b, 
c)), a, b, c ∈ [0, 1]. 
Basic examples are t-norms TL ( Lukasiewicz t-norm), TP 
and TM, defined by TL(a, b) = 
max{a+b−1, 0}, TP (a, b) = ab and TM(a, b) = min{a, b}. 
If T is a t-norm and (x1, x2, . . . , xn) ∈ [0, 1]n (n ∈ N*) in 
which N* = N∪ {+∞} , one can define recurrently 𝑥𝑥𝑖𝑖 =
𝑇𝑇(𝛵𝛵𝑖𝑖=1𝑛𝑛−1𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑛𝑛) 
for all n ≥2. One can also extend T to a countable infinitary 
operation by defining  𝛵𝛵𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 
for any sequence  (𝑥𝑥𝑖𝑖)𝑖𝑖∈𝑁𝑁∗ as lim

𝑛𝑛→∞
𝛵𝛵𝑖𝑖=1𝑛𝑛 𝑥𝑥𝑖𝑖 . 

If q ∈  (0, 1) is given, we say that the t-norm T is q-
convergent if lim

𝑛𝑛→∞
𝛵𝛵𝑖𝑖=1∞ (1 − 𝑞𝑞𝑖𝑖) = 1 . 

We remark that if T is q-convergent, then, 
∀𝜆𝜆 ∈ (0, 1)  ∃s = s(λ) ∈ N  ∀n ∈ N 𝛵𝛵𝑖𝑖=1∞ (1 − 𝑞𝑞𝑠𝑠+𝑖𝑖) > 1 − 𝜆𝜆. 
Also note that if the t-norm T is q-convergent, then sup 0≤
𝑡𝑡 < 1 T(t, t) = 1. 
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Definition 2.1: Let (S, F, T) be a Menger space. If sup 0≤
𝑡𝑡 < 1R T(t, t) = 1, then the 
family {𝑈𝑈𝜀𝜀}𝜀𝜀>0 where, 

𝑈𝑈𝜀𝜀 = {(𝑥𝑥,𝑦𝑦) ∈ 𝑆𝑆 × 𝑆𝑆, |𝐹𝐹𝑥𝑥,𝑦𝑦(𝜀𝜀) > 1 − 𝜀𝜀} 
is a base for a metrizable uniformity on S, called the F-
uniformity [2,13,14]. The  
F-uniformity naturally determines a metrizable topology on 
S, called the strong topology 
or F-topology [15], a subset O of S is F-open if for every p 
∈ O there exists t > 0 such that 
Np = {q ∈ S | Fpq(t) > 1 − t}⊂ O. 
Definition 2.2: Let φ : (0, 1) →(0, 1) be a mapping. We say 
that the t-norm T is φ-convergent if 

∀𝛿𝛿 ∈ (0,1) ∀𝜆𝜆 ∈ (0,1)  ∃𝑠𝑠 = 𝑠𝑠(𝛿𝛿, 𝜆𝜆) ∈ 𝑁𝑁   ∀𝑛𝑛
≥ 1   𝛵𝛵𝑖𝑖=1∞ (1 − 𝜑𝜑𝑠𝑠+𝑖𝑖(𝛿𝛿)) > 1 − 𝜆𝜆  

Definition 2.3:  A sequence (𝑥𝑥𝑛𝑛)𝑛𝑛∈𝑁𝑁 is called F-convergent 
sequence x ∈ S if for 
all  ε > 0 and λ ∈ (0, 1) there exists 𝑛𝑛0 = 𝑛𝑛0(𝜀𝜀, 𝜆𝜆) ∈ 𝑁𝑁 such 
that ∀𝑛𝑛 ≥ 𝑛𝑛0  𝐹𝐹𝑥𝑥𝑛𝑛,𝑥𝑥(𝜀𝜀) > 1 − 𝜆𝜆    
Definition 2.4: A sequence (𝑥𝑥𝑛𝑛)𝑛𝑛∈𝑁𝑁  is called a Cauchy 
sequence if for all ε > 0 and 
λ∈ (0, 1) there exists  𝑛𝑛0 = 𝑛𝑛0(𝜀𝜀, 𝜆𝜆) ∈ 𝑁𝑁 such that ∀𝑛𝑛 ≥
𝑛𝑛0  ∀𝑚𝑚 ∈ 𝑁𝑁  𝐹𝐹𝑥𝑥𝑛𝑛,𝑥𝑥(𝜀𝜀) > 1 − 𝜆𝜆.  We also have 

∀𝑡𝑡 > 0  𝑥𝑥𝑛𝑛
𝐹𝐹
→ 𝑥𝑥  ⇔    𝐹𝐹𝑥𝑥𝑛𝑛,𝑥𝑥(𝑡𝑡) → 1.  

A probabilistic metric space (S, F, T) is called sequentially 
complete if every Cauchy sequence is convergent. In the 
following, 2S denotes the class of all nonempty subsets of 
the set S and C(S) is the class of all nonempty closed (in the 
F-topology) subsets of  S. Now, we need a number of results 
about contraction mappings. We review them at below. 
 
Definition 2.5 [16]: Let F be a probabilistic distance on S 
and M ∈ 2S. A mapping 
f : S → 2S is called continuous if for every ε> 0 there exists 
δ > 0, such that 

Fuv(δ) > 1 − δ ) ⇒  ∀x ∈ fu ∃y ∈ fv : Fxy(ε) > 1 − ε. 
Theorem 2.1 [16]: Let (S, F, T) be a complete Menger 
space such that sup 0≤ 𝑡𝑡 < 1 T(t, t) = 1 and f : S →C(S) be 
a continuous mapping. If there exists a sequence(𝑡𝑡𝑛𝑛)𝑛𝑛∈𝑁𝑁 ⊂
(0, 1)  with 
 ∑ 𝑡𝑡𝑛𝑛 < ∞∞

1  and a sequence (𝑥𝑥𝑛𝑛)𝑛𝑛∈𝑁𝑁 ⊂  S with the 
properties : 
 

𝑥𝑥𝑛𝑛+1 ∈ 𝑓𝑓𝑥𝑥𝑛𝑛 𝑓𝑓𝑜𝑜𝑟𝑟 𝑎𝑎𝑎𝑎𝑎𝑎 𝑛𝑛 𝑎𝑎𝑎𝑎𝑎𝑎 lim
𝑛𝑛→∞

𝛵𝛵𝑖𝑖=1∞ 𝑔𝑔𝑛𝑛+𝑖𝑖−1 = 1, 
 
where gn := 𝐹𝐹𝑥𝑥𝑛𝑛𝑥𝑥𝑛𝑛+1(tn), then f has a fixed point. 
One of important concept in this paper is (φ−k)−B 
contraction. Mihet introduced this concept in [6]. 
Now, we define comparison functions from the class ϕ of 
all mapping φ: (0, 1) →(0, 1) with the properties: 
1) φ is an increasing bijection; 
2) φ(λ) < λ   ∀𝜆𝜆 ∈ (0,1). 

Since every such a comparison mapping is continuous, it is 
easy to see that if  φ∈ 𝜙𝜙  then 
lim
𝑛𝑛→∞

 φn(λ) = 0 for every λ∈ (0, 1). 
 
Definition 2.6 [6]: Let (S, F) be a probabilistic metric space, 
φ ∈ 𝜙𝜙  and k ∈ (0, 1) be given. A mapping f : S→ S is called 
a (φ − k) − B contraction on S if the following condition 
holds: 
𝑥𝑥,𝑦𝑦 ∈ 𝑆𝑆, 𝜀𝜀 ∈ (0,1) 𝜆𝜆 ∈ (0,1) 𝐹𝐹𝑥𝑥,𝑦𝑦(𝜀𝜀)

> 1 − 𝜆𝜆 ⇒  𝐹𝐹𝑓𝑓(𝑥𝑥),𝑓𝑓(𝑦𝑦)(𝑘𝑘𝑘𝑘) > 1 − 𝜑𝜑(𝜆𝜆)  
Another contraction that we use is bn-contraction. 
Definition 2.7 [10]: Let (X, F) be a probabilistic metric 
space and (𝑏𝑏𝑛𝑛)𝑛𝑛∈𝑁𝑁  increasing sequence from (0, 1) such 
lim
𝑛𝑛→∞

𝑏𝑏𝑛𝑛 = 1. 
A mapping f : X → X is strict bn-contraction 
if for every n ∈ N, there exists qn ∈ (0, 1) and for all x1, x2 
∈ X, t > 0 

𝐹𝐹𝑥𝑥1,𝑥𝑥2(𝑡𝑡) > 𝑏𝑏𝑛𝑛  ⇒  𝐹𝐹𝑓𝑓(𝑥𝑥1),𝑓𝑓(𝑥𝑥2)(𝑞𝑞𝑛𝑛𝑡𝑡) > 𝑏𝑏𝑛𝑛. 

3 Main Results 

This section consists of two parts. The first one is related to 
single valued fixed point, while the second one is about 
multi-valued theorems. In the first part, the definition of a 
continuous mapping is recalled and by using it, a Lemma 
and then a Theorem with new assumptions is proven. 
 
Definition 3.1 : Let F be a probabilistic distance on S. A 
mapping f : S → S is called 
continuous if for every ε > 0 there exists δ> 0 such that 

𝐹𝐹𝑢𝑢,𝑣𝑣(𝛿𝛿) > 1 − 𝛿𝛿 ⇒  𝐹𝐹𝑓𝑓𝑓𝑓,𝑓𝑓𝑓𝑓(𝜀𝜀) > 1 − 𝜀𝜀. 
The definition of the (φ−k)−B contraction was mentioned 
in Section 2. We proved two fixed point Theorems about (φ 
− k) − B contractions in [17]. These Theorems are recalled 
below. 
 
Theorem 3.1: Let (S, F, T) be a complete Menger space, T 
be a t-norm such that 
sup 0≤ 𝑡𝑡 < 1  T(t, t) = 1 and f : S →  S a (φ − k) − B 
contraction. If lim

𝑡𝑡→∞
𝐹𝐹𝑥𝑥0𝑓𝑓𝑥𝑥0𝑚𝑚 (𝑡𝑡) = 1   

for some x0 ∈ S and m ∈ N, then there exists a unique fixed 
point x of the mapping f so 
that x = lim

𝑛𝑛→∞
 fn(x0). 

 
Theorem 3.2: Let (S, F, T) be a complete Menger space, T 
be a t-norm such that 
sup 0≤ 𝑡𝑡 < 1 T(t, t) = 1 and f : S → S a (φ−k)−B contraction 
and suppose that for some 
p∈S and j > 0 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.2, February 2017 58 

𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥>𝑗𝑗𝑥𝑥𝑗𝑗 �1 − 𝐹𝐹𝑝𝑝,𝑓𝑓𝑓𝑓(𝑥𝑥)� < ∞ 
 
If t-norm T is φ-convergent, then there exists a unique fixed 
point z of mapping f and 
z = lim

𝑙𝑙→∞
𝑓𝑓𝑙𝑙𝑝𝑝 . 

 
Before starting the new Theorem, we need the following 
lemma and its proof. 
 
Lemma 3.1: Every (φ − k) − B contraction is continuous. 
 
Proof: Let  ε> 0 then there exists δ∈ (0, 1) such that δ < ε. 
If Fu,v(δ) > 1 − δ then, 
since f is a (φ− k) − B contraction we have Ffu,fv(kδ) > 1 − 
φ(δ), where we obtain that 
Ffu,fv(ε) ≥ Ffu,fv(kδ) > 1 − φ(δ) > 1 − δ > 1 − ε. Therefore; is 
continuous. 
 
Theorem 3.3: Let (S, F, T) be a complete Menger space 
such that sup 0≤ 𝑡𝑡 < 1 T(t, t) = 1and let f : S →S be a (φ− 
k) − B contraction. If T is φ-convergent, i.e., 

∀𝛿𝛿 > 0  lim
𝑛𝑛→∞

𝛵𝛵𝑖𝑖=1∞ (1 − 𝜑𝜑(𝛿𝛿)𝑖𝑖) = 1                    (1)  
and Fp,fp ∈ D+ for every p ∈ S, then there exists a unique 
fixed point x of the mapping f 
and x = lim

𝑛𝑛→∞
𝑓𝑓𝑛𝑛(𝑝𝑝) for every p ∈ S. 

 
Proof: Let p ∈ S and δ > 0 be such that Fp,fp(δ) > 0. Since 
Fp,fp ∈ D+, such a δ exists. 
Let λ1 ∈ (0, 1) be such that Fp,fp(δ) > 1 − λ1; by assumption 
we have: 

𝐹𝐹𝑝𝑝,𝑓𝑓2𝑝𝑝(𝑘𝑘𝑘𝑘) > 1 − 𝜑𝜑(𝜆𝜆1) 
and generally for every n ∈ N 

𝐹𝐹𝑓𝑓𝑛𝑛𝑝𝑝,𝑓𝑓𝑛𝑛+1𝑝𝑝(𝑘𝑘𝑛𝑛𝛿𝛿) > 1 − 𝜑𝜑𝑛𝑛(𝜆𝜆1)               (2) 
 
We will prove that (𝑓𝑓𝑛𝑛𝑝𝑝)𝑛𝑛∈𝑁𝑁 is a Cauchy sequence, i.e., for 
all ε > 0 and 𝜆𝜆 ∈(0, 1) there 
exists 𝑛𝑛0(𝜀𝜀, 𝜆𝜆) ∈ 𝑁𝑁  such that 𝐹𝐹𝑓𝑓𝑛𝑛𝑝𝑝,𝑓𝑓𝑛𝑛+𝑚𝑚𝑝𝑝(𝜀𝜀) > 1 − 𝜆𝜆  for 
all n≥ 𝑛𝑛0(𝜀𝜀, 𝜆𝜆) and m ∈ N. Let ε > 0 
and λ∈(0, 1) be given. Since the series ∑ 𝑘𝑘𝑖𝑖𝛿𝛿∞

𝑖𝑖=1  converges, 
there exists 𝑛𝑛0 = 𝑛𝑛0(𝜀𝜀) such that 
∑ 𝑘𝑘𝑖𝑖𝛿𝛿∞
𝑖𝑖=1 < 𝜀𝜀. Then for every 𝑛𝑛 ≥ 𝑛𝑛0. 

 

𝐹𝐹𝑓𝑓𝑛𝑛𝑝𝑝,𝑓𝑓𝑛𝑛+𝑚𝑚𝑝𝑝(𝜀𝜀) ≥ 𝐹𝐹𝑓𝑓𝑛𝑛𝑝𝑝,𝑓𝑓𝑛𝑛+𝑚𝑚𝑝𝑝 �� 𝑘𝑘𝑖𝑖𝛿𝛿
∞

𝑖𝑖=𝑛𝑛0

� 

≥ 𝐹𝐹𝑓𝑓𝑛𝑛𝑝𝑝,𝑓𝑓𝑛𝑛+𝑚𝑚𝑝𝑝 � � 𝑘𝑘𝑖𝑖𝛿𝛿
𝑛𝑛+𝑚𝑚−1

𝑖𝑖=𝑛𝑛

� 

≥ 𝑇𝑇(… (𝑇𝑇(𝐹𝐹𝑓𝑓𝑛𝑛𝑝𝑝,𝑓𝑓𝑛𝑛+1𝑝𝑝�𝑘𝑘𝑛𝑛𝛿𝛿),  𝐹𝐹𝑓𝑓𝑛𝑛+1𝑝𝑝,𝑓𝑓𝑛𝑛+2𝑝𝑝(𝑘𝑘𝑛𝑛+1𝛿𝛿) ))�, 
...,  𝐹𝐹𝑓𝑓𝑛𝑛+𝑚𝑚−1𝑝𝑝,𝑓𝑓𝑛𝑛+𝑚𝑚𝑝𝑝(𝑘𝑘𝑛𝑛+𝑚𝑚−1𝛿𝛿)). 
 

Let n1 = n1(λ)∈N be such that 𝑇𝑇𝑖𝑖=𝑛𝑛1
∞ (1 − 𝜑𝜑(𝜆𝜆1)𝑖𝑖) > 1 −

𝜆𝜆. Since relation (1) holds, the 
number n1 exists. Using relation (2) we obtain for all n ≥ 
max{n0, n1} and m ∈ M, 
 

𝐹𝐹𝑓𝑓𝑛𝑛𝑝𝑝,𝑓𝑓𝑛𝑛+𝑚𝑚𝑝𝑝(𝜀𝜀) ≥ 𝑇𝑇𝑖𝑖=𝑛𝑛𝑛𝑛+𝑚𝑚−1(1 − 𝜑𝜑𝑖𝑖(𝜆𝜆1))  
𝑇𝑇𝑖𝑖=𝑛𝑛∞ (1 − 𝜑𝜑𝑖𝑖(𝜆𝜆1)) 

≥ 1 − 𝜆𝜆. 
 
By assumption the Menger space (S, F, T) is complete, so 
the sequence (𝑓𝑓𝑛𝑛𝑝𝑝)𝑛𝑛∈𝑁𝑁 is convergent to a value like x. 
By lemma 3.1 f is continuous, so the relation x = 
lim
𝑛𝑛→∞

𝑓𝑓𝑛𝑛(𝑝𝑝)implies that: 
 

𝑓𝑓𝑓𝑓= 𝑓𝑓( lim
𝑛𝑛→∞

𝑓𝑓𝑛𝑛𝑝𝑝) = lim
𝑛𝑛→∞

𝑓𝑓𝑛𝑛+1𝑝𝑝 = 𝑥𝑥. 
 
It remains to prove the uniqueness of the fixed point x. 
Suppose that y = fy, y ≠x. If 
ε> 0 be such that 𝐹𝐹𝑥𝑥,𝑦𝑦(𝜀𝜀) > 0 and 𝐹𝐹𝑥𝑥,𝑦𝑦(𝜀𝜀) > 1 − 𝜆𝜆 we have 

𝐹𝐹𝑓𝑓𝑓𝑓,𝑓𝑓𝑓𝑓(𝑘𝑘𝑘𝑘) > 1 − 𝜑𝜑(𝜆𝜆) 
and similarly 
𝐹𝐹𝑥𝑥,𝑦𝑦(𝑘𝑘𝑛𝑛𝜀𝜀) = 𝐹𝐹𝑓𝑓𝑛𝑛𝑥𝑥,𝑓𝑓𝑛𝑛𝑦𝑦(𝑘𝑘𝑛𝑛𝜀𝜀) > 1 − 𝜑𝜑𝑛𝑛(𝜆𝜆)𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑛𝑛

∈ 𝑁𝑁 
Therefore, Fx,y(u) = 1 , for every u > 0 (since 
lim
𝑛𝑛→∞

𝜑𝜑𝑛𝑛(𝜆𝜆) = 0) which contradicts to x≠ y. 
 
 
In the second part, it is the turn of multi-valued case. Mihet 
in [10,11] introduced multi-valued bn-contraction. 
 
Definition 3.2: Let (X, F) be a probabilistic metric space 
and (𝑏𝑏𝑛𝑛)𝑛𝑛∈𝑁𝑁 an increasing 
sequence from (0, 1) such that lim

𝑛𝑛→∞
𝑏𝑏𝑛𝑛 = 1, a mapping f : X 

→ X is multi-valued 
bn-contraction if for every n ∈ N, there exists qn ∈ (0, 1) and 
for all x, y ∈ X, 𝜀𝜀> 0 

𝐹𝐹𝑥𝑥,𝑦𝑦(𝜀𝜀) > 𝑏𝑏𝑛𝑛 ⇒  ∀𝑝𝑝 ∈ 𝑓𝑓𝑓𝑓   ∃𝑞𝑞 ∈ 𝑓𝑓𝑓𝑓 ∶  𝐹𝐹𝑝𝑝,𝑞𝑞(𝑞𝑞𝑛𝑛𝜀𝜀) > 𝑏𝑏𝑛𝑛 . 
 
Now, we will prove two new Theorems about multi-valued 
bn-contraction by applying 
new conditions. 
 
Theorem 3.4: Let (S, F, T) be a complete Menger space 
with t-norm T such that 
sup 0≤ 𝑡𝑡 < 1 T(t, t) = 1and f : S → C(S) be a multi-valued 
bn- contraction. If there exist 
p0 ∈  S and p1 ∈  fp0 such that for all ε> 0 and n ∈ 
N, 𝐹𝐹𝑝𝑝0,𝑝𝑝1(𝜀𝜀) > 𝑏𝑏𝑛𝑛 and   ∑ 𝑞𝑞𝑛𝑛𝑛𝑛∞

1 < ∞ 
and lim

𝑛𝑛→∞
𝛵𝛵𝑖𝑖=1∞ 𝑏𝑏𝑛𝑛+𝑖𝑖−1 = 1 then f has a fixed point. 

 
Proof: Let ε > 0 be given and δ ∈ (0, 1) be such that for 
every δ≤min{ε, 1 − bn}. If 
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Fuv(δ) > bn, since f is a multi-valued bn-contraction for each 
x ∈ fu we can find y ∈ fv 
such that Fxy(qnδ) > bn. We can now obtain that for every n 
∈ N, Fxy(ε) > bn holds. On 
the other hand, for enough large n, bn > 1 − ε so that Fxy(ε) 
> 1 −ε. This means that f is 
continuous. 
Next, by the assumption, there exist p0 ∈ S and p1 ∈ fp0 such 
that for all ε > 0 and n0 ∈N, 𝐹𝐹𝑝𝑝0,𝑝𝑝1(𝜀𝜀) > 𝑏𝑏𝑛𝑛0 . By using the 
contraction relation, we can find p2 ∈ fp1 such that 
𝐹𝐹𝑝𝑝0,𝑝𝑝1�𝑞𝑞𝑛𝑛0𝜀𝜀� > 𝑏𝑏𝑛𝑛0 and by induction, we can find pn+1 ∈ fpn 
such that 𝐹𝐹𝑝𝑝𝑛𝑛,𝑝𝑝𝑛𝑛+1�𝑞𝑞𝑛𝑛0

𝑛𝑛𝜀𝜀� > 𝑏𝑏𝑛𝑛0 
every n0 ∈N, especially for n0 = n. Defining tn = 𝑞𝑞𝑛𝑛𝑛𝑛𝜀𝜀, we 
have 𝑔𝑔𝑗𝑗 = 𝐹𝐹𝑝𝑝𝑗𝑗,𝑝𝑝𝑗𝑗+1�𝑡𝑡𝑗𝑗� ≥ 𝑏𝑏𝑗𝑗 . On 
the other hand, ∑𝑞𝑞𝑛𝑛𝑛𝑛 < 𝜀𝜀 , so lim

𝑛𝑛→∞
𝑇𝑇𝑖𝑖=1∞ 𝑔𝑔𝑛𝑛+𝑖𝑖−1 ≥

lim
𝑛𝑛→∞

𝑇𝑇𝑖𝑖=1∞ 𝑏𝑏𝑛𝑛+𝑖𝑖−1 = 1. Now we can 
apply Theorem 2.1 to find a fixed point of  f. 
 
We need the definition of a large class of mappings called 
weakly demicompact mappings. 
This definition is necessary for the next theorem. 
 
Definition 3.3 [17]: Let (S, F) be a probabilistic metric 
space, M a nonempty subset of S and f : M → 2S −{∅}, a 
mapping f is weakly demicompact if for every sequence 
(𝑝𝑝𝑛𝑛)𝑛𝑛∈𝑁𝑁 from M such that 𝑝𝑝𝑛𝑛+1 ∈ 𝑓𝑓𝑓𝑓𝑛𝑛, for every n ∈ N and 
lim 𝐹𝐹𝑝𝑝𝑛𝑛+1,𝑝𝑝𝑛𝑛(𝜀𝜀)= 1, for every 𝜀𝜀 > 0, there exists a convergent 
subsequence (𝑝𝑝𝑛𝑛𝑗𝑗)𝑗𝑗∈𝑁𝑁.  
 
In the next theorem, we will not use the conditions of 
Theorem 3.4. We use the condition of weakly demicompact 
for multi-valued bn-contraction. 
 
Theorem 3.5: Let (S, F, T) be a complete Menger space, T 
a t-norm such that sup 0≤ 𝑡𝑡 < 1 T(t, t) = 1, M a non-empty 
and closed subset of S, f : M → C(M) be a multi valued bn-
contraction 
that is also weakly demicompact. If there exist p0 ∈ M and 
p1 ∈ fp0 such that for all 𝜀𝜀 > 0 
and n ∈  N. 𝐹𝐹𝑝𝑝0,𝑝𝑝1(𝜀𝜀) > 𝑏𝑏𝑛𝑛  and lim

𝑛𝑛→∞
𝑞𝑞𝑛𝑛𝑛𝑛 = 0 , then f has a 

fixed point. 
Proof: We can construct a sequence (𝑝𝑝𝑛𝑛)𝑛𝑛∈𝑁𝑁from M, such 
that  p1 ∈ fp0,  pn+1 ∈ fpn. 
Given t > 0 and  λ∈ (0, 1), we will show that 

lim
𝑛𝑛→∞

𝐹𝐹𝑝𝑝𝑛𝑛+1,𝑝𝑝𝑛𝑛(𝑡𝑡) = 1               (3) 
Indeed, by assumption there exist p0 ∈ M and p1 ∈ fp0 such 
that for all ε > 0 and n0 ∈ N, 𝐹𝐹𝑝𝑝0,𝑝𝑝1(𝜀𝜀) > 𝑏𝑏𝑛𝑛0. By using the 
contraction relation we can find p2 ∈  fp1 such that 
𝐹𝐹𝑝𝑝1,𝑝𝑝2�𝑞𝑞𝑛𝑛0𝜀𝜀� > 𝑏𝑏𝑛𝑛0  and by induction pn+1 ∈  fpn such that 
𝐹𝐹𝑝𝑝𝑛𝑛,𝑝𝑝𝑛𝑛+1�𝑞𝑞𝑛𝑛0𝜀𝜀� > 𝑏𝑏𝑛𝑛0 for every        n0 ∈ N, especially for 
n0 = n. Since  lim

𝑛𝑛→∞
𝑞𝑞𝑛𝑛 
𝑛𝑛 = 0 and lim

𝑛𝑛→∞
𝑏𝑏𝑛𝑛 = 1, for all t > 0 and  

λ∈ (0, 1) by choosing enough large n,  𝑞𝑞𝑛𝑛 
𝑛𝑛 𝜀𝜀 < 𝑡𝑡 and 𝑏𝑏𝑛𝑛 >

1 − 𝜆𝜆, so 𝐹𝐹𝑝𝑝𝑛𝑛+1,𝑝𝑝𝑛𝑛(𝑡𝑡) > 1 − 𝜆𝜆 , the proof of (3) is complete. 
By definition 3.3, there exist a subsequence (𝑝𝑝𝑛𝑛𝑗𝑗)𝑗𝑗∈𝑁𝑁.  such 
that lim

𝑗𝑗→∞
𝑝𝑝𝑛𝑛𝑗𝑗  exists. We shall prove that x = lim

𝑗𝑗→∞
𝑝𝑝𝑛𝑛𝑗𝑗  is a 

fixed point of f. Since fx is closed, 𝑓𝑓𝑓𝑓 = 𝑓𝑓𝑓𝑓��� and therefore, 
it remains to prove that x ∈ 𝑓𝑓𝑓𝑓���, i.e. , for all ε > 0 and λ ∈ (0, 
1), there exists 𝑏𝑏′(𝜀𝜀, 𝜆𝜆), such that 𝐹𝐹𝑥𝑥,𝑏𝑏′(𝜀𝜀,𝜆𝜆)(𝜀𝜀)> 1 −λ. From 
the condition  sup 0≤ 𝑡𝑡 < 1 T(t, t) = 1, it follows that there 
exists 𝜂𝜂(𝜆𝜆) ∈ (0, 1) such that  

𝑢𝑢 > 1 − 𝜂𝜂(𝜆𝜆)  ⇒  𝑇𝑇(𝑢𝑢,𝑢𝑢) > 1 − 𝜆𝜆. 
Let j1(ε, λ) ∈N be such that 𝐹𝐹𝑝𝑝𝑛𝑛𝑗𝑗 ,𝑥𝑥 �

𝜀𝜀
2𝑞𝑞𝑛𝑛

� >  𝑏𝑏𝑛𝑛  for every j ≥ 
j1(ε, λ) and enough large n. 
Since x= lim

𝑗𝑗→∞
𝑝𝑝𝑛𝑛𝑗𝑗 such a number j1(ε, λ) exists. As f is multi-

valued (bn)-contraction, 
for 𝑝𝑝𝑛𝑛𝑗𝑗+1 ∈ 𝑓𝑓𝑝𝑝𝑛𝑛𝑗𝑗  there exists 𝑏𝑏′𝑗𝑗(𝜀𝜀) ∈  fx such that 

𝐹𝐹𝑝𝑝𝑛𝑛𝑗𝑗+1,𝑏𝑏′𝑗𝑗(𝜀𝜀) �
𝜀𝜀
2
� >  𝑏𝑏𝑛𝑛 > 1 − 𝜂𝜂(𝜆𝜆) for all 

j ≥ j1(ε, λ) and enough large n. From (3) it follows that 
lim
𝑗𝑗→∞

𝑝𝑝𝑛𝑛𝑗𝑗+1 = 𝑥𝑥 and therefore 

there exists j2(ε, λ) ∈N such that 𝐹𝐹𝑝𝑝𝑛𝑛𝑗𝑗+1,𝑥𝑥 �
𝜀𝜀
2
� >  1 − 𝜂𝜂(𝜆𝜆) 

for every j ≥ j2(ε, λ). Let j3(ε, λ) = max{ j1(ε, λ),  j2(ε, λ) }, 
then for every j ≥  j3(ε, λ) we have  𝐹𝐹𝑥𝑥,𝑏𝑏′𝑗𝑗(𝜀𝜀) ≥

𝑇𝑇(𝐹𝐹𝑥𝑥,𝑝𝑝𝑛𝑛𝑗𝑗+1
�𝜀𝜀
2
� ,𝐹𝐹𝑝𝑝𝑛𝑛𝑗𝑗+1,𝑏𝑏′𝑗𝑗(𝜀𝜀) �

𝜀𝜀
2
�) > 1 − 𝜆𝜆. Hence, if j > j3 (ε, 

λ), then we can choose 𝑏𝑏′(ε, λ) = 𝑏𝑏′𝑗𝑗(𝜀𝜀) ∈ fx. The proof is 
complete. 
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