Probabilistic Metric Spaces and Some Contraction Mappings

Parvin Azhdari

Department of Statistics, Tehran North Branch, Islamic Azad University, Tehran, Iran.

Abstract:

There exist many types of contraction mappings in the case of single valued and multi- valued that researchers are interested in proving fixed point theorems. Now, I consider two types of contraction: $(\phi-k)-B$ contraction and bn-contraction . In this paper, after presenting the definition of $(\phi-k)-B$ contraction, I prove a lemma about continuity of $-(\phi-k)-B$ contraction and by using it I prove a unique single valued fixed point theorem for $(\phi-k)-B$ contraction with t-norm which is ϕ -convergent in probabilistic metric space. Then multi-valued bn-contraction definition is illustrated. I obtain first multi-valued theorem with new assumptions. Finally, I prove another fixed point theorem for multi-valued case by the definition of a large class of mappings called weakly demicompact mappings.

Keywords:

Probabilistic metric space, bn-contraction, $(\varphi - k) - B$ contraction, fixed point.

1. Introduction

The notion of a probabilistic metric space was introduced by Menger [1]. There exist many types of fixed point theorems in the field of contraction mappings [2]. One such theorem was formulated by Sehgal and Bharucha-Reid [3] who introduced the B-contraction mapping in probabilistic metric spaces. Hicks [4] established C-contractions in probabilistic metric spaces while Radu generalized Ccontraction [5]. One of the contractions which is introduced by Mihet is $(\varphi - k)$ -B contraction [6]. He demonstrated that every (φ-k)-B contraction is a B-contraction. The multivalued contraction in probabilistic metric spaces was introduced by Hadzic and Pap [7]. Pap et. al generalized the C-contraction to multi-valued (ψ – C)- contraction [8]. They also obtained fixed point theorems for multi-valued cases in different settings [9]. Mihet in [10] introduced the notion of bn-contraction. He proved a fixed point theorem for multi-valued version of the strict probabilistic bncontractions [10,11]. Previously, we also considered multivalued $(\psi, \varphi, \varepsilon, \lambda)$ -contraction in probabilistic metric spaces [12].

The sub-divisions of this paper as follows: In section 2, some notions and concepts in probabilistic metric spaces and probabilistic contractions are recalled. In section 3, some theorems for $(\phi - k) - B$ contraction and multi-valued bn-contraction will be illustrated.

2 Preliminary Notes

We recall some concepts from probabilistic metric space, convergence and contraction. For more details, we refer the reader to [13, 14].

Let D+ be the set of all distribution of functions F such that F(0) = 0 (F is a non-decreasing, left continuous mapping from R into [0, 1] such that $\lim_{n \to \infty} F(x) = 1$).

The ordered pair (S, F) is said to be a probabilistic metric space if S is a nonempty set and $F: S \times S \to D+ (F(p, q))$ written by Fpq for every $(p, q) \in S \times S$ satisfies the following conditions:

- 1) Fuv (x) = 1 for every $x > 0 \Rightarrow u = v$ (u, $v \in S$),
- 2) Fuv = Fvu for all $u, v \in S$,
- 3) Fuv (x) = 1 and Fvw(y) = 1) Fuw(x + y) = 1 for all u, $y, w \in S$, and all $x, y \in R+$.

A Menger space is a triple (S, F, T) where (S, F) is a probabilistic metric space , T is a triangular norm (abbreviated t-norm) and the following inequality holds

Fuv $(x + y) \ge T(Fuw(x), Fwv(y))$ for all $u, v, w \in S$, and all $x, y \in R+$.

Recall that the mapping $T : [0, 1] \times [0, 1] \rightarrow [0, 1]$ is called a triangular norm (a t-norm) if

the following conditions are satisfied:

T(a, 1) = a for every $a \in [0, 1]$; T(a, b) = T(b, a) for all $a, b \in [0, 1]$; $a \ge b, c \ge d$)

 $T(a, c) \ge T(b, d) a, b, c, d \in [0, 1]; T(T(a, b), c) = T(a, T(b, c)), a, b, c \in [0, 1].$

Basic examples are t-norms TL (Lukasiewicz t-norm), TP and TM, defined by TL(a, b) =

 $\max\{a+b-1, 0\}$, TP (a, b) = ab and TM $(a, b) = \min\{a, b\}$. If T is a t-norm and $(x1, x2, ..., xn) \in [0, 1]n$ $(n \in N^*)$ in which $N^* = N \cup \{+\infty\}$, one can define recurrently $x_i = T(T_{i-1}^{n-1}x_i, x_n)$

for all $n \ge 2$. One can also extend T to a countable infinitary operation by defining $T_{i=1}^n x_i$

for any sequence $(x_i)_{i \in N^*}$ as $\lim_{n \to \infty} T_{i=1}^n x_i$.

If $q \in (0, 1)$ is given, we say that the t-norm T is q-convergent if $\lim_{n \to \infty} T_{i=1}^{\infty} (1 - q^i) = 1$.

We remark that if T is q-convergent, then,

 $\forall \lambda \in (0, 1) \ \exists s = s(\lambda) \in N \ \forall n \in N \ T_{i=1}^{\infty} (1 - q^{s+i}) > 1 - \lambda.$ Also note that if the t-norm T is q-convergent, then sup $0 \le t < 1 \ T(t, t) = 1.$

Definition 2.1: Let (S, F, T) be a Menger space. If $\sup_{0} \le t < 1$ T(t, t) = 1, then the

family $\{U_{\varepsilon}\}_{{\varepsilon}>0}$ where,

$$U_{\varepsilon} = \{(x, y) \in S \times S, |F_{x,y}(\varepsilon) > 1 - \varepsilon\}$$

is a base for a metrizable uniformity on S, called the F-uniformity [2,13,14]. The

F-uniformity naturally determines a metrizable topology on S, called the strong topology

or F-topology [15], a subset O of S is F-open if for every $p \in O$ there exists t > 0 such that

 $Np = \{q \in S \mid Fpq(t) > 1 - t\} \subset O.$

Definition 2.2: Let $\varphi : (0, 1) \rightarrow (0, 1)$ be a mapping. We say that the t-norm T is φ -convergent if

$$\forall \delta \in (0,1) \ \forall \lambda \in (0,1) \ \exists s = s(\delta,\lambda) \in N \ \forall n$$

$$\geq 1 \ T_{i=1}^{\infty} (1 - \varphi^{s+i}(\delta)) > 1 - \lambda$$

Definition 2.3: A sequence $(x_n)_{n \in \mathbb{N}}$ is called F-convergent sequence $x \in S$ if for

all $\varepsilon > 0$ and $\lambda \in (0, 1)$ there exists $n_0 = n_0(\varepsilon, \lambda) \in N$ such that $\forall n \ge n_0$ $F_{x_n,x}(\varepsilon) > 1 - \lambda$

Definition 2.4: A sequence $(x_n)_{n \in \mathbb{N}}$ is called a Cauchy sequence if for all $\varepsilon > 0$ and

 $\lambda \in (0, 1)$ there exists $n_0 = n_0(\varepsilon, \lambda) \in N$ such that $\forall n \ge n_0 \ \forall m \in N \ F_{x_n, x}(\varepsilon) > 1 - \lambda$. We also have

$$\forall t > 0 \ x_n \stackrel{F}{\to} x \iff F_{x_n,x}(t) \to 1.$$

A probabilistic metric space (S, F, T) is called sequentially complete if every Cauchy sequence is convergent. In the following, 2^S denotes the class of all nonempty subsets of the set S and C(S) is the class of all nonempty closed (in the F-topology) subsets of S. Now, we need a number of results about contraction mappings. We review them at below.

Definition 2.5 [16]: Let F be a probabilistic distance on S and $M \in 2^S$. A mapping

 $f: S \to 2^S$ is called continuous if for every $\epsilon > 0$ there exists $\delta > 0$, such that

$$F_{uv}(\delta) > 1 - \delta$$
) $\Rightarrow \forall x \in fu \ \exists y \in fv : F_{xv}(\epsilon) > 1 - \epsilon$.

Theorem 2.1 [16]: Let (S, F, T) be a complete Menger space such that $\sup_{0} \le t < 1$ T(t, t) = 1 and f: $S \to C(S)$ be a continuous mapping. If there exists a sequence $(t_n)_{n \in N} \subset (0, 1)$ with

 $\sum_{1}^{\infty} t_n < \infty$ and a sequence $(x_n)_{n \in \mathbb{N}} \subset S$ with the properties:

$$x_{n+1} \in fx_n \ for \ all \ n \ and \ \lim_{n \to \infty} T_{i=1}^\infty g_{n+i-1} = 1,$$

where $g_n := F_{x_n x_{n+1}}(t_n)$, then f has a fixed point.

One of important concept in this paper is $(\phi-k)-B$ contraction. Mihet introduced this concept in [6].

Now, we define comparison functions from the class ϕ of all mapping φ : $(0, 1) \rightarrow (0, 1)$ with the properties:

1) φ is an increasing bijection;

2) $\varphi(\lambda) < \lambda \quad \forall \lambda \in (0,1)$.

Since every such a comparison mapping is continuous, it is easy to see that if $\varphi \in \phi$ then

 $\lim_{n\to\infty} \varphi^n(\lambda) = 0 \text{ for every } \lambda \in (0, 1).$

Definition 2.6 [6]: Let (S, F) be a probabilistic metric space, $\varphi \in \varphi$ and $k \in (0, 1)$ be given. A mapping $f : S \to S$ is called a $(\varphi - k) - B$ contraction on S if the following condition holds:

$$x, y \in S, \varepsilon \in (0,1) \lambda \in (0,1) F_{x,y}(\varepsilon)$$

$$> 1 - \lambda \Rightarrow F_{f(x),f(y)}(k\varepsilon) > 1 - \varphi(\lambda)$$

Another contraction that we use is b_n -contraction.

Definition 2.7 [10]: Let (X, F) be a probabilistic metric space and $(b_n)_{n \in N}$ increasing sequence from (0, 1) such $\lim b_n = 1$.

A mapping $f: X \to X$ is strict b_n -contraction if for every $n \in N$, there exists $q_n \in (0, 1)$ and for all $x_1, x_2 \in X$, t > 0

$$F_{x_1,x_2}(t) > b_n \Rightarrow F_{f(x_1),f(x_2)}(q_n t) > b_n.$$

3 Main Results

This section consists of two parts. The first one is related to single valued fixed point, while the second one is about multi-valued theorems. In the first part, the definition of a continuous mapping is recalled and by using it, a Lemma and then a Theorem with new assumptions is proven.

Definition 3.1: Let F be a probabilistic distance on S. A mapping $f: S \to S$ is called

continuous if for every $\varepsilon > 0$ there exists $\delta > 0$ such that

$$F_{u,v}(\delta) > 1 - \delta \Rightarrow F_{fu,fv}(\varepsilon) > 1 - \varepsilon.$$

The definition of the $(\phi-k)$ -B contraction was mentioned in Section 2. We proved two fixed point Theorems about $(\phi-k)$ -B contractions in [17]. These Theorems are recalled below.

Theorem 3.1: Let (S, F, T) be a complete Menger space, T be a t-norm such that

sup
$$_0 \le t < 1$$
 T(t, t) = 1 and f : S \to S a $(\varphi - k) - B$ contraction. If $\lim_{t \to \infty} F_{x_0 f_{x_0}^m}(t) = 1$

for some $x_0 \in S$ and $m \in N$, then there exists a unique fixed point x of the mapping f so

that $x = \lim_{n \to \infty} f^n(x_0)$.

Theorem 3.2: Let (S, F, T) be a complete Menger space, T be a t-norm such that

sup $_0$ ≤ t < 1 T(t, t) = 1 and f : S → S a (φ-k)-B contraction and suppose that for some p∈S and j > 0

$$sup_{x>j}x^{j}\left(1-F_{p,fp}(x)\right)<\infty$$

If t-norm T is φ-convergent, then there exists a unique fixed point z of mapping f and

$$z = \lim_{l \to \infty} f^l p .$$

Before starting the new Theorem, we need the following lemma and its proof.

Lemma 3.1: Every $(\varphi - k) - B$ contraction is continuous.

Proof: Let $\varepsilon > 0$ then there exists $\delta \in (0, 1)$ such that $\delta < \varepsilon$. If Fu,v(δ) > 1 – δ then,

since f is a $(\varphi - k)$ – B contraction we have $F_{fu,fv}(k\delta) > 1$ – $\varphi(\delta)$, where we obtain that

 $F_{fu,fv}(\varepsilon) \ge F_{fu,fv}(k\delta) > 1 - \varphi(\delta) > 1 - \delta > 1 - \varepsilon$. Therefore; is continuous.

Theorem 3.3: Let (S, F, T) be a complete Menger space such that sup $0 \le t < 1$ T(t, t) = 1 and let f : S \rightarrow S be a $(\varphi$ k) – B contraction. If T is φ-convergent, i.e.,

$$\forall \delta > 0 \quad \lim_{n \to \infty} T_{i=1}^{\infty} (1 - \varphi(\delta)^i) = 1 \tag{1}$$

and $F_{p,fp} \in D^+$ for every $p \in S$, then there exists a unique fixed point x of the mapping f

and
$$x = \lim_{n \to \infty} f^n(p)$$
 for every $p \in S$.

Proof: Let $p \in S$ and $\delta > 0$ be such that $F_{p,fp}(\delta) > 0$. Since $F_{p,fp} \in D^{+}$, such a δ exists.

Let $\lambda_1 \in (0, 1)$ be such that $F_{p,fp}(\delta) > 1 - \lambda_1$; by assumption we have:

$$F_{p,f^2p}(k\delta) > 1 - \varphi(\lambda_1)$$

$$\begin{split} F_{p,f^2p}(k\delta) &> 1 - \varphi(\lambda_1) \\ \text{and generally for every } n \in \mathbb{N} \\ F_{f^np,f^{n+1}p}(k^n\delta) &> 1 - \varphi^n(\lambda_1) \end{split} \tag{2}$$

We will prove that $(f^n p)_{n \in \mathbb{N}}$ is a Cauchy sequence, i.e., for all $\varepsilon > 0$ and $\lambda \in (0, 1)$ there

exists $n_0(\varepsilon,\lambda) \in N$ such that $F_{f^n p,f^{n+m}p}(\varepsilon) > 1 - \lambda$ for all $n \ge n_0(\varepsilon, \lambda)$ and $m \in \mathbb{N}$. Let $\varepsilon > 0$

and $\lambda \in (0, 1)$ be given. Since the series $\sum_{i=1}^{\infty} k^i \delta$ converges, there exists $n_0 = n_0(\varepsilon)$ such that

 $\sum_{i=1}^{\infty} k^i \delta < \varepsilon$. Then for every $n \ge n_0$.

$$\begin{split} F_{f^{n}p,f^{n+m}p}(\varepsilon) &\geq F_{f^{n}p,f^{n+m}p}\left(\sum_{i=n_{0}}^{\infty}k^{i}\delta\right) \\ &\geq F_{f^{n}p,f^{n+m}p}\left(\sum_{i=n_{0}}^{n+m-1}k^{i}\delta\right) \\ &\geq T(\dots(T(F_{f^{n}p,f^{n+1}p}(k^{n}\delta),F_{f^{n+1}p,f^{n+2}p}(k^{n+1}\delta)))), \\ \dots,F_{f^{n+m-1}p,f^{n+m}p}(k^{n+m-1}\delta)). \end{split}$$

Let $n_1 = n_1(\lambda) \in \mathbb{N}$ be such that $T_{i=n_1}^{\infty} (1 - \varphi(\lambda_1)^i) > 1 - \varphi(\lambda_1)^i$ λ . Since relation (1) holds, the

number n_1 exists. Using relation (2) we obtain for all $n \ge n$ $\max\{n_0, n_1\}$ and $m \in M$,

$$F_{f^n p, f^{n+m} p}(\varepsilon) \ge T_{i=n}^{n+m-1} (1 - \varphi^i(\lambda_1))$$
$$T_{i=n}^{\infty} (1 - \varphi^i(\lambda_1))$$

 $\geq 1 - \lambda$.

By assumption the Menger space (S, F, T) is complete, so the sequence $(f^n p)_{n \in \mathbb{N}}$ is convergent to a value like x. By lemma 3.1 f is continuous, so the relation x = $\lim f^n(p)$ implies that:

$$fx = f(\lim_{n \to \infty} f^n p) = \lim_{n \to \infty} f^{n+1} p = x.$$

It remains to prove the uniqueness of the fixed point x. Suppose that y = fy, $y \neq x$. If

 $\varepsilon > 0$ be such that $F_{x,y}(\varepsilon) > 0$ and $F_{x,y}(\varepsilon) > 1 - \lambda$ we have $F_{fx,fy}(k\varepsilon) > 1 - \varphi(\lambda)$

and similarly

$$F_{x,y}(k^n \varepsilon) = F_{f^n x, f^n y}(k^n \varepsilon) > 1 - \varphi^n(\lambda) for \ every \ n$$

 $\in N$

Therefore, $F_{x,y}(u) = 1$, for every u > 0 (since $\lim \varphi^n(\lambda) = 0$) which contradicts to $x \neq y$.

In the second part, it is the turn of multi-valued case. Mihet in [10,11] introduced multi-valued b_n-contraction.

Definition 3.2: Let (X, F) be a probabilistic metric space and $(b_n)_{n\in\mathbb{N}}$ an increasing

sequence from (0, 1) such that $\lim_{n\to\infty} b_n = 1$, a mapping f : X → X is multi-valued

 b_n -contraction if for every $n \in N$, there exists $q_n \in (0, 1)$ and for all $x, y \in X$, $\varepsilon > 0$

$$F_{x,y}(\varepsilon) > b_n \Rightarrow \forall p \in fx \ \exists q \in fy : F_{p,q}(q_n \varepsilon) > b_n.$$

Now, we will prove two new Theorems about multi-valued b_n-contraction by applying new conditions.

Theorem 3.4: Let (S, F, T) be a complete Menger space with t-norm T such that

 $\sup_{0} \le t < 1 \text{ T(t, t)} = 1 \text{ and f : S} \rightarrow \text{C(S)}$ be a multi-valued b_n- contraction. If there exist

 $p_0 \in S$ and $p_1 \in fp_0$ such that for all $\epsilon \!\!> 0$ and $n \in$ $N, F_{p_0,p_1}(\varepsilon) > b_n$ and $\sum_{1}^{\infty} q_n^n < \infty$

and $\lim_{n\to\infty} T_{i=1}^{\infty} b_{n+i-1} = 1$ then f has a fixed point.

Proof: Let $\varepsilon > 0$ be given and $\delta \in (0, 1)$ be such that for every $\delta \leq \min\{\epsilon, 1 - b_n\}$. If

 $F_{uv}(\delta) > b_n$, since f is a multi-valued b_n -contraction for each $x \in fu$ we can find $y \in fv$

such that $F_{xy}(q_n\delta) > b_n$. We can now obtain that for every $n \in N$, $F_{xy}(\epsilon) > b_n$ holds. On

the other hand, for enough large n, $b_n > 1 - \epsilon$ so that $F_{xy}(\epsilon) > 1 - \epsilon$. This means that f is continuous.

Next, by the assumption, there exist $p_0 \in S$ and $p_1 \in fp_0$ such that for all $\varepsilon > 0$ and $n_0 \in N$, $F_{p_0,p_1}(\varepsilon) > b_{n_0}$. By using the contraction relation, we can find $p_2 \in fp_1$ such that

 $F_{p_0,p_1}(q_{n_0}\varepsilon) > b_{n_0}$ and by induction, we can find $p_{n+1} \in fp_n$ such that $F_{p_n,p_{n+1}}(q_{n_0}{}^n\varepsilon) > b_{n_0}$

every $n_0 \in \mathbb{N}$, especially for $n_0 = n$. Defining $t_n = q_n^n \varepsilon$, we have $g_j = F_{p_j, p_{j+1}}(t_j) \ge b_j$. On

the other hand, $\sum q_n^n < \varepsilon$, so $\lim_{n \to \infty} T_{i=1}^{\infty} g_{n+i-1} \ge \lim_{n \to \infty} T_{i=1}^{\infty} b_{n+i-1} = 1$. Now we can apply Theorem 2.1 to find a fixed point of f.

We need the definition of a large class of mappings called weakly demicompact mappings.

This definition is necessary for the next theorem.

Definition 3.3 [17]: Let (S, F) be a probabilistic metric space, M a nonempty subset of S and $f: M \to 2^S - \{\emptyset\}$, a mapping f is weakly demicompact if for every sequence $(p_n)_{n \in \mathbb{N}}$ from M such that $p_{n+1} \in fp_n$, for every $n \in \mathbb{N}$ and $\lim F_{p_{n+1},p_n}(\varepsilon) = 1$, for every $\varepsilon > 0$, there exists a convergent subsequence $(p_n)_{j \in \mathbb{N}}$.

In the next theorem, we will not use the conditions of Theorem 3.4. We use the condition of weakly demicompact for multi-valued b_n-contraction.

Theorem 3.5: Let (S, F, T) be a complete Menger space, T a t-norm such that sup $0 \le t < 1$ T(t, t) = 1, M a non-empty and closed subset of S, f: M \rightarrow C(M) be a multi valued b_n-contraction

that is also weakly demicompact. If there exist $p_0 \in M$ and $p_1 \in fp_0$ such that for all $\varepsilon > 0$

and $n \in \mathbb{N}$. $F_{p_0,p_1}(\varepsilon) > b_n$ and $\lim_{n \to \infty} q_n^n = 0$, then f has a fixed point.

Proof: We can construct a sequence $(p_n)_{n \in N}$ from M, such that $p_1 \in fp_0$, $p_{n+1} \in fp_n$.

Given t > 0 and $\lambda \in (0, 1)$, we will show that

$$\lim_{n \to \infty} F_{p_{n+1}, p_n}(t) = 1 \tag{3}$$

Indeed, by assumption there exist $p_0 \in M$ and $p_1 \in fp_0$ such that for all $\varepsilon > 0$ and $n_0 \in N$, $F_{p_0,p_1}(\varepsilon) > b_{n_0}$. By using the contraction relation we can find $p_2 \in fp_1$ such that $F_{p_1,p_2}(q_{n_0}\varepsilon) > b_{n_0}$ and by induction $p_{n+1} \in fp_n$ such that $F_{p_n,p_{n+1}}(q_{n_0}\varepsilon) > b_{n_0}$ for every $p_0 \in N$, especially for $p_0 = n$. Since $\lim_{n \to \infty} q_n^n = 0$ and $\lim_{n \to \infty} b_n = 1$, for all t > 0 and

 $\lambda \in (0, 1)$ by choosing enough large n, $q_n^n \varepsilon < t$ and $b_n > 1 - \lambda$, so $F_{p_{n+1},p_n}(t) > 1 - \lambda$, the proof of (3) is complete. By definition 3.3, there exist a subsequence $(p_{n_j})_{j \in \mathbb{N}}$. such that $\lim_{j \to \infty} p_{n_j}$ exists. We shall prove that $\mathbf{x} = \lim_{j \to \infty} p_{n_j}$ is a fixed point of f. Since fx is closed, $fx = \overline{fx}$ and therefore, it remains to prove that $\mathbf{x} \in \overline{fx}$, i.e., for all $\varepsilon > 0$ and $\lambda \in (0, 1)$, there exists $b'(\varepsilon, \lambda)$, such that $F_{x,b'(\varepsilon,\lambda)}(\varepsilon) > 1 - \lambda$. From the condition $\sup_{0 \le t} t < 1$ T(t, t) = 1, it follows that there exists $\eta(\lambda) \in (0, 1)$ such that

$$u > 1 - \eta(\lambda) \Rightarrow T(u, u) > 1 - \lambda.$$

Let $j_1(\varepsilon, \lambda) \in \mathbb{N}$ be such that $F_{p_{n_j}, x}\left(\frac{\varepsilon}{2q_n}\right) > b_n$ for every $j \ge j_1(\varepsilon, \lambda)$ and enough large n.

Since $x = \lim_{j \to \infty} p_{n_j}$ such a number $j_1(\varepsilon, \lambda)$ exists. As f is multivalued (b_n) -contraction,

for $p_{n_j+1} \in fp_{n_j}$ there exists $b'_j(\varepsilon) \in fx$ such that $F_{p_{n_j+1},b'_j(\varepsilon)}\left(\frac{\varepsilon}{2}\right) > b_n > 1 - \eta(\lambda)$ for all

 $j \ge j_1(\varepsilon, \lambda)$ and enough large n. From (3) it follows that $\lim_{j \to \infty} p_{n_j+1} = x$ and therefore

there exists $j_2(\varepsilon, \lambda) \in \mathbb{N}$ such that $F_{p_{n_j+1},x}\left(\frac{\varepsilon}{2}\right) > 1 - \eta(\lambda)$ for every $j \geq j_2(\varepsilon, \lambda)$. Let $j_3(\varepsilon, \lambda) = \max\{j_1(\varepsilon, \lambda), j_2(\varepsilon, \lambda)\}$, then for every $j \geq j_3(\varepsilon, \lambda)$ we have $F_{x,b'_j(\varepsilon)} \geq T(F_{x,p_{n_j+1}}\left(\frac{\varepsilon}{2}\right), F_{p_{n_j+1},b'_j(\varepsilon)}\left(\frac{\varepsilon}{2}\right)) > 1 - \lambda$. Hence, if j > j3 (ε , λ), then we can choose $b'(\varepsilon, \lambda) = b'_j(\varepsilon) \in fx$. The proof is complete.

References

- [1] K. Menger, Statistical metric, Proc Nat Acad Sci, USA, 28 (1942), 535-7.
- [2] O. Had'zi'c and E. Pap, Fixed point theory in PM spaces, Dordrecht: Kluwer Academic Publishers, 2001.
- [3] V.M. Sehgal and A.T. Bharucha-Ried, Fixed points of contraction mapping on PMspaces, Math .Syst. Theory, 6 (1972), 97-100.
- [4] T.L. Hicks, Fixed point theory in probabilistic metric spaces, Zb.Rad. Prirod. Mat. Fak. Ser. Mat, 13 (1983), 63-72.
- [5] V. Radu, A family of deterministic metrics on Menger spaces, Sem. Teor. Prob. Apl. Univ. Timisoara, 78 (1985).
- [6] D. Mihet, A fixed point theorem in probabilistic metric spaces, The Eighth Internat. Con. on Applied Mathematics and Computer Science, Cluj-Napoca, 2002, Automat. Comput. Appl. Math.11(1) (2002), 79-81.
- [7] O. Hadzic, E. Pap, Fixed point theorem for multi-valued probabilistic -contractions, Indian J. Pure Appl. Math, 25(8) (1994), 825-835.
- [8] E. Pap, O. Hadzic and R. Mesiar, A fixed point theorem in probabilistic metric space and an application, J. Math. Anal. Appl. 202 (1996), 433-449.
- [9] O. Hadzic and E. Pap, A fixed point theorem for multivalued mapping in probabilistic Metric space and an application in fuzzy metric spaces, Fuzzy Sets Syst, 127 (2002), 333-344.

- [10] D. Mihet, Inegalitata triunghiului si puncte fixed in PM-spatii, Doctoral Thesis West of Timisora, in Engilish, (2001).
- [11] D. Mihet, On a theorem of O. Hadzic, Univ. u Novom Sadu, Zb.Rad. Prirod. Mat. Fak. Ser. Mat.
- [12] A. Beitollahi, P. Azhdari, Multi-valued (ψ , φ , ϵ , λ)-contractions in probabilistic metric space, Fixed Point Theory and Applications, 2012:10 (2012).
- [13] B. Schweizer and A. Sklar, Probabilistic metric spaces, North-Holland, Amesterdam, 1983.
- [14] B. Schweizer, A. Sklar and E. Thorp, The metrization of SM-spaces, Pacific J. Math., 10 1960, 673-675.
- [15] V. Radu, Lectures on probabilistic analysis, in: Surveys Lectures Notes and Mono-Monographs Series on Probability Statistics and Applied Mathematics, vol. 2, University of Timisoara, (1994).
- [16] D. Mihet, Multi-valued generalization of probabilistic contractions, J. Math. Appl., 304 (2005), 464-472.
- [17] A. Beitollahi, P. Azhdari, Single Valued Contraction Theorems in Probabilistic Metric Space, International Mathematical Forum, 6:9 (2011), 439-443.