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Summary 
This paper proposes a new pitch detection algorithm of speech 
signals in noisy environment. The performance of the cepstrum 
method is effected due to the formant effect and the presence of 
spurious peaks introduced in noisy condition. In our proposed 
method, we firstly employ windowless autocorrelation function 
instead of its speech signal for obtaining the cepstrum. The 
windowless autocorrelation function is a noise-reduced version 
of the speech signal where the periodicity is more apparent with 
enhanced pitch peak. Secondly the modified cepstrum method is 
applied to windowless autocorrelation function which utilizes 
clipping and band pass filtering operation on log spectrum. The 
performance of the proposed pitch detection method is compared 
in terms of gross pitch error with the other related methods. 
Experimental results on male and female voices in white and 
color noises shows the superiority of the proposed method over 
some of the related methods under low levels of signal to noise 
ratio. 
Key words: 
Pitch Detection; Cepstrum; Windowless Autocorrelation 
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1. Introduction 

The pitch detection (fundamental frequency, F0) is a 
critical problem in the acoustic characterization of speech 
signal [1]. Accurate pitch detection plays an important role 
in speech processing and has a wide spread of applications 
in speech related systems. For example, it is found in 
speech communications [2], automatic speaker recognition 
[3], analysis of speech perception [4], and in the 
assessment of speech disorders [5]. For this reason, 
recently many numerous methods to detect the pitch of 
speech signals have been proposed but accurate and 
efficient pitch detection is still a challenging task [6, 7]. 
The speech signal is not always strongly periodic and the 
presence of noise generates a degraded performance of 
pitch detection algorithms. Numerous methods have been 
proposed in the literature to address this problem. In 
general, they can be categorized into three classes: time-
domain, frequency-domain, and time-frequency domain 
algorithms. Due to the extreme importance of the problem, 
the strength of different methods has been explored [8]. 

A large number of pitch detection algorithms perform 
satisfactorily with clean speech. Among the reported 
methods, the autocorrelation based approaches are very 
popular for their simplicity, low computational complexity 
and better performance in noise. The autocorrelation 
function (ACF) is, however, the inverse Fourier transform 
of the power spectrum of the signal. Thus if there is a 
distinct formant structure in the signal, it is maintained in 
the ACF. Spurious peaks are also sometimes introduced in 
the spectrum in noisy or even in noiseless conditions. This 
sometimes makes true peak selection a difficult task. This 
motivates the researchers to propose numerous 
modifications on the ACF method. Some significant 
improvements are proposed in [9-13]. Takagi et al. [9] 
used ACFs from multiple windows, Shimamura et al. [10] 
weighted ACF by average magnitude difference function, 
YIN [11] used a difference function, Talkin [12] used a 
normalized cross correlation based method and Hasan et al. 
[13] reshaped the signal to emphasize the true pitch peak. 
The methods are successful in white Gaussian noise, but 
robustness against formant structure is still not achieved. 
Markel [14] and Itakura et al. [15] utilized auto-regressive 
(AR) inverse filtering to flatten the signal spectrum. This 
AR preprocessing step has effects on emphasizing the true 
period peaks in ACF. However, for high-pitched speech or 
in white Gaussian noise, the process of AR estimation is 
itself erroneous [16]. Further, though color noise are also 
encountered in practice, performance improvement of the 
above ACF based methods in color noise is not 
satisfactory. 
The cepstrum (CEP) method is one of the traditional 
methods to detect the pitch, which makes use of spectral 
characteristics of speech signals. The CEP method is able 
to accurately detect the pitch with little affections of vocal 
tract [17]. It can detect an accurate pitch of clean speech 
signal, but is not effective in noisy environments. Though 
the CEP method is sensitive to additive noise, empirically 
it is seen that the CEP method performs relatively better in 
color noise than other classical methods do. It is therefore 
expected that if the robustness of the CEP method against 
additive noise can be improved, it can be very useful in 
pitch determination. Toward this end, Andrews et al. 
proposed a subspace based method to reduce noise effects 
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[18], and Kobayashi et al. discussed a modified cepstrum 
(MCEP) method for pitch extraction [19]. Ahmadi et al. 
derived a statistical approach to improve the performance 
of the CEP method [20]. 
In this paper we propose a pitch detection method that 
utilizes the windowless ACF of the signal instead of the 
signal itself [21] and modified cepstrum method [19]. The 
windowless ACF of the signal is a noise compensated 
equivalent of the signal in terms of periodicity which 
improves signal to noise ratio (SNR) greater than 10 dB 
[22]. The modified cepstrum method utilizes the clipping 
and band pass filtering operation on log spectrum. Then, 
application of the MCEP method on the SNR improved 
signal removes the effect of predominant formant structure 
and also removes unnecessary frequency component in the 
frequency domain and provides better pitch determination. 
The proposed method thus combines the advantage of both 
the ACF and CEP methods. In our proposed method, pitch 
detection is robust in white and color noise cases. 
The rest of this paper is organized as follows. Section 2 
describes the background information of ACF and CEP 
methods. Section 3 introduces the proposed pitch detection 
algorithm which utilizes windowless autocorrelation 
function and MCEP method. Section 4 compares the 
performance of the proposed method with existing 
methods in terms of gross pitch error. Finally Section 5, 
we conclude the paper. 

2. Background Information 

The voiced speech can be expressed as a periodic signal 
s(n) as follows: 
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where f0 = 1/T0 is the fundamental frequency and T0 is the 
pitch period. The ACF is a popular measure for pitch 
period that can be expressed as 
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for s(n), n = 0, 1, 2,..., N-1. By using (1), (2) can be 
expressed for a very long data segment approximately as  
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The Rss(τ) exhibits local maxima at nT0  and provides 
pitch period candidates (Fig.1(b)). The main advantage of 
this method is its noise immunity. However, effect of 
formant structure can result in the loss of a clear peak in 
Rss(τ) at the true pitch period. The performance of the 
conventional ACF method is significantly degraded at low 
SNR (Fig.2(b)). Methods have been proposed to improve 

the pitch period detection by emphasizing the true peak in 
ACF [9-14]. 
 
Cepstrum of s(n) can be obtained as 
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where S(k) is the Discrete Fourier Transform (DFT) of s(n) 
with M frequency points. The amplitude of S(k), |S(k)|, in 
(4) can be expressed as 
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where the harmonic amplitude An =Nan/2 (N is assumed to 
be the input speech signal length), L is the number of 
harmonics and δ is the Kronecker delta function. |S(k)| has 
maxima at integer multiples of f0/Fs. Thus C(n) tends to 
have local maxima at nT0 (n=1, 2, 3, ...), which provides 
detect of pitch period as shown in Fig.1(c). The advantage 
of CEP method is that the logarithm operation compresses 
the spectral diversity of |S(k)| which leads to more distinct 
periodic peaks and results in robustness against 
predominant formant structure of |S(k)|. However, when 
the speech is affected by noise, the nonlinear log operation 
introduces speech correlated noise products which change 
the algebraic structure assumed in the cepstrum processing. 
This can be shown in  
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Fig 1.  ACF and CEP: (a) Clean speech signal, (b) ACF of 
clean speech signal in (a), (c) CEP of clean speech signal 
in (a). 
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where V(k) corresponds to the DFT of additive noise. 
According to (6), addition of log|V(k)| can destroy the 
periodicity of  log|S(k)| at low SNRs. The cepstrum 
obtained from the speech signal used in Fig.1(a) after 
corrupting with white noise at 0 dB SNR, is shown in 
Fig.2, where it fails to detect the true peak. The error in 
Fig.2(c) comes from the log operation which is used to 
deconvolve the multiplicative process of the vocal tract 
and excitation. The nonlinear log operation introduces 
speech correlated noise products which change the 
algebraic structure assumed in the cepstrum processing.  

3. Proposed Method 

        According to ACF in (3), clearly the periodicity of 
s(n) and that of  Rss(τ) are similar. When s(n) is corrupted 
by additive noise v(n), the noisy signal is given by 
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When v(n) is white Gaussian uncorrelated with s(n), (3) 
can be written as 
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Fig 2.  ACF and CEP in noise: (a) Noisy speech signal at 0 
dB SNR, (b) ACF of noisy speech signal in (a), (c) CEP of 
noisy speech signal in (a). 
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where 2

vδ  is the noise variance. According to (8), only the 
first lag is affected by the noise presence. In this paper, we 
aim to utilize Rxx(τ) as the input signal with modification 
for pitch determination. The modification is performed 
because Rxx(τ) is computed using a finite length of speech 
segment. Rxx(τ) can be enhanced in terms of periodicity by 
defining it in a windowless condition as exploited in [22], 
where the signal outside the window is not considered as 
zero. Thus the number of additions in the averaging 
process is always common. This results in almost similar 
amplitude correlation peaks even as the lag number 
increases. The windowless ACF can be defined for the 
noisy signal x(n) as  
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for x(n), n = 0, 1, 2, . . . , 2N-1. In this case, an N length 
sequence of Rxw(τ), τ = 0, 1, 2, . . . , N-1 is obtained and all 
of them are utilized (in (10)) instead of an N length signal 
of x(n), n = 0, 1, 2, . . . , N-1 as used in (4). For the ACF in 
(2), when (n+τ)>N, s(n+τ) becomes zero. However, in (9), 
x(n+τ) is not zero outside N. This modification makes 
Rxw(τ) more stronger in periodicity with emphasized peaks 
as shown in Fig 3.  
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Fig 3. ACF and windowless ACF: (a) Noisy speech signal 
at 0 dB SNR, (b) ACF of the first half of the signal in 
(a)(which is the same as Fig. 2(a)), (c) Windowless ACF 
of signal in (a). 
 
The sequence Rxw(τ) is then used for further processing 
instead of the signal itself. After that we apply clipping 
and band limitation on log spectrum of the sequence Rxw(τ) 
[19]. Lifter is carried out to remove the characteristics of 
vocal tract on spectrum because this is effective to perform 
the following clipping operation. The clipping is carried 
out to mostly remove unnecessary peaks which are noisy 
affection on spectral valleys. After the clipping and band 
limitation operation on log spectrum, the operation to 
remove high frequency components corrupted by noise is 
carried out. A spectral flattening logarithm operation is 
applied on the DFT of Rxw(τ), inverse DFT of which 
results in a time-domain sequence, Cw(n), as 
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where Pxw(k) is the DFT of Rxw(τ).  
 
In the windowless condition, Rxw(τ) and Rss(τ) are similar 
except at τ=0, thus the DFT of Rxw(τ) and that of Rss(τ) 
differ only in the DC value. Therefore |Pxw(k)| can be 
written as  
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Where Bn is the harmonic amplitude. For  n = 0, 
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amplitude (i.e., 
4
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compresses the diversity of |Pxw(k)| and the resulted 
sequence Cw (n) is quite similar as that in clean speech 
case of (4). To summarize, this modification makes (10) a 
cepstral-like method but with added robustness against 
additive noise. Thus, (10) combines the advantage of both 
the ACF and MCEP methods. When our method detects 
the pitch, an interpolation is used. Specially, the 
interpolation is carried out by using the Lagrange method 
based on three points around the peak. The proposed 
cepstrum derived from the windowless ACF of the noisy 
speech in Fig.2(a)is shown in Fig.4. This time the obtained 
cepstrum is very similar with that in Fig.1(c) (clean speech 
case) and the pitch peak is accurately determined. Fig.5 
represents a block diagram of the proposed pitch detection 
method. 
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Fig 4. Proposed cepstrum of noisy speech. 

4. Experimental Results and Performance 

        To assess the proposed method, natural speech 
signals spoken by three Japanese male and three female 
speakers are examined. Speech materials are 11 sec-long 
sentences spoken by every speaker sampled at 10 kHz rate 
with a band limitation of 3.4 kHz, which are taken from 
NTT database [23]. The reference file of the fundamental 
frequency of speech is constructed by computing the 
fundamental frequency every 10 ms using a semi-
automatic technique based on visual inspection.  
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Fig 5.  Block diagram of the proposed method. 

 
The simulations were performed after adding additive 
noise to these speech signals. The evaluation of accuracy 
of the extracted fundamental frequency is carried out by 
using 

)()()( leFltFle −=                                                        (12) 
where Ft(l) is the true fundamental frequency, Fe(l) is the 
extracted fundamental frequency by each method, and e(l) 
is the extraction error for the l-th frame. If |e(l)|> 20%, we 
recognized the error as a gross pitch error (GPE) [11, 13]. 
Otherwise we recognize the error as a fine pitch error 
(FPE). The possible sources of the GPE are pitch doubling, 
halving and inadequate suppression of formants to affect 
the estimation. The percentage of GPE, which is computed 
from the ratio of the number of frames (FGPE) yielding 
GPE to the total number of voiced frames (Fv), namely,  

100(%) ×=
vF

GPEF
GPE                                              (13) 

As metrics, the GPE(%) provide a good description of the 
performance of a fundamental frequency estimation 
method. The experimental conditions are tabulated in 
Table 1. We attempt to extract the pitch information of 
clean and noisy speech. Additive white Gaussian noise, 
exhibition noise and train noise are used, which are taken 
from the Japanese Electronic Industry Development 
Association (JEIDA) Japanese Common Speech 
Corporation. 

Table 1. Condition of Experiments 

Sampling frequency 10 kHz 
Window function Rectangular 
Frame size 51.2 ms  
Frame shift 10 ms 
Number of FFT points 2048 
SNRs (dB) ∞, 20, 15, 10, 5, 0, -5 

The performance of the proposed method (PRO) is 
compared with a well-known autocorrelation based 
method, YIN [11], and cepstrum based methods, MCEP 
[19] and CEP [17]. The Matsig (a Mathlab library for 
signal processing) implementation of YIN algorithm is 
used here [24] without any changes. The threshold value 
0.1 of YIN algorithm is assumed with respect to the global 
minimum instead of zero. Pitch is determined from every 
51.2 ms frame at 10 ms interval. The pitch range is set to 
50 to 400 Hz. The number of FFT point is 2048 and the 
SNR varies from a high value of ∞ dB to a very low value 
of -5 dB. In order to evaluate the fundamental frequency 
estimation performance of the proposed method, we plot a 
reference fundamental frequency contour for noisy speech 
in white noise speech of a male speaker from the reference 
database and also the fundamental frequency contours 
obtained from the other fundamental frequency estimation 
method in Fig 6. This figure shows that in contrast to the 
other method, the proposed method yields a relatively 
smoother fundamental frequency contour even at an SNR 
of 0 dB. Figure 7 shows a comparison of the fundamental 
frequency contour resulting from the two methods for the 
female speech corrupted by the white noise at an SNR of 0 
dB. In Fig 7 it is clear that the proposed method is able to 
give a smoother contour. The fundamental frequency 
contours in Fig 6 and 7 obtained from the two methods 
have convincingly demonstrated that the proposed method 
is capable of reducing the double and half fundamental 
frequency errors thus yielding a smooth fundamental 
frequency track. 
Pitch estimation error in percentage, which is the average 
of GPEs for male and female speakers, are shown in Figs 8 
and 9, respectively. The experimental results show that the 
CEP method provide less accurate result at all SNRs and 
all noise cases. The YIN method provide relatively 
accurate result than CEP method except low value of 
SNRs in exhibition noise case. The MCEP method provide 
better result than the CEP and the YIN methods in color 
noise cases and the MCEP method is competitive with the 
YIN method in white noise case. On the contrary, the 
proposed method gives far better results for both white and 
color noises in different types of SNR conditions. In 
particular, it is evident from Figs 8 and 9 that, for the level 
of SNR from 10 dB to -5 dB, the percentage GPE values 
resulting from the proposed method are very small but the 
YIN, CEP and MCEP methods give relatively higher 
values of percentage GPE in this range. 
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Fig 6. (a) Noisy speech signal for male speaker in white noise at an SNR 
0dB, (b) True fundamental frequency of signal (a), Fundamental 

frequency contours extracted by (c) YIN, (d) CEP, (e) MCEP, and (f) 
PRO. 

 

 
Fig 7. (a) Noisy speech signal for female speaker in white noise at an 
SNR 0dB, (b) True fundamental frequency of signal (a), Fundamental 
frequency contours extracted by (c) YIN, (d) CEP, (e) MCEP, and (f) 
PRO.  

 

Fig 8. Comparison of percentage of average gross pitch error (GPE) for 
three male speakers in different noises.   (a) white noise, (b) exhibition 

noise, and (c) train noise at various SNR conditions. 

 

Fig 9. Comparison of percentage of average gross pitch error (GPE) for 
three female speakers in different noises. (a) white noise, (b) exhibition 

noise, and (c) train noise at various SNR conditions.  
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5. Conclusion 

In this paper, an efficient pitch detection algorithm using 
windowless autocorrelation function and modified 
cepstrum method was introduced which leads to 
robustness against additive noise as well as effect of 
formant structure. Experimental results indicate that the 
proposed method outperforms existing methods such as 
YIN, CEP, and MCEP in terms of GPE (in percentage) for 
a wide range of SNR varying from ∞ dB to -5 dB. 
Especially the performance of the proposed method in low 
SNR cases is noticeable higher both in white and color 
noise cases than that of the other three methods. This is 
because windowless autocorrelation function is a noise 
reduced version of speech signal and application of MCEP 
improves the pitch detecting by utilizing the clipping and 
band pass filtering on log spectrum. These results suggest 
that the proposed method can be a suitable candidate for 
detecting pitch information both in white and color noise 
conditions with very low levels of SNR as compared with 
other related methods.  
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