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Summary 
Cloud computing has led to a lot of improvements in the way we 
manage our IT infrastructure, but this convenience has led to new 
security challenges. In this paper, we recreate a cross Virtual 
Machine Flush+Reload cache timing attack and document our 
attack methodology in depth. Cache timing attacks are highly 
technical, and executing them in a virtualized environment makes 
them more complex. We have not come across any literature that 
documents these attacks adequately, and so this paper aims to 
deliver detailed insight into the entire lifecycle of these types of 
attacks. Our attack methodology dissects the life cycle of a side 
channel attack in a virtualized environment from beginning to 
end. We present an in-depth analysis of the environment, the 
attack setup, the attack execution, and how these attacks can be 
used to gather and analyse results. This research will shed some 
valuable insight into what is a very technical and complex topic. 
By documenting our attack environment and methodology we 
hope to help new researchers in this field gain a foothold in a 
research topic that has recently gained popularity and may be 
difficult to enter. Finally, we examine how meaningful results are 
collected and analysed by the attacker. We believe this insight 
will also be valuable for cloud administrators and developers, 
and that they may use their understanding of the attack lifecycle 
and result analysis tools to mitigate and disrupt attack attempts. 
Key words: 
Hypervisor, Virtualization, Isolation, Flush+Reload, Cache 
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1. Introduction 

Cloud computing has quickly become a massive part of the 
infrastructure of the internet and of corporate systems. 
With the rise in popularity of private and public clouds 
security researchers have recently defined a new field of 
research, cloud security. Cloud security covers any 
security topic relevant to virtualization technologies and 
their applications. We have chosen to focus our research in 
this field on the topic of side channel attacks within 
virtualized environments. This paper presents the 
methodology used to execute a cache timing attack in a 
virtualized environment, as well as an in-depth analysis 
and recreation of a cross Virtual Machine Flush+Reload 
cache timing attack. 

Our goals in this paper are; to document how we set up our 
virtualization lab, produce a step by step guide on how we 
were able to recreate the attack, and to discuss how the 

results of attacks like these can be collected and analysed. 
To this end, we have developed our attack methodology in 
depth which discusses each phase of the attack, from 
setting up the environment and coding the attack to 
collecting and analysing the results. This information can 
be used as an introduction into the field, helping new 
researchers establish a virtualization lab and the essential 
software and code required to execute these attacks. This 
paper also offers insight into the life cycle of these highly 
technical attacks, which will allow security experts and 
cloud administrators to better understand and defend 
against them. There are two main chapters in this paper; 
Attack Methodology, and Result Analysis. 

Our attack methodology explains step by step the details of 
the lifecycle of a cross Virtual Machine Flush+Reload 
attack. This includes the specifics of our attack 
environment, the hardware, the operating systems, the 
software, the attack code, and the attack execution. We 
document the details of each of these topics, as well as the 
theory behind the attack and the specifics of the assembly 
code that allow the execution of this attack. To deploy our 
attack, we aimed to create a virtualization environment 
that was typical of private and public clouds. To do this we 
implement industry standard software for our operating 
systems and hypervisor. Our environment was limited by 
low funds, so we were unable to run our experiments on a 
wide range of hardware. We were, however, able to utilize 
open source software to set up our operating systems and 
software environment. We achieved this with the use of 
Linux based operating systems that have built in 
virtualization technology, which has become one of the 
standard virtualization vendors in the cloud industry. 

In chapter 3 we discuss in detail how attackers collect 
results from these attacks and how these results can be 
analysed and interpreted by the attacker. To collect 
accurate results there are a few specific pieces of 
information that the attacker must acquire about the 
system which we cover in the chapter. There are also 
several factors that may contribute to noise within the 
result data which are also briefly discussed. Once the 
results are collected they must be analysed in order to 
extract useful information. We identify two methods used 
for analysing this data; Result Set Analysis, and Real-time 
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Monitoring. We discuss both methods and their uses 
before ending the paper with a conclusion. 

This paper contains 4 chapters; chapter 1 is the 
introduction, chapter 2 is our attack methodology, chapter 
3 is our results and analysis discussion, and chapter 4 
concludes the paper. The introduction introduced our 
research goals, the scope of our research, and limitations. 
Our attack methodology outlines the attack environment as 
well as the entire life cycle of the recreation attack, 
discussing in detail the attack conditions and each step of 
the cross VM Flush+Reload cache timing attack. Chapter 
3 discusses the specifics of gathering and analysing results 
from cache timing attacks. Finally, chapter 4 wraps up 
with a conclusion and a brief discussion of our intended 
future research. 

2. Attack Methodology 

2.1 Theoretical Basis  

The attack that we have chosen to replicate targets 
information leakage in the Last Level Cache (LLC or 
Level 3 Cache) on Intel CPUs and relies on a few features 
that are commonly enabled in clouds. We are able to 
leverage these conditions to execute a high-resolution 
cache timing attack and monitor code running on third 
party VMs. Research has shown that these attacks are able 
to even break encryption algorithms [3,38]. The specific 
attack that we will be replicating is a cross VM 
Flush+Reload attack that is able to identify if a specific 
Operating System (OS) or program is running on a co-
located target VM. This section consists of 3 subsections 
that will explain the theory behind the attack. These 
sections are; Attack Anatomy, CPU Architecture, and 
Shared Memory. 

2.1.1 Attack Anatomy 

A Flush+Reload attack is a type of Micro Architectural 
attack. These attacks target weaknesses in the architecture 
of low level computer components such as CPU, RAM, 
Data Storage devices, etc. The Flush+Reload attack is a 
cache timing attack that monitors the difference in the 
access time of a targeted address in memory. We can use 
the information we gain to determine if and when these 
addresses are accessed by another process. This can lead to 
further insights into the state of a targeted system. The 
Flush+Reload attack has 3 distinct phases; the Setup phase, 
the Attack phase, and the Analysis Phase.  

During the setup phase the attacker will create the attack 
environment and configure the attack software. In a live 
attack this will require the attacker to achieve co-location 
with the victim VM, test background noise of the side 

channel, and gather information on the expected access 
times for both Main Memory (MM) and the LLC. For our 
attack recreation, we deployed our own hypervisor with 
our own controlled VMs, ensuring co-location and making 
background noise negligible. We cover exactly how we set 
up the attack environment in section 2.2.1 and we will 
discuss how we gather information about access times in 
section 2.2.3. 

The Attack phase is where the attack is deployed, the 
target is monitored, and data is gathered for the Analysis 
phase. The Flush+Reload attack has 3 steps; Flush, Wait, 
and Reload. In the flush step the cache is flushed of the 
targeted address’, ensuring that the next time it is accessed 
it will need to be loaded from MM. After this, the attack 
program will wait for a small amount of time so that the 
victim has an opportunity to access the address. Finally, 
the address is reloaded and the access time is recorded. If 
the target had accessed the address within the wait time, 
then the load time we record will be approximately equal 
to the LLC access time. If the target did not access the 
address then we expect to see a longer access time, one 
approximate to the MM access time. These attack times 
can either be interpreted immediately, compared to a 
threshold to trigger some event, or they can be recorded 
for later analysis. 

During the Analysis phase the recorded access times are 
analysed and interpreted. The way this data is interpreted 
depends a lot on the behaviour that is being monitored. 
Some attacks rely on statistical analysis [32,33,38,39] 
while others can represent the data visually and be 
interpreted by an expert to gather the desired information 
[36]. The data gathering process is not perfect and some 
error correction calculations may be needed in order to 
complete the attack. Yarom et al and other researchers 
have been able to show how cache timing attacks can be 
used to break encryption. They note that even if the data 
recovered is incomplete what is recovered can be used to 
drastically reduce the number of guesses needed to crack 
the encryption [36,38,39]. 

There are cases where the results we gather from an attack 
session can contain errors, and depending on the context of 
the attack these errors may be recoverable. If the attack 
targets an encryption algorithm there may be ways to 
retrieve the lost bits of the secret key [36,38,39]. However, 
if the attack aims to log key presses or other user input 
there is no way to retrieve the lost data [32,40,41]. There 
are three main cases that lead to errors in results; The 
targeted address is loaded into cache by a third-party 
process, the target address is flushed from LLC before we 
can probe it, or our attack process is suspended causing us 
to be inactive for some time. The first case may occur if 
the targeted code is a specifically popular one and multiple 
tenants are competing for it, such as network drivers. The 
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second case can occur when there are periods of high 
traffic in the cache and the target address is evicted to 
make room for a running process’s data. The third case can 
also occur when there are high levels of traffic in the cache. 
If our process has lower priority than other processes 
running in the stack, then it may be suspended temporarily 
to allow these other processes access to the CPU. This can 
also occur if our VM has over used its allotted CPU 
resources and other VMs have higher priority for that 
resource, in this case our entire VM may be suspended. In 
both cases, we should be able to detect this loss of time by 
recording a very high delay between two attacks, but we 
will not be able to directly recover the missing data. 

2.1.2 CPU Architecture 

Intel CPUs have two features that enable the Flush+Reload 
attack; An inclusive cache, and the ‘rdtsc’ instruction. An 
inclusive cache is not necessary for all cache timing 
attacks, but it does enable the majority of these attacks. It 
allows a program to flush data from the entire cache, 
including all the L1 and L2 caches within the CPU. This 
lets attackers circumvent isolation and interact with 
process or VMs via a shared memory address. The ‘rdtsc’ 
instruction is a high resolution timing instruction that 
allows programs to count the amount of cycles it takes to 
execute a set of instructions. This functionality is 
necessary for programs that require fine grained 
synchronization for tasks such as human input processing, 
audio processing, or video processing. However, it also 
allows malicious users to execute high resolution side 
channel attacks. These two CPU features leave systems 
vulnerable to most cache timing attacks and are the focus 
of a lot of cache timing attack research 
[32,33,35,36,37,38,39,40,41,42].  

Each core in a CPU has its own L1 and L2 cache that only 
it has access too. Additionally, each thread running on a 
system will be assigned to a single core. Unless hyper-
threading is enabled, each thread will run exclusively on a 
core and must be put into suspension if another thread is 
scheduled to run. Hyper-threading has some known 
security issues so has become best practice for it to be 
disabled [29]. This means that on most systems for most 
process to have access to another process’s L1 and L2 
cache they both must be assigned to the same core and one 
must be suspended immediately before resuming the other. 
For any useful information to survive this procedure, the 
swap time and the OS thread management code must be 
kept to a minimum or else useful data may be evicted. The 
attacker also has no control over the scheduling of these 
swaps, making it difficult to ensure that any data observed 
after a swap was from a specific process. This makes 
cache timing attacks in the L1 and L2 cache virtually 
impossible. 

In contrast, every core in a CPU has access to the LLC 
which allows an attacker to flush any shared data from this 
region. In an exclusive cache, flushing data from the LLC 
will not evict it from the L1 and L2 cache. If the shared 
data is still loaded in L1 or L2 cache, a target process may 
continue to use it without an attacker being able to monitor 
this behaviour. An inclusive cache ensures that the LLC 
holds a superset of all memory found in the higher levels 
of cache. This means that when data is evicted from the 
LLC, the L1 and L2 caches are checked for the same data 
and if it is found it will be evicted. These caches allow 
malicious processes to evict a shared memory address 
from the LLC, letting them monitor when these addresses 
are accessed by other processors and enabling cache 
timing attacks. Modern Intel processors utilize an inclusive 
cache, and it is these processors that the Flush+Reload 
attack targets primarily [36]. Fig 3 shows an illustration of 
the Ivy Bridge cache architecture which is an example of 
an inclusive Intel cache architecture. 

 

Fig. 3 Cache architecture, isolation and access times 

The rdtsc instruction is a timing function that returns the 
number of clock cycles that have passed since the 
processor has been reset. As illustrated in Fig 4, an 
attacker will invoke this instruction before and after 
loading a targeted memory address and calculate the 
difference. This becomes a record of the time it took to 
access the memory address. The resolution of these 
recorded times allows an attacker to differentiate between 
data accessed from L1 cache, the LLC, or MM. If the 
target address is found to be loaded into cache, then an 
attacker can assume the data is in use by the target. If the 
loading time is close to the typical MM access time, then 
that target is idle and not in use. One record alone will 
hold very little information about a target system’s state, 
but by monitoring important targets over a period of time 
the result sets gathered can yield very valuable information 
about a target. Exactly how these result sets are recorded 
and interpreted will be covered in chapter 3. 
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Fig. 4 x86 code used in the cache timing attack 

2.1.3 Shared Memory 

Programmers share and reuse code constantly. Code reuse 
saves time and reduces programming errors as rewriting 
functions can be time consuming and may lead to human 
error. This has led to OS features that help facilitate the 
reuse of code such as Dynamic Link Libraries. Loading a 
separate copy of a shared library into memory every time a 
program is executed is inefficient, so to reduce the amount 
of redundant memory OSs allow processes to share 
executable code. This is achieved through the distinction 
of memory as either ‘Read Only’ or ‘Write’.  When a 
process loads data into MM it can either be loaded as 
“Read Only” or “Write”. Whenever executable code is 
loaded into MM it must be loaded as “Read Only”, this is 
to help mitigate runtime errors and security vulnerabilities 
in code. Whenever a process tries to run a piece of code 
that is not “Read Only” an error is thrown and the process 
is usually terminated. When a process attempts to load 
“Read Only” memory into MM, the OS will first check to 
see if an identical copy of it already exists. If it does, the 
process is given a pointer to the existing copy of the data 
instead of creating a separate instance. This is what allows 
processes to share code or run multiple instances of the 
same program with a reduced memory footprint. An 
attacker running on the same OS as its target can exploit 
this weakness and obtain a pointer to the target’s code by 
attempting to load a copy of its code into MM as ‘Read 
Only’. From there they can launch a cache timing attack 
on the code and monitor the target’s state. 

 

Fig. 5 A Hypervisor consolidating 3 duplicate pages into one 

This is enough to launch the attack within a non-
virtualized environment, but our attack will take place 
between two VMs. To overcome the hypervisors memory 
isolation in our recreation attack we take advantage of 
page-deduplication. Memory isolation is enforced in 
hypervisors by segregating the regions of memory that 
each VM has access too. Each system call that a VM 
makes must first pass through the hypervisors kernel. Here, 
the hypervisor can control and monitor which regions of 
memory each VM has access to. This prevents VMs from 
accessing a memory region that does not belong to it, 
making our attack near impossible. However, most 
hypervisors also have a feature called page-deduplication 
which works similarly to the “Read Only” deduplication 
described above. A kernel module will periodically scan 
running VMs for identical pages of memory. When one is 
found one of the copies will be unallocated and reclaimed 
by the hypervisor. The kernel will then point both VMs to 
the one remaining copy in MM. Fig 5 illustrated this page 
deduplication mechanism. This feature can save large 
amounts of memory when multiple similar VMs are 
running. Unfortunately, this features also gives attackers a 
shared memory address which can lead to isolation 
breaches and vulnerabilities such as side channel attacks. 
The security vulnerabilities associated with page-
deduplication are known to the cloud security community 
who encourage disabling this feature [34]. However, this 
feature is still enabled by default on QEMU which is the 
hypervisor that we have chosen to launch our attack on. It 
is best practice to disable this feature on a cloud to help 
mitigate attacks such as those discussed here, but cloud 
system admins may either be unaware or undaunted by 
these attacks. 
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2.2 Conceptual Basis 

2.2.1 Attack Environment 

We set up our attack on a Linux based hypervisor with two 
Linux based VMs, one attacker and one victim. There are 
no Linux specific requirements for this attack, it is just the 
easiest environment to set up due to its simplicity, its 
accessibility, and its built-in virtualization features. The 
KVM Kernel module has been included in the Linux 
mainline since 2.6.20 making virtualization easily 
implementable and widespread. The KSM Kernel module 
has been included in the Linux mainline since 2.6.32 and 
is enabled by default on KVM hypervisors. This 
environment can be set up on a wide range of hardware 
quickly and for free and so it has become common in 
private and public clouds. Our hypervisor was initialized 
with default settings making it a typical cloud environment 
that may be run by a security naïve systems administrator.  

For our hypervisor OS, we chose to run Ubuntu LTS 
v16.04.1, currently the most up-to-date Linux distro 
released, with full updates. We also ran QEMU-KVM 
v2.6.2, which is currently the most up-to-date version of 
this hypervisor. Both the OS and the hypervisor software 
were configured with default settings and no additional 
security software was installed. This demonstrates that the 
current software versions are vulnerable to the 
Flush+Reload attack we have implemented and that if a 
cloud environment is set up incorrectly and without the 
proper expertise it may leave users vulnerable to data theft 
and further security vulnerabilities. The KSM kernel 
module was active on this hypervisor by default which, as 
we covered in section 2.1.3, helps facilitate a 
Flush+Reload attack. By default, KSM is active on 
QEMU-KVM which allows the hypervisor to save RAM 
and deploy additional VMs where it otherwise would not 
have the necessary RAM. Without page deduplication 
active, it would be very difficult for an attacker to find a 
shared physical address between two VMs to exploit, but 
as RAM is the scarcest resource in the cloud utilizing page 
deduplication technologies is highly incentivized. 

Our attacker VM and our victim VM were also both set up 
with Ubuntu LTS v16.04.1 with full updates. Again, this is 
because it is the simplest environment to set up and it 
demonstrates that current software with default settings is 
vulnerable to the Flush+Reload attack. The only additional 
software installed on these systems was the programs and 
tools necessary to carry out the attack. For our victim VM, 
we installed and ran our ‘Hello’ program which we 
describe in section 2.2.2. This program does not assist the 
attacker in any way, it simply helps us illustrate the attack 
methodology and the execution of the attack. The attacker 
VM was set up with the attack program, some analysis 
tools, and a copy of the ‘Hello’ program. A copy of the 

targeted program is necessary for the attack as the attack 
program needs to load an exact copy of it into MM in 
order to generate the shared memory pointer. The analysis 
tools helped set up the attack and analyses the results we 
collected while the attack program itself launched the 
attack and collected the results. In section 2.2.3 we discuss 
our attack program in depth and in chapter 3 we discuss 
the results our attack generated and how they can be 
analysed. 

2.2.2 Finding Target Addresses 

Cache timing attacks target specific addresses within a 
program, and these addresses correspond to lines of code 
that are of interest. It is important to pick the addresses we 
monitor with care as factors such as proximity and 
temporal locality of code may affect our results. For 
example, if the victim program runs a function with a loop 
in it and the attacker targets an address within or close to 
the loop they will receive constant feedback from the 
timing attack for the entire duration of that loop. This can 
be useful it the attacker wants to monitor the duration of 
the loop, but if instead they only want feedback once each 
time the function is run they would need to target an 
address towards the beginning or end of the function that 
is only executed once each time the function is run. It is 
also important to pick an address then isn’t too close to a 
piece of code in another unrelated function. This may lead 
to a false positive result if the other function is called 
instead of the monitored function. This is due to the way 
the cache loads memory from MM. Instead of loading the 
specific bytes needed, CPU architecture takes advantage of 
proximity and temporal locality of code and loads entire 
pages into the LLC at a time. From there more specific 
lines of those pages may be loaded into L1 and L2 cache. 

There are many ways an attacker could reverse engineer 
target programs and find the address corresponding to the 
specific line in the code that they wish to monitor. Some 
examples include attaching a debugger to the targeted 
program while it is running and following its execution 
path, opening the binary of the executable in a 
disassembler and searching for the functionality, or 
creating a large list of random addresses throughout the 
program to watch and monitoring them during runtime. 
Each method requires a set of skills and experience with 
specific tools as well as an insight into how the targeted 
code will behave during runtime. Gruss et al [41] were 
able to develop a method of automatically locating 
interesting addresses through a series of refined guesses. 
Their method started with a set of addresses located 
throughout the entire targeted program. They then watched 
each of these addresses while they triggered the 
functionality they wished to monitor. Any addresses that 
were not triggered were removed from the test set and 
their method would continue until their set contained a list 
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of addresses that were indicative of the functionality they 
wished to monitor. To find our target addresses we used a 
more traditional method of running our target program 
within a debugger. The rest of this section will document 
the method we used to find our target addresses.  

Our first attack was launched on a very simple command 
line program that we wrote. Our program was called 
‘Hello’ and was comprised of four functions and a main 
loop. The main loop of ‘Hello’ will wait for the user to 
input a character and will test whether that character is 
either ‘H’, ‘E’, ‘L’, or ‘O’. If it is one of these characters, 
the program will run one of the 4 separate functions that 
simply output the same character that the user input. By 
monitoring each of these functions with our attack code we 
will be able to tell when our victim enters one of these 
characters and what character they have entered. This is a 
simple proof of concept attack that allows us to test that 
our environment is correctly configured for the attack as 
well as illustrate our attack in a way that is simple to 
extrapolate to a more useful, every day example. It is easy 
to see how this method could be applied to any command 
line interface that branches off to multiple functions based 
on specific user input. 

We wrote and attacked our own code to help illustrate our 
method. We compiled our code using the GNU Compiler 
Collection (GCC) and including the ‘-g’ tag. This 
preserves the debugging information that helped us find 
the target addresses. Typically, this debugging information 
is stripped from the binary when a program is constructed 
or when a program is run as it only assists humans during 
debugging. Its presence does not change the program 
binary so any addresses we find with a debugger that we 
are interested in monitoring will correspond directly to the 
program running in a live environment. This information is 
not necessary for finding target addresses but it does make 
the process easier. It is possible to debug programs without 
their debug information and find target addresses but it is a 
lot more difficult and requires a higher level of expertise. 
It is very easy for an attacker to obtain this information for 
any open source program, all they need to do is download 
the source code and compile it locally with debugging 
information included. Therefore, this method does not 
impact the efficacy of this attack in a real scenario. 

We use this debug information in conjunction with the 
GNU Project Debugger (GDB). GDB is a debugging tool 
that allows us to run our program in a sandbox and 
monitor its execution. We can follow its execution path, 
watch variables, set breakpoints, and more. These tools 
help programmers debug their programs so they can fix 
problems in their code more efficiently. We are using 
GDB simply to find where the lines of code we are 
interested in monitoring will load into memory at runtime. 
The first step is to find the lines in code that we want to 

monitor with our cache timing attack. In our code, we find 
the beginning of our four print functions at lines 4, 123, 
235, and 369. The reason these lines are so far apart is 
because our functions are filled with dummy code to avoid 
false positives created when the cache loads pages of our 
program into memory. We now load our ‘Hello’ program 
in GDB and look up those code lines. This gives us the 
information we need for our attack; an example of the 
information we are looking for can be found in Fig 6. The 
addresses corresponding to our functions are 0x4006AE, 
0x400A9C, 0x400E48, and 0x4012B4 respectively.  

 

Fig. 6 GDB output showing the addresses of the lines we are targeting 
with our attack. 

OSs require metadata to be stored on every running 
process in order to ensure the stability of the system and to 
properly allocate resources. In a Linux OS the first 
0x400000 of every process holds this data and the base 
address of the program data stars at this address, meaning 
from 0x400000 onwards the binary is loaded into memory. 
This means that when we retrieve our addresses for the 
target lines of code they will always be above this 
0x400000 region of memory. To find the relative address 
that we should use in our attack we simply subtract this 
base value to find the relative address. This makes our new 
target addresses 0x6AE, 0xA9C, 0xE48, and 0x12B4 
respectively. 

2.2.3 Mastik Framework 

Our attack code is based on the Mastik (Micro-
Architectural Side-Channel Toolkit) framework which is 
currently being developed by Yuval Yarom et al of The 
University of Adelaide. According to the developers, 
“Mastik is a toolkit that aims to provide robust 
implementations of side-channel attack techniques” [42]. 
Although Mastik is not developed with the intent of 
deploying its attacks in a virtualized environment, our 
research shows that it is entirely possible to deploy 
Mastik’s Flush+Reload attack between two VMs without 
the need for extra techniques or code. This may also be 
true for other attacks that Mastik facilitates such as the 
Prime+Probe attack on the LLC or other attacks that may 
be introduced to Mastik in the future. Our future research 
will aim to explore the implementation of more Mastik 
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attacks within virtualized environments. As of version 0.02, 
Mastik contains the implementation of the following six 
side channel attacks with more planned in the future: 
• Prime+Probe on the L1 data cache 
• Prime+Probe on the L1 instruction cache 
• Prime+Probe on the Last-Level Cache 
• Flush+Reload 
• Flush+Flush (new in 0.02) 
• Performance degradation attack (new in 0.02). 

To implement our attack, we used Mastic’s Flush+Reload 
(FR) library. This library allows us to create an object that 
will load the target code into memory, store the target 
addresses we want to probe, and run the Flush+Reload 
attack. The functions we will use to achieve this are 
‘map_offset()’ to load the targeted code into memory, 
‘fr_monitor()’ to add a targeted address to the list of 
monitored addresses, ‘and fr_probe()’ which will run the 
attack and return the approximate number of cycles it took 
to access the targeted addresses. The rest of this chapter is 
dedicated to the dissection of these elements and the 
explanation of their implementation in our Flush+Reload 
attack recreation code. 

map_offset() 
The ‘map_offset()’ function loads the code we want to 
target into MM as a “Read Only” file. The function acts as 
a wrapper for the ‘mmap()’ function and takes 2 arguments; 
a file descriptor and an offset. The file descriptor simply 
points the function towards the file we want to load into 
memory. The offset must be a multiple of the page size, 
usually 4096 bytes, and indicates the page at which the 
program should start loading data into memory from the 
file. This allows us to copy only specific sections of a file 
into memory and lower our memory footprint, but this 
value must be taken into account when determining the 
target addresses we wish to monitor. The function then 
uses ‘mmap()’ to load the file into memory with the 
PROT_READ flag enabled. This indicates that the data 
obtained from the file is “Read Only” and cannot be 
written to, enabling page-deduplication which is a 
necessary condition for the Flush+Reload attack. The 
Mastik implementation of mmap() can be seen in Fig 7. 

 

Fig. 7 Excerpt from map_offset() showing the mmap() invocations. 

The function returns a pointer to where the data was 
loaded into MM. This pointer is used in conjunction with 
the targeted addresses, like the ones found in section 2.2.2, 
to find the bytes of data that correspond to the lines of 

code that we want to monitor. Typically, the file will be 
loaded into memory without an offset, which will return 
the effective address 0 of our file. In this case, to find the 
location of the targeted address in MM we simply add the 
base pointer of the file provided by the map_offset() 
function to the target address stored within the FR object. 
However, if the file is loaded from a specific offset, the 
pointer returned will not be pointing at address 0 of the file 
but at the address equal to the offset of the file. In this case, 
the targeted addresses must be altered by subtracting the 
offset used to find the correct location of the targeted code. 
It is also important to note that any data in the file before 
the offset address will not be loaded into MM and 
therefore cannot be accessed. If a targeted address is less 
than the offset, it will not be reachable and may cause 
errors during runtime. This concept is illustrated in Fig 8. 

 

Fig 8 – Illustration of offset calculation and how errors can occur. 

fr_monitor() 
‘fr_monitor()’ takes an address as an argument and adds it 
to an array which is used to monitor multiple target 
addresses at a time. Each address is probed and timed in 
the ‘fr_probe()’ function, which returns individual timing 
results for each probed address. The array is handled by 
the ‘vlist’ class which functions as a wrapper for the array, 
allowing it to be utilized as a vector list. This class lets 
researchers interact with the array without burdening them 
with its upkeep, while also supplying the rest of the Mastik 
framework with a flexible data structure to hold targeted 
addresses. Fig 9 shows an excerpt of ‘vlist.h’ which lists 
the functions contained within this class. 

 

Fig. 9 Excerpt from vlist.h listing its functions 
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fr_probe() 
The ‘fr_probe()’ function is where the attack is run. It is a 
static function that takes 2 arguments; an FR class that 
holds the targeted addresses and a pointer to the targeted 
code, and an array of uint16_t unsinged integers to hold 
the results of the probes on the targeted addresses. When 
the ‘fr_probe()’ function is run, address stored in the FR’s 
‘vlist’ are probed one by one and their access times are 
recorded. Fig 10 is an excerpt of the FR class that shows 
the ‘fr_probe()’ function. The structure of this function 
ensures that each address is probed individually, that a 
separate access time is generated for each, and that none of 
the probes interfere with any of the other access times. 

 

Fig. 10 Excerpt of the FR class showing the fr_probe() function 

The attack iterates through each of the target addresses 
using a For loop. During each cycle of the loop there are 4 
steps that are executed. First the target address is retrieved 
from the FR via the ‘vl_get()’ function. The attack is then 
run with the ‘memaccesstime()’ function and the result is 
retrieved. The result is added to the ‘results’ array, a 
pointer of which was parsed into the function. And finally, 
the targeted address is flushed from the cache in order to 
prime the address for the next attack. This final step is 
achieved with this ‘clflush()’ function which is a very 
simple one line wrapper function for the ‘clflush’ 
assembly instruction. 

Mastik Utilities 
The Mastik framework also contains a set of tools that can 
help researchers set up their environments and execute 
their attacks. These tools gather information on the system 
that is vital to the success of various attacks, such as; the 
average cache access time for the L1, L2, and LLC, 
whether or not certain technologies are enabled on the 
system, and whether or not certain countermeasures are 
enabled on the system. For our attack, we will be using the 
‘FR_threshold’ tool to help us find a suitable threshold 
between our systems LLC and MM access timing. This 
threshold will allow us to interpret the data we gather from 
our attack and classify individual results as either ‘hits’ or 
‘misses’. 

 

Fig 11 – Graph of timing results from running FR_threshold 

‘FR_threshold’ generates 100000 timing samples, half of 
which are taken when the target address has been flushed 
from the cache, and the other half are taken when the 
target address is loaded into the LLC. The tool then 
outputs five statistics calculated from these samples for 
both the MM and the LLC; the minimum, the maximum, 
the median, and both the top and bottom decile. An 
example of this output can be seen in Fig 12 and a graph of 
the access time distribution from a typical FR_threshold 
execution can be seen in Fig 11. As we can see from the 
graph in Fig 11, there is a clear range between 100 – 200 
where there are almost no samples. We can safely choose a 
value somewhere around the higher limit of this range to 
be our threshold for testing whether the target VM has 
accessed the targeted address or not. 

 
Fig 12 – Output from Threshold run 

2.2.4 Cross VM Cache Timing Attack 

Finally, we will discuss our implementation of the Mastik 
framework and our recreation of the Flush+Reload cache 
timing attack. Our attack is designed to monitor multiple 
addresses within a single program simultaneously. It is 
fundamentally a recreation of other cross VM cache timing 
attacks [4,21,32,33], and the first attack within the Mastik 
framework that we aim to test in virtualized environments. 
Our attack will target a known program that we created 
that is running on a co-located VM. We wrote our target 
program to help illustrate the entire attack methodology, 
from finding target addresses within the program, to 
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monitoring the target process, and finally interpreting the 
results. 

Our attack code takes in a minimum of two arguments. 
The first argument received is the file descriptor for the 
target program that will be monitored. All subsequent 
arguments are target addresses that will be monitored and 
are expected to be hexadecimal values. This lets us 
monitor multiple targets at a time. The command we will 
be using to invoke our program via command line is 
‘/CTA Hello 6A6 A9C E48 12B4’. This will load the 
‘Hello’ program into memory and set up four monitors, 
one for each of the functions we are targeting. 

There are two main phases in our attack code; The 
initiation phase and the attack loop. During the setup phase, 
the user’s inputs are collected and verified and our code 
uses these inputs to set up the FR object. Once this is done 
the attack loop will run and the collected results will be 
tested. In turn, each address is probed and the result is 
tested against our threshold. Fig 13 shows an excerpt of 
our attack code, illustrating our implementation of the 
features of the Mastik framework that we described above. 
Here we can see that the target code is loaded into MM 
using the ‘map_offset()’ function on line 39, and the target 
addresses are added to the FR object using the 
‘fr_monitor()’ function on line 43. Following this the 
attack loop is initiated and continues until the program is 
stopped by the user. The ‘fr_probe()’ function is 
continuously invoked on line 52.  

 

Fig 13 – Excerpt of our recreation attack code 

As stated above, our target addresses are 0x6AE, 0xA9C, 
0xE48, and 0x12B4, and our cache timing threshold is 175. 
Our program will monitor each of these addresses and 

record their access times continuously. Once the access 
time of one of these addresses is below the threshold an 
identifier for the address and the access time is printed to 
the standard output. Fig 14 shows a typical example of 
what is expected during a successful attack session. In this 
attack our attack code was running on one VM while the 
‘Hello’ target program was running on another co-located 
VM. In this example the ‘Hello’ program received 5 inputs; 
‘H’, ‘E’, ‘L’, ‘L’, and then ‘O’. We can see that our attack 
code was able to record these inputs and output them in 
our attacker VM. All ‘missed’ probes are filtered out to 
help illustrate the attack. 

 

Fig 14 – Example of typical attack output. 

3. Result Analysis 

Our experiment shows that an attacker is able to monitor 
the state of a victim’s system in real time, but we haven’t 
yet addressed how an attacker can extract information 
from the results they collect. The attack environment also 
influences the results of these attacks, by introducing noise 
to the result set and potentially erasing results. To 
successfully interpret these results, the attacker must 
consider these environmental factors and tailor their 
analysis to the targets they are monitoring. This chapter 
will discuss these topics in detail, outlining what the 
necessary knowledge one needs to analyse these attack 
results. In the following sections, we will discuss typical 
results we expect to collect, how the environment affects 
these results, how each result is interpreted, and how result 
sets are analysed. Section 3.1 will begin by discussing the 
details of result collection and how individual results are 
interpreted. Section 3.2 will cover how information is 
retrieved from these results via two main methods; teal 
time monitoring, and results set analysis. 

3.1 Result Collection 

When the fr_probe() command is run the results returned 
is an integer typically within the range of 10 – 500. This is 
approximately the number of cycles that it took for the 
CPU to access the address. Analysing these results 
requires two steps; first the result needs to be classified as 
either a ‘hit’ or  

a ‘miss’ based on whether the target was loaded into cache 
or not, then these ‘hits’ and ‘misses’ need to be interpreted 
as some expected pattern of operation. The first step 
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requires a large set of test data and some familiarity with 
the environment. The second step is covered in section 3.2. 
In this section, we will discuss how results are classified 
and how some channel noise can be accounted for. 

It is important to correctly classify each result as either a 
‘hit’ or a ‘miss’. In most cases this simply means finding a  

threshold between the average LLC access time and the 
average MM access time that has minimal crossover and 
then testing each result against it. We outlined our method 
for finding this threshold in section 2.2.3. For example, 
Fig 11 illustrates that the system we ran our attack on has 
an empty region between 100 – 200 where results are very 
uncommon. Most systems will have clearly defined access 
regions as per our example, but during times of high 
system load these regions can become blurred resulting in 
ambiguous results.  

One of the motivations behind cache timing attack 
research is its high time resolution potential. In our 
experiment, we focus on a timing difference between LLC 
access and MM access, but using this attack we are also 
able to identify when addresses are loaded into L1 cache. 
Each of these regions are usually clearly distinguishable 
due to the predictable performance differences between 
them. In our test environment, if the target address is 
loaded into L1 cache we expect to see an access time 
between 10 – 30, if the address was loaded into the LLC 
we expect an access time between 40 – 100, and if the 
address is in MM we expect an access time to be greater 
than 200. Table 1 shows statistics compiled from 30000 
access timing samples; 10000 from MM, 10000 from LLC, 
and 10000 from L1. These ranges will differ slightly in 
each environment depending on the hardware of the 
system, the architecture of the hypervisor, and the code 
used to probe the addresses. For this reason, it is important 
to have a proper understanding of the attack environment 
and expected results. 

Table 1: Access timing region data for MM, LLC, and L1 

Noise on a cache side channel can come from 3 main 
sources; premature cache flushing, monitor process 
suspension, and unexpected target access. When a high 
number of processes compete for the CPU at once the 
cache can experience a high access load, which can affect 
timing results. The noise generated by this high access 
load can manifest in two ways, either a third-party process 

loads data into the cache causing the address we are 
monitoring to be prematurely evicted, or the OS suspends 
the attacker process which prevents it from monitoring 
target addresses for a period of time. The attacker VM can 
also be suspended at the hypervisors discretion with the 
same effect. In both cases, there is little we can do to 
recover the lost data, but when our process is suspended 
we can at least detect it. This can be done by calculating 
the time between each cycle of the attack loop. We expect 
our attack loop to be regular and constant, but if we notice 
that a single loop takes a much longer time to complete we 
can infer that our process was suspended and that we lost 
timing results for that period. 

There are also times when a third-party process 
unexpectedly accesses the target address. The likelihood of 
this depends greatly on the popularity of the shared code 
and the attack environment. Consider a cache timing attack 
targeting a network driver; on a single user PC, this attack 
will only record the activity of that one user, but on a 
multitenant hypervisor hosting 8 webservers the results of 
the attack will be a combination of the activity of all 
deployed VMs. Our experiments contain an example of 
this type of noise that will be common to any cache timing 
attack that relies on hypervisor level page deduplication. 
The KSM module regularly scans the memory of its 
deployed VM looking for identical pages. When identical 
pages are found, the module will merge them and point 
both VMs to the shared page. To do this the module needs 
to load the pages it checks into cache and if it checks an 
address that our attack process is monitoring it will 
generate a false positive ‘hit’. Fig 16 illustrates this noise 
with an example of the attack output during one of our 
experiments. In this example both the attacker’s VM and 
victim’s VM are idle and the time between each KSM scan 
was reduced to help demonstrate the noise. 

The more an attacker knows about the attack environment 
the better they can tailor their attack to it. By 
understanding why this noise was present in our 
experiments we were able to filter it out of our result sets 
and increase the accuracy of our attack. What set these 
false positives apart from our genuine results, and what 
helped us filter them out, was the fact that they always had 
a very low access time of approximately ~20 cycles. This 
stood in contrast to our genuine ‘hits’ which had an access 
time of approximately ~50 cycles. This occurred because 
the KSM kernel module was run on the same CPU core as 
our attacker’s VM, loading the target address into L1 
cache. The victim VM was running on a separate CPU 
core, so that it loaded the target address into the LLC 
instead. Understanding this we could filter out all results 
that were too low to indicate that they originated in the 
LLC. 

Address 
Location 

Minimum Bottom 
Decile 

Median Top 
Decile 

Maximum 

L1 21 21 30 33 345 

LLC 72 81 81 84 3592 

MM 189 195 204 210 6717 
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Fig. 16 Output of the KSM experiment noise experiment 

3.2 Result Analysis 

There are two main methods an attacker can use to 
interpret the results they gather; real time monitoring, and 
result set analysis. The majority of cache timing attack 
research focuses on monitoring encryption algorithms in 
an attempt to steal secret keys or reduce the time it takes to 
calculate these keys [38, 39]. This information is retrieved 
during the result set analysis and takes place after the 
attack is run. Other applications of this side channel 
include monitoring user inputs [32], data exfiltration [21], 
and even reverse shell exploitation [29]. These attacks 
require a timelier interpretation of attack results and rely 
on a constant stream of data, therefore they implement the 
real-time monitoring method. This section will explore the 
use of each of these methods and discuss what types of 
information attackers are able to gain from them.   

3.2.1 Result Set Analysis 

Result set analysis aims to interpret a large set of timing 
attack results collected over a period of time. The aim of 
the attacker is to record the state changes of a victim 
system and then analyse these changes to infer some 

pattern of functionality. This method is the more common 
of the two, mainly due to the fact that most cache timing 
attack research aims to monitor encryption algorithms and 
crack secret keys, which requires this kind of result 
analysis. The result set is usually analysed by an expert [32, 
36, 39], but the analysis can also be automated depending 
on the specific attack [21, 33, 41]. For example, Yarom et 
al where able to show how this attack can be used to break 
AES encryption. Their method requires visualizing the 
result set as a graph where an expert would be able to 
extract the generated key bit by bit [36]. Fig 17 illustrates 
the data they generated from their attack and how the 
expert is able to interpret it.  

 

Fig. 17 Results from Yarom et al Flush+Reload attack on AES [36] 

The attacker will have a good idea of how the victim 
should behave and what behavioural patterns they can 
expect to observe from their victim. They will then begin 
recording the state of the cache at a time that the victim is 
expected to be executing the targeted process. Once the 
initial result set is collected it will be refined to only 
contain results that are interesting to the attacker. This can 
be done by scanning the data set until specific targeted 
addresses are accessed, since the attack should only be 
targeting a single, specific functionality. From here the 
data is either visualized in a graph and interpreted by an 
expert. In theory, this processes could be automated with 
some analysis code but we were not able to find any 
solutions of this kind in peer reviewed literature.  

3.2.2 Real-time Monitoring 

Monitoring the cache in real time allows an attacker to 
respond to state changes in the cache in real time. Here, 
the attacker will be looking for specific state change 
patterns in the target system, which they can then interpret 
in order to trigger some functionality. This method is used 
primarily in covert channel attacks as a way for two parties 
to communicate without being detected [19, 20, 21, 23, 24, 
29]. This is achieved when two conspiring parties treat this 
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side channel as a communications channel and attempt to 
set up either one-way or two-way data transmission. In this 
way, attackers are able to exfiltrate data [19, 20, 21] and 
may even allow for a reverse shell connection [29]. Our 
attack results in section 2.2.4 (Fig 14) are an example of 
the real-time analysis method and illustrate how an 
attacker can monitor specific user inputs or system states 
in real time. This information may prompt the attacker to 
launch further attacks or it may be used to trigger 
automated scripts.  

4. Conclusion and Future Work 

In this paper, we accomplish three main objectives; we 
have documented our attack environment, we have 
dissected in detail our attack methodology, and we 
discussed the process of collecting and analysing results 
from the recreation attack. In order to set up our attack 
environment, we utilized industry standard Linux based 
technology. This allowed us to execute a recreation of the 
cross VM Flush+Reload cache timing attack. We 
documented this entire process in detail, including the 
process of collecting and analysing results to extract 
information. It is clear from the literature that this field of 
research is gaining popularity as virtualization technology 
is becoming a more common utility on the internet. From 
here we aim to further the research in this field with a 
focus on alternate uses for cross VM side channel attacks. 

Our attack methodology discusses in detail the specifics of 
our attack environment and the execution of our recreation 
attack. We show that the vulnerabilities that allow this 
cache timing attack to occur are still present in current 
hardware and software. Using the Mastik framework, we 
then successfully recreated a cache timing attack between 
two VMs. Without correctly understanding and mitigating 
these vulnerabilities cloud administrators can leave their 
users vulnerable which may lead to untraceable data theft 
and other compromises. In our paper, we outline our attack 
methodology, describing in detail how an attacker is able 
to carry out these attacks step by step. We believe that this 
information will be valuable to cloud administrators and 
new researchers in this field, helping them gain a foothold 
in this recently popular topic. 

We also discussed result collection and analysis. There are 
a few technical pieces of information that an attacker must 
obtain in order to correctly gather timing results. By 
understanding what this information is and how attackers 
obtain it, cloud administrators and developers will be able 
to mitigate these attacks by making it harder for attackers 
to set up their software. Similarly, understanding how 
these results are analysed and interpreted can help 
professionals and researchers make it harder for attackers 
to gain any meaningful information out of their result 
analysis. 

Most research in cache timing attacks has been aimed at 
cracking encryption algorithms and retrieving secret keys. 
This has been true since the inception of this research topic 
in the 1970s. We believe that this is due to the single OS 
environment of these attacks. The advent of virtualization 
technologies introduces new applications for these attacks 
that have yet to be explored. It is only recently that 
researchers have begun to introduced these new 
applications with targets such as key stroke timing, partial 
key logging, mouse activity logging, covert channel 
attacks, and data exfiltration. Our future research will aim 
to answer questions such as: 
• What shared resources can and can’t be used as side 

channels and what is the extent of their use? 
• Can these attacks be used as a form of recognisant, 

allowing for further comptonization of the target 
system?   

• •Is a malicious VM able to directly alter a target VMs 
shared resource? If so, to what extent? 

We believe that with our current virtualization lab we are 
well equipped to tackle these questions and continue 
research in this field well into the future. 
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