
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.2, February 2017

181

Manuscript received February 5, 2017
Manuscript revised February 20, 2017

Breaking VM Isolation – An In-Depth Look into the Cross VM
Flush Reload Cache Timing Attack

Danny Philippe-Jankovic† and Tanveer A Zia††

School of Computing and Mathematics Charles Sturt University, NSW, Australia

Summary
Cloud computing has led to a lot of improvements in the way we
manage our IT infrastructure, but this convenience has led to new
security challenges. In this paper, we recreate a cross Virtual
Machine Flush+Reload cache timing attack and document our
attack methodology in depth. Cache timing attacks are highly
technical, and executing them in a virtualized environment makes
them more complex. We have not come across any literature that
documents these attacks adequately, and so this paper aims to
deliver detailed insight into the entire lifecycle of these types of
attacks. Our attack methodology dissects the life cycle of a side
channel attack in a virtualized environment from beginning to
end. We present an in-depth analysis of the environment, the
attack setup, the attack execution, and how these attacks can be
used to gather and analyse results. This research will shed some
valuable insight into what is a very technical and complex topic.
By documenting our attack environment and methodology we
hope to help new researchers in this field gain a foothold in a
research topic that has recently gained popularity and may be
difficult to enter. Finally, we examine how meaningful results are
collected and analysed by the attacker. We believe this insight
will also be valuable for cloud administrators and developers,
and that they may use their understanding of the attack lifecycle
and result analysis tools to mitigate and disrupt attack attempts.
Key words:
Hypervisor, Virtualization, Isolation, Flush+Reload, Cache
Timing Attack, Cross VM.

1. Introduction

Cloud computing has quickly become a massive part of the
infrastructure of the internet and of corporate systems.
With the rise in popularity of private and public clouds
security researchers have recently defined a new field of
research, cloud security. Cloud security covers any
security topic relevant to virtualization technologies and
their applications. We have chosen to focus our research in
this field on the topic of side channel attacks within
virtualized environments. This paper presents the
methodology used to execute a cache timing attack in a
virtualized environment, as well as an in-depth analysis
and recreation of a cross Virtual Machine Flush+Reload
cache timing attack.

Our goals in this paper are; to document how we set up our
virtualization lab, produce a step by step guide on how we
were able to recreate the attack, and to discuss how the

results of attacks like these can be collected and analysed.
To this end, we have developed our attack methodology in
depth which discusses each phase of the attack, from
setting up the environment and coding the attack to
collecting and analysing the results. This information can
be used as an introduction into the field, helping new
researchers establish a virtualization lab and the essential
software and code required to execute these attacks. This
paper also offers insight into the life cycle of these highly
technical attacks, which will allow security experts and
cloud administrators to better understand and defend
against them. There are two main chapters in this paper;
Attack Methodology, and Result Analysis.

Our attack methodology explains step by step the details of
the lifecycle of a cross Virtual Machine Flush+Reload
attack. This includes the specifics of our attack
environment, the hardware, the operating systems, the
software, the attack code, and the attack execution. We
document the details of each of these topics, as well as the
theory behind the attack and the specifics of the assembly
code that allow the execution of this attack. To deploy our
attack, we aimed to create a virtualization environment
that was typical of private and public clouds. To do this we
implement industry standard software for our operating
systems and hypervisor. Our environment was limited by
low funds, so we were unable to run our experiments on a
wide range of hardware. We were, however, able to utilize
open source software to set up our operating systems and
software environment. We achieved this with the use of
Linux based operating systems that have built in
virtualization technology, which has become one of the
standard virtualization vendors in the cloud industry.

In chapter 3 we discuss in detail how attackers collect
results from these attacks and how these results can be
analysed and interpreted by the attacker. To collect
accurate results there are a few specific pieces of
information that the attacker must acquire about the
system which we cover in the chapter. There are also
several factors that may contribute to noise within the
result data which are also briefly discussed. Once the
results are collected they must be analysed in order to
extract useful information. We identify two methods used
for analysing this data; Result Set Analysis, and Real-time

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.2, February 2017

182

Monitoring. We discuss both methods and their uses
before ending the paper with a conclusion.

This paper contains 4 chapters; chapter 1 is the
introduction, chapter 2 is our attack methodology, chapter
3 is our results and analysis discussion, and chapter 4
concludes the paper. The introduction introduced our
research goals, the scope of our research, and limitations.
Our attack methodology outlines the attack environment as
well as the entire life cycle of the recreation attack,
discussing in detail the attack conditions and each step of
the cross VM Flush+Reload cache timing attack. Chapter
3 discusses the specifics of gathering and analysing results
from cache timing attacks. Finally, chapter 4 wraps up
with a conclusion and a brief discussion of our intended
future research.

2. Attack Methodology

2.1 Theoretical Basis

The attack that we have chosen to replicate targets
information leakage in the Last Level Cache (LLC or
Level 3 Cache) on Intel CPUs and relies on a few features
that are commonly enabled in clouds. We are able to
leverage these conditions to execute a high-resolution
cache timing attack and monitor code running on third
party VMs. Research has shown that these attacks are able
to even break encryption algorithms [3,38]. The specific
attack that we will be replicating is a cross VM
Flush+Reload attack that is able to identify if a specific
Operating System (OS) or program is running on a co-
located target VM. This section consists of 3 subsections
that will explain the theory behind the attack. These
sections are; Attack Anatomy, CPU Architecture, and
Shared Memory.

2.1.1 Attack Anatomy

A Flush+Reload attack is a type of Micro Architectural
attack. These attacks target weaknesses in the architecture
of low level computer components such as CPU, RAM,
Data Storage devices, etc. The Flush+Reload attack is a
cache timing attack that monitors the difference in the
access time of a targeted address in memory. We can use
the information we gain to determine if and when these
addresses are accessed by another process. This can lead to
further insights into the state of a targeted system. The
Flush+Reload attack has 3 distinct phases; the Setup phase,
the Attack phase, and the Analysis Phase.

During the setup phase the attacker will create the attack
environment and configure the attack software. In a live
attack this will require the attacker to achieve co-location
with the victim VM, test background noise of the side

channel, and gather information on the expected access
times for both Main Memory (MM) and the LLC. For our
attack recreation, we deployed our own hypervisor with
our own controlled VMs, ensuring co-location and making
background noise negligible. We cover exactly how we set
up the attack environment in section 2.2.1 and we will
discuss how we gather information about access times in
section 2.2.3.

The Attack phase is where the attack is deployed, the
target is monitored, and data is gathered for the Analysis
phase. The Flush+Reload attack has 3 steps; Flush, Wait,
and Reload. In the flush step the cache is flushed of the
targeted address’, ensuring that the next time it is accessed
it will need to be loaded from MM. After this, the attack
program will wait for a small amount of time so that the
victim has an opportunity to access the address. Finally,
the address is reloaded and the access time is recorded. If
the target had accessed the address within the wait time,
then the load time we record will be approximately equal
to the LLC access time. If the target did not access the
address then we expect to see a longer access time, one
approximate to the MM access time. These attack times
can either be interpreted immediately, compared to a
threshold to trigger some event, or they can be recorded
for later analysis.

During the Analysis phase the recorded access times are
analysed and interpreted. The way this data is interpreted
depends a lot on the behaviour that is being monitored.
Some attacks rely on statistical analysis [32,33,38,39]
while others can represent the data visually and be
interpreted by an expert to gather the desired information
[36]. The data gathering process is not perfect and some
error correction calculations may be needed in order to
complete the attack. Yarom et al and other researchers
have been able to show how cache timing attacks can be
used to break encryption. They note that even if the data
recovered is incomplete what is recovered can be used to
drastically reduce the number of guesses needed to crack
the encryption [36,38,39].

There are cases where the results we gather from an attack
session can contain errors, and depending on the context of
the attack these errors may be recoverable. If the attack
targets an encryption algorithm there may be ways to
retrieve the lost bits of the secret key [36,38,39]. However,
if the attack aims to log key presses or other user input
there is no way to retrieve the lost data [32,40,41]. There
are three main cases that lead to errors in results; The
targeted address is loaded into cache by a third-party
process, the target address is flushed from LLC before we
can probe it, or our attack process is suspended causing us
to be inactive for some time. The first case may occur if
the targeted code is a specifically popular one and multiple
tenants are competing for it, such as network drivers. The

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.2, February 2017 183

second case can occur when there are periods of high
traffic in the cache and the target address is evicted to
make room for a running process’s data. The third case can
also occur when there are high levels of traffic in the cache.
If our process has lower priority than other processes
running in the stack, then it may be suspended temporarily
to allow these other processes access to the CPU. This can
also occur if our VM has over used its allotted CPU
resources and other VMs have higher priority for that
resource, in this case our entire VM may be suspended. In
both cases, we should be able to detect this loss of time by
recording a very high delay between two attacks, but we
will not be able to directly recover the missing data.

2.1.2 CPU Architecture

Intel CPUs have two features that enable the Flush+Reload
attack; An inclusive cache, and the ‘rdtsc’ instruction. An
inclusive cache is not necessary for all cache timing
attacks, but it does enable the majority of these attacks. It
allows a program to flush data from the entire cache,
including all the L1 and L2 caches within the CPU. This
lets attackers circumvent isolation and interact with
process or VMs via a shared memory address. The ‘rdtsc’
instruction is a high resolution timing instruction that
allows programs to count the amount of cycles it takes to
execute a set of instructions. This functionality is
necessary for programs that require fine grained
synchronization for tasks such as human input processing,
audio processing, or video processing. However, it also
allows malicious users to execute high resolution side
channel attacks. These two CPU features leave systems
vulnerable to most cache timing attacks and are the focus
of a lot of cache timing attack research
[32,33,35,36,37,38,39,40,41,42].

Each core in a CPU has its own L1 and L2 cache that only
it has access too. Additionally, each thread running on a
system will be assigned to a single core. Unless hyper-
threading is enabled, each thread will run exclusively on a
core and must be put into suspension if another thread is
scheduled to run. Hyper-threading has some known
security issues so has become best practice for it to be
disabled [29]. This means that on most systems for most
process to have access to another process’s L1 and L2
cache they both must be assigned to the same core and one
must be suspended immediately before resuming the other.
For any useful information to survive this procedure, the
swap time and the OS thread management code must be
kept to a minimum or else useful data may be evicted. The
attacker also has no control over the scheduling of these
swaps, making it difficult to ensure that any data observed
after a swap was from a specific process. This makes
cache timing attacks in the L1 and L2 cache virtually
impossible.

In contrast, every core in a CPU has access to the LLC
which allows an attacker to flush any shared data from this
region. In an exclusive cache, flushing data from the LLC
will not evict it from the L1 and L2 cache. If the shared
data is still loaded in L1 or L2 cache, a target process may
continue to use it without an attacker being able to monitor
this behaviour. An inclusive cache ensures that the LLC
holds a superset of all memory found in the higher levels
of cache. This means that when data is evicted from the
LLC, the L1 and L2 caches are checked for the same data
and if it is found it will be evicted. These caches allow
malicious processes to evict a shared memory address
from the LLC, letting them monitor when these addresses
are accessed by other processors and enabling cache
timing attacks. Modern Intel processors utilize an inclusive
cache, and it is these processors that the Flush+Reload
attack targets primarily [36]. Fig 3 shows an illustration of
the Ivy Bridge cache architecture which is an example of
an inclusive Intel cache architecture.

Fig. 3 Cache architecture, isolation and access times

The rdtsc instruction is a timing function that returns the
number of clock cycles that have passed since the
processor has been reset. As illustrated in Fig 4, an
attacker will invoke this instruction before and after
loading a targeted memory address and calculate the
difference. This becomes a record of the time it took to
access the memory address. The resolution of these
recorded times allows an attacker to differentiate between
data accessed from L1 cache, the LLC, or MM. If the
target address is found to be loaded into cache, then an
attacker can assume the data is in use by the target. If the
loading time is close to the typical MM access time, then
that target is idle and not in use. One record alone will
hold very little information about a target system’s state,
but by monitoring important targets over a period of time
the result sets gathered can yield very valuable information
about a target. Exactly how these result sets are recorded
and interpreted will be covered in chapter 3.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.2, February 2017

184

Fig. 4 x86 code used in the cache timing attack

2.1.3 Shared Memory

Programmers share and reuse code constantly. Code reuse
saves time and reduces programming errors as rewriting
functions can be time consuming and may lead to human
error. This has led to OS features that help facilitate the
reuse of code such as Dynamic Link Libraries. Loading a
separate copy of a shared library into memory every time a
program is executed is inefficient, so to reduce the amount
of redundant memory OSs allow processes to share
executable code. This is achieved through the distinction
of memory as either ‘Read Only’ or ‘Write’. When a
process loads data into MM it can either be loaded as
“Read Only” or “Write”. Whenever executable code is
loaded into MM it must be loaded as “Read Only”, this is
to help mitigate runtime errors and security vulnerabilities
in code. Whenever a process tries to run a piece of code
that is not “Read Only” an error is thrown and the process
is usually terminated. When a process attempts to load
“Read Only” memory into MM, the OS will first check to
see if an identical copy of it already exists. If it does, the
process is given a pointer to the existing copy of the data
instead of creating a separate instance. This is what allows
processes to share code or run multiple instances of the
same program with a reduced memory footprint. An
attacker running on the same OS as its target can exploit
this weakness and obtain a pointer to the target’s code by
attempting to load a copy of its code into MM as ‘Read
Only’. From there they can launch a cache timing attack
on the code and monitor the target’s state.

Fig. 5 A Hypervisor consolidating 3 duplicate pages into one

This is enough to launch the attack within a non-
virtualized environment, but our attack will take place
between two VMs. To overcome the hypervisors memory
isolation in our recreation attack we take advantage of
page-deduplication. Memory isolation is enforced in
hypervisors by segregating the regions of memory that
each VM has access too. Each system call that a VM
makes must first pass through the hypervisors kernel. Here,
the hypervisor can control and monitor which regions of
memory each VM has access to. This prevents VMs from
accessing a memory region that does not belong to it,
making our attack near impossible. However, most
hypervisors also have a feature called page-deduplication
which works similarly to the “Read Only” deduplication
described above. A kernel module will periodically scan
running VMs for identical pages of memory. When one is
found one of the copies will be unallocated and reclaimed
by the hypervisor. The kernel will then point both VMs to
the one remaining copy in MM. Fig 5 illustrated this page
deduplication mechanism. This feature can save large
amounts of memory when multiple similar VMs are
running. Unfortunately, this features also gives attackers a
shared memory address which can lead to isolation
breaches and vulnerabilities such as side channel attacks.
The security vulnerabilities associated with page-
deduplication are known to the cloud security community
who encourage disabling this feature [34]. However, this
feature is still enabled by default on QEMU which is the
hypervisor that we have chosen to launch our attack on. It
is best practice to disable this feature on a cloud to help
mitigate attacks such as those discussed here, but cloud
system admins may either be unaware or undaunted by
these attacks.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.2, February 2017 185

2.2 Conceptual Basis

2.2.1 Attack Environment

We set up our attack on a Linux based hypervisor with two
Linux based VMs, one attacker and one victim. There are
no Linux specific requirements for this attack, it is just the
easiest environment to set up due to its simplicity, its
accessibility, and its built-in virtualization features. The
KVM Kernel module has been included in the Linux
mainline since 2.6.20 making virtualization easily
implementable and widespread. The KSM Kernel module
has been included in the Linux mainline since 2.6.32 and
is enabled by default on KVM hypervisors. This
environment can be set up on a wide range of hardware
quickly and for free and so it has become common in
private and public clouds. Our hypervisor was initialized
with default settings making it a typical cloud environment
that may be run by a security naïve systems administrator.

For our hypervisor OS, we chose to run Ubuntu LTS
v16.04.1, currently the most up-to-date Linux distro
released, with full updates. We also ran QEMU-KVM
v2.6.2, which is currently the most up-to-date version of
this hypervisor. Both the OS and the hypervisor software
were configured with default settings and no additional
security software was installed. This demonstrates that the
current software versions are vulnerable to the
Flush+Reload attack we have implemented and that if a
cloud environment is set up incorrectly and without the
proper expertise it may leave users vulnerable to data theft
and further security vulnerabilities. The KSM kernel
module was active on this hypervisor by default which, as
we covered in section 2.1.3, helps facilitate a
Flush+Reload attack. By default, KSM is active on
QEMU-KVM which allows the hypervisor to save RAM
and deploy additional VMs where it otherwise would not
have the necessary RAM. Without page deduplication
active, it would be very difficult for an attacker to find a
shared physical address between two VMs to exploit, but
as RAM is the scarcest resource in the cloud utilizing page
deduplication technologies is highly incentivized.

Our attacker VM and our victim VM were also both set up
with Ubuntu LTS v16.04.1 with full updates. Again, this is
because it is the simplest environment to set up and it
demonstrates that current software with default settings is
vulnerable to the Flush+Reload attack. The only additional
software installed on these systems was the programs and
tools necessary to carry out the attack. For our victim VM,
we installed and ran our ‘Hello’ program which we
describe in section 2.2.2. This program does not assist the
attacker in any way, it simply helps us illustrate the attack
methodology and the execution of the attack. The attacker
VM was set up with the attack program, some analysis
tools, and a copy of the ‘Hello’ program. A copy of the

targeted program is necessary for the attack as the attack
program needs to load an exact copy of it into MM in
order to generate the shared memory pointer. The analysis
tools helped set up the attack and analyses the results we
collected while the attack program itself launched the
attack and collected the results. In section 2.2.3 we discuss
our attack program in depth and in chapter 3 we discuss
the results our attack generated and how they can be
analysed.

2.2.2 Finding Target Addresses

Cache timing attacks target specific addresses within a
program, and these addresses correspond to lines of code
that are of interest. It is important to pick the addresses we
monitor with care as factors such as proximity and
temporal locality of code may affect our results. For
example, if the victim program runs a function with a loop
in it and the attacker targets an address within or close to
the loop they will receive constant feedback from the
timing attack for the entire duration of that loop. This can
be useful it the attacker wants to monitor the duration of
the loop, but if instead they only want feedback once each
time the function is run they would need to target an
address towards the beginning or end of the function that
is only executed once each time the function is run. It is
also important to pick an address then isn’t too close to a
piece of code in another unrelated function. This may lead
to a false positive result if the other function is called
instead of the monitored function. This is due to the way
the cache loads memory from MM. Instead of loading the
specific bytes needed, CPU architecture takes advantage of
proximity and temporal locality of code and loads entire
pages into the LLC at a time. From there more specific
lines of those pages may be loaded into L1 and L2 cache.

There are many ways an attacker could reverse engineer
target programs and find the address corresponding to the
specific line in the code that they wish to monitor. Some
examples include attaching a debugger to the targeted
program while it is running and following its execution
path, opening the binary of the executable in a
disassembler and searching for the functionality, or
creating a large list of random addresses throughout the
program to watch and monitoring them during runtime.
Each method requires a set of skills and experience with
specific tools as well as an insight into how the targeted
code will behave during runtime. Gruss et al [41] were
able to develop a method of automatically locating
interesting addresses through a series of refined guesses.
Their method started with a set of addresses located
throughout the entire targeted program. They then watched
each of these addresses while they triggered the
functionality they wished to monitor. Any addresses that
were not triggered were removed from the test set and
their method would continue until their set contained a list

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.2, February 2017

186

of addresses that were indicative of the functionality they
wished to monitor. To find our target addresses we used a
more traditional method of running our target program
within a debugger. The rest of this section will document
the method we used to find our target addresses.

Our first attack was launched on a very simple command
line program that we wrote. Our program was called
‘Hello’ and was comprised of four functions and a main
loop. The main loop of ‘Hello’ will wait for the user to
input a character and will test whether that character is
either ‘H’, ‘E’, ‘L’, or ‘O’. If it is one of these characters,
the program will run one of the 4 separate functions that
simply output the same character that the user input. By
monitoring each of these functions with our attack code we
will be able to tell when our victim enters one of these
characters and what character they have entered. This is a
simple proof of concept attack that allows us to test that
our environment is correctly configured for the attack as
well as illustrate our attack in a way that is simple to
extrapolate to a more useful, every day example. It is easy
to see how this method could be applied to any command
line interface that branches off to multiple functions based
on specific user input.

We wrote and attacked our own code to help illustrate our
method. We compiled our code using the GNU Compiler
Collection (GCC) and including the ‘-g’ tag. This
preserves the debugging information that helped us find
the target addresses. Typically, this debugging information
is stripped from the binary when a program is constructed
or when a program is run as it only assists humans during
debugging. Its presence does not change the program
binary so any addresses we find with a debugger that we
are interested in monitoring will correspond directly to the
program running in a live environment. This information is
not necessary for finding target addresses but it does make
the process easier. It is possible to debug programs without
their debug information and find target addresses but it is a
lot more difficult and requires a higher level of expertise.
It is very easy for an attacker to obtain this information for
any open source program, all they need to do is download
the source code and compile it locally with debugging
information included. Therefore, this method does not
impact the efficacy of this attack in a real scenario.

We use this debug information in conjunction with the
GNU Project Debugger (GDB). GDB is a debugging tool
that allows us to run our program in a sandbox and
monitor its execution. We can follow its execution path,
watch variables, set breakpoints, and more. These tools
help programmers debug their programs so they can fix
problems in their code more efficiently. We are using
GDB simply to find where the lines of code we are
interested in monitoring will load into memory at runtime.
The first step is to find the lines in code that we want to

monitor with our cache timing attack. In our code, we find
the beginning of our four print functions at lines 4, 123,
235, and 369. The reason these lines are so far apart is
because our functions are filled with dummy code to avoid
false positives created when the cache loads pages of our
program into memory. We now load our ‘Hello’ program
in GDB and look up those code lines. This gives us the
information we need for our attack; an example of the
information we are looking for can be found in Fig 6. The
addresses corresponding to our functions are 0x4006AE,
0x400A9C, 0x400E48, and 0x4012B4 respectively.

Fig. 6 GDB output showing the addresses of the lines we are targeting
with our attack.

OSs require metadata to be stored on every running
process in order to ensure the stability of the system and to
properly allocate resources. In a Linux OS the first
0x400000 of every process holds this data and the base
address of the program data stars at this address, meaning
from 0x400000 onwards the binary is loaded into memory.
This means that when we retrieve our addresses for the
target lines of code they will always be above this
0x400000 region of memory. To find the relative address
that we should use in our attack we simply subtract this
base value to find the relative address. This makes our new
target addresses 0x6AE, 0xA9C, 0xE48, and 0x12B4
respectively.

2.2.3 Mastik Framework

Our attack code is based on the Mastik (Micro-
Architectural Side-Channel Toolkit) framework which is
currently being developed by Yuval Yarom et al of The
University of Adelaide. According to the developers,
“Mastik is a toolkit that aims to provide robust
implementations of side-channel attack techniques” [42].
Although Mastik is not developed with the intent of
deploying its attacks in a virtualized environment, our
research shows that it is entirely possible to deploy
Mastik’s Flush+Reload attack between two VMs without
the need for extra techniques or code. This may also be
true for other attacks that Mastik facilitates such as the
Prime+Probe attack on the LLC or other attacks that may
be introduced to Mastik in the future. Our future research
will aim to explore the implementation of more Mastik

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.2, February 2017 187

attacks within virtualized environments. As of version 0.02,
Mastik contains the implementation of the following six
side channel attacks with more planned in the future:
• Prime+Probe on the L1 data cache
• Prime+Probe on the L1 instruction cache
• Prime+Probe on the Last-Level Cache
• Flush+Reload
• Flush+Flush (new in 0.02)
• Performance degradation attack (new in 0.02).

To implement our attack, we used Mastic’s Flush+Reload
(FR) library. This library allows us to create an object that
will load the target code into memory, store the target
addresses we want to probe, and run the Flush+Reload
attack. The functions we will use to achieve this are
‘map_offset()’ to load the targeted code into memory,
‘fr_monitor()’ to add a targeted address to the list of
monitored addresses, ‘and fr_probe()’ which will run the
attack and return the approximate number of cycles it took
to access the targeted addresses. The rest of this chapter is
dedicated to the dissection of these elements and the
explanation of their implementation in our Flush+Reload
attack recreation code.

map_offset()
The ‘map_offset()’ function loads the code we want to
target into MM as a “Read Only” file. The function acts as
a wrapper for the ‘mmap()’ function and takes 2 arguments;
a file descriptor and an offset. The file descriptor simply
points the function towards the file we want to load into
memory. The offset must be a multiple of the page size,
usually 4096 bytes, and indicates the page at which the
program should start loading data into memory from the
file. This allows us to copy only specific sections of a file
into memory and lower our memory footprint, but this
value must be taken into account when determining the
target addresses we wish to monitor. The function then
uses ‘mmap()’ to load the file into memory with the
PROT_READ flag enabled. This indicates that the data
obtained from the file is “Read Only” and cannot be
written to, enabling page-deduplication which is a
necessary condition for the Flush+Reload attack. The
Mastik implementation of mmap() can be seen in Fig 7.

Fig. 7 Excerpt from map_offset() showing the mmap() invocations.

The function returns a pointer to where the data was
loaded into MM. This pointer is used in conjunction with
the targeted addresses, like the ones found in section 2.2.2,
to find the bytes of data that correspond to the lines of

code that we want to monitor. Typically, the file will be
loaded into memory without an offset, which will return
the effective address 0 of our file. In this case, to find the
location of the targeted address in MM we simply add the
base pointer of the file provided by the map_offset()
function to the target address stored within the FR object.
However, if the file is loaded from a specific offset, the
pointer returned will not be pointing at address 0 of the file
but at the address equal to the offset of the file. In this case,
the targeted addresses must be altered by subtracting the
offset used to find the correct location of the targeted code.
It is also important to note that any data in the file before
the offset address will not be loaded into MM and
therefore cannot be accessed. If a targeted address is less
than the offset, it will not be reachable and may cause
errors during runtime. This concept is illustrated in Fig 8.

Fig 8 – Illustration of offset calculation and how errors can occur.

fr_monitor()
‘fr_monitor()’ takes an address as an argument and adds it
to an array which is used to monitor multiple target
addresses at a time. Each address is probed and timed in
the ‘fr_probe()’ function, which returns individual timing
results for each probed address. The array is handled by
the ‘vlist’ class which functions as a wrapper for the array,
allowing it to be utilized as a vector list. This class lets
researchers interact with the array without burdening them
with its upkeep, while also supplying the rest of the Mastik
framework with a flexible data structure to hold targeted
addresses. Fig 9 shows an excerpt of ‘vlist.h’ which lists
the functions contained within this class.

Fig. 9 Excerpt from vlist.h listing its functions

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.2, February 2017

188

fr_probe()
The ‘fr_probe()’ function is where the attack is run. It is a
static function that takes 2 arguments; an FR class that
holds the targeted addresses and a pointer to the targeted
code, and an array of uint16_t unsinged integers to hold
the results of the probes on the targeted addresses. When
the ‘fr_probe()’ function is run, address stored in the FR’s
‘vlist’ are probed one by one and their access times are
recorded. Fig 10 is an excerpt of the FR class that shows
the ‘fr_probe()’ function. The structure of this function
ensures that each address is probed individually, that a
separate access time is generated for each, and that none of
the probes interfere with any of the other access times.

Fig. 10 Excerpt of the FR class showing the fr_probe() function

The attack iterates through each of the target addresses
using a For loop. During each cycle of the loop there are 4
steps that are executed. First the target address is retrieved
from the FR via the ‘vl_get()’ function. The attack is then
run with the ‘memaccesstime()’ function and the result is
retrieved. The result is added to the ‘results’ array, a
pointer of which was parsed into the function. And finally,
the targeted address is flushed from the cache in order to
prime the address for the next attack. This final step is
achieved with this ‘clflush()’ function which is a very
simple one line wrapper function for the ‘clflush’
assembly instruction.

Mastik Utilities
The Mastik framework also contains a set of tools that can
help researchers set up their environments and execute
their attacks. These tools gather information on the system
that is vital to the success of various attacks, such as; the
average cache access time for the L1, L2, and LLC,
whether or not certain technologies are enabled on the
system, and whether or not certain countermeasures are
enabled on the system. For our attack, we will be using the
‘FR_threshold’ tool to help us find a suitable threshold
between our systems LLC and MM access timing. This
threshold will allow us to interpret the data we gather from
our attack and classify individual results as either ‘hits’ or
‘misses’.

Fig 11 – Graph of timing results from running FR_threshold

‘FR_threshold’ generates 100000 timing samples, half of
which are taken when the target address has been flushed
from the cache, and the other half are taken when the
target address is loaded into the LLC. The tool then
outputs five statistics calculated from these samples for
both the MM and the LLC; the minimum, the maximum,
the median, and both the top and bottom decile. An
example of this output can be seen in Fig 12 and a graph of
the access time distribution from a typical FR_threshold
execution can be seen in Fig 11. As we can see from the
graph in Fig 11, there is a clear range between 100 – 200
where there are almost no samples. We can safely choose a
value somewhere around the higher limit of this range to
be our threshold for testing whether the target VM has
accessed the targeted address or not.

Fig 12 – Output from Threshold run

2.2.4 Cross VM Cache Timing Attack

Finally, we will discuss our implementation of the Mastik
framework and our recreation of the Flush+Reload cache
timing attack. Our attack is designed to monitor multiple
addresses within a single program simultaneously. It is
fundamentally a recreation of other cross VM cache timing
attacks [4,21,32,33], and the first attack within the Mastik
framework that we aim to test in virtualized environments.
Our attack will target a known program that we created
that is running on a co-located VM. We wrote our target
program to help illustrate the entire attack methodology,
from finding target addresses within the program, to

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.2, February 2017 189

monitoring the target process, and finally interpreting the
results.

Our attack code takes in a minimum of two arguments.
The first argument received is the file descriptor for the
target program that will be monitored. All subsequent
arguments are target addresses that will be monitored and
are expected to be hexadecimal values. This lets us
monitor multiple targets at a time. The command we will
be using to invoke our program via command line is
‘/CTA Hello 6A6 A9C E48 12B4’. This will load the
‘Hello’ program into memory and set up four monitors,
one for each of the functions we are targeting.

There are two main phases in our attack code; The
initiation phase and the attack loop. During the setup phase,
the user’s inputs are collected and verified and our code
uses these inputs to set up the FR object. Once this is done
the attack loop will run and the collected results will be
tested. In turn, each address is probed and the result is
tested against our threshold. Fig 13 shows an excerpt of
our attack code, illustrating our implementation of the
features of the Mastik framework that we described above.
Here we can see that the target code is loaded into MM
using the ‘map_offset()’ function on line 39, and the target
addresses are added to the FR object using the
‘fr_monitor()’ function on line 43. Following this the
attack loop is initiated and continues until the program is
stopped by the user. The ‘fr_probe()’ function is
continuously invoked on line 52.

Fig 13 – Excerpt of our recreation attack code

As stated above, our target addresses are 0x6AE, 0xA9C,
0xE48, and 0x12B4, and our cache timing threshold is 175.
Our program will monitor each of these addresses and

record their access times continuously. Once the access
time of one of these addresses is below the threshold an
identifier for the address and the access time is printed to
the standard output. Fig 14 shows a typical example of
what is expected during a successful attack session. In this
attack our attack code was running on one VM while the
‘Hello’ target program was running on another co-located
VM. In this example the ‘Hello’ program received 5 inputs;
‘H’, ‘E’, ‘L’, ‘L’, and then ‘O’. We can see that our attack
code was able to record these inputs and output them in
our attacker VM. All ‘missed’ probes are filtered out to
help illustrate the attack.

Fig 14 – Example of typical attack output.

3. Result Analysis

Our experiment shows that an attacker is able to monitor
the state of a victim’s system in real time, but we haven’t
yet addressed how an attacker can extract information
from the results they collect. The attack environment also
influences the results of these attacks, by introducing noise
to the result set and potentially erasing results. To
successfully interpret these results, the attacker must
consider these environmental factors and tailor their
analysis to the targets they are monitoring. This chapter
will discuss these topics in detail, outlining what the
necessary knowledge one needs to analyse these attack
results. In the following sections, we will discuss typical
results we expect to collect, how the environment affects
these results, how each result is interpreted, and how result
sets are analysed. Section 3.1 will begin by discussing the
details of result collection and how individual results are
interpreted. Section 3.2 will cover how information is
retrieved from these results via two main methods; teal
time monitoring, and results set analysis.

3.1 Result Collection

When the fr_probe() command is run the results returned
is an integer typically within the range of 10 – 500. This is
approximately the number of cycles that it took for the
CPU to access the address. Analysing these results
requires two steps; first the result needs to be classified as
either a ‘hit’ or

a ‘miss’ based on whether the target was loaded into cache
or not, then these ‘hits’ and ‘misses’ need to be interpreted
as some expected pattern of operation. The first step

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.2, February 2017

190

requires a large set of test data and some familiarity with
the environment. The second step is covered in section 3.2.
In this section, we will discuss how results are classified
and how some channel noise can be accounted for.

It is important to correctly classify each result as either a
‘hit’ or a ‘miss’. In most cases this simply means finding a

threshold between the average LLC access time and the
average MM access time that has minimal crossover and
then testing each result against it. We outlined our method
for finding this threshold in section 2.2.3. For example,
Fig 11 illustrates that the system we ran our attack on has
an empty region between 100 – 200 where results are very
uncommon. Most systems will have clearly defined access
regions as per our example, but during times of high
system load these regions can become blurred resulting in
ambiguous results.

One of the motivations behind cache timing attack
research is its high time resolution potential. In our
experiment, we focus on a timing difference between LLC
access and MM access, but using this attack we are also
able to identify when addresses are loaded into L1 cache.
Each of these regions are usually clearly distinguishable
due to the predictable performance differences between
them. In our test environment, if the target address is
loaded into L1 cache we expect to see an access time
between 10 – 30, if the address was loaded into the LLC
we expect an access time between 40 – 100, and if the
address is in MM we expect an access time to be greater
than 200. Table 1 shows statistics compiled from 30000
access timing samples; 10000 from MM, 10000 from LLC,
and 10000 from L1. These ranges will differ slightly in
each environment depending on the hardware of the
system, the architecture of the hypervisor, and the code
used to probe the addresses. For this reason, it is important
to have a proper understanding of the attack environment
and expected results.

Table 1: Access timing region data for MM, LLC, and L1

Noise on a cache side channel can come from 3 main
sources; premature cache flushing, monitor process
suspension, and unexpected target access. When a high
number of processes compete for the CPU at once the
cache can experience a high access load, which can affect
timing results. The noise generated by this high access
load can manifest in two ways, either a third-party process

loads data into the cache causing the address we are
monitoring to be prematurely evicted, or the OS suspends
the attacker process which prevents it from monitoring
target addresses for a period of time. The attacker VM can
also be suspended at the hypervisors discretion with the
same effect. In both cases, there is little we can do to
recover the lost data, but when our process is suspended
we can at least detect it. This can be done by calculating
the time between each cycle of the attack loop. We expect
our attack loop to be regular and constant, but if we notice
that a single loop takes a much longer time to complete we
can infer that our process was suspended and that we lost
timing results for that period.

There are also times when a third-party process
unexpectedly accesses the target address. The likelihood of
this depends greatly on the popularity of the shared code
and the attack environment. Consider a cache timing attack
targeting a network driver; on a single user PC, this attack
will only record the activity of that one user, but on a
multitenant hypervisor hosting 8 webservers the results of
the attack will be a combination of the activity of all
deployed VMs. Our experiments contain an example of
this type of noise that will be common to any cache timing
attack that relies on hypervisor level page deduplication.
The KSM module regularly scans the memory of its
deployed VM looking for identical pages. When identical
pages are found, the module will merge them and point
both VMs to the shared page. To do this the module needs
to load the pages it checks into cache and if it checks an
address that our attack process is monitoring it will
generate a false positive ‘hit’. Fig 16 illustrates this noise
with an example of the attack output during one of our
experiments. In this example both the attacker’s VM and
victim’s VM are idle and the time between each KSM scan
was reduced to help demonstrate the noise.

The more an attacker knows about the attack environment
the better they can tailor their attack to it. By
understanding why this noise was present in our
experiments we were able to filter it out of our result sets
and increase the accuracy of our attack. What set these
false positives apart from our genuine results, and what
helped us filter them out, was the fact that they always had
a very low access time of approximately ~20 cycles. This
stood in contrast to our genuine ‘hits’ which had an access
time of approximately ~50 cycles. This occurred because
the KSM kernel module was run on the same CPU core as
our attacker’s VM, loading the target address into L1
cache. The victim VM was running on a separate CPU
core, so that it loaded the target address into the LLC
instead. Understanding this we could filter out all results
that were too low to indicate that they originated in the
LLC.

Address
Location

Minimum Bottom
Decile

Median Top
Decile

Maximum

L1 21 21 30 33 345

LLC 72 81 81 84 3592

MM 189 195 204 210 6717

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.2, February 2017 191

Fig. 16 Output of the KSM experiment noise experiment

3.2 Result Analysis

There are two main methods an attacker can use to
interpret the results they gather; real time monitoring, and
result set analysis. The majority of cache timing attack
research focuses on monitoring encryption algorithms in
an attempt to steal secret keys or reduce the time it takes to
calculate these keys [38, 39]. This information is retrieved
during the result set analysis and takes place after the
attack is run. Other applications of this side channel
include monitoring user inputs [32], data exfiltration [21],
and even reverse shell exploitation [29]. These attacks
require a timelier interpretation of attack results and rely
on a constant stream of data, therefore they implement the
real-time monitoring method. This section will explore the
use of each of these methods and discuss what types of
information attackers are able to gain from them.

3.2.1 Result Set Analysis

Result set analysis aims to interpret a large set of timing
attack results collected over a period of time. The aim of
the attacker is to record the state changes of a victim
system and then analyse these changes to infer some

pattern of functionality. This method is the more common
of the two, mainly due to the fact that most cache timing
attack research aims to monitor encryption algorithms and
crack secret keys, which requires this kind of result
analysis. The result set is usually analysed by an expert [32,
36, 39], but the analysis can also be automated depending
on the specific attack [21, 33, 41]. For example, Yarom et
al where able to show how this attack can be used to break
AES encryption. Their method requires visualizing the
result set as a graph where an expert would be able to
extract the generated key bit by bit [36]. Fig 17 illustrates
the data they generated from their attack and how the
expert is able to interpret it.

Fig. 17 Results from Yarom et al Flush+Reload attack on AES [36]

The attacker will have a good idea of how the victim
should behave and what behavioural patterns they can
expect to observe from their victim. They will then begin
recording the state of the cache at a time that the victim is
expected to be executing the targeted process. Once the
initial result set is collected it will be refined to only
contain results that are interesting to the attacker. This can
be done by scanning the data set until specific targeted
addresses are accessed, since the attack should only be
targeting a single, specific functionality. From here the
data is either visualized in a graph and interpreted by an
expert. In theory, this processes could be automated with
some analysis code but we were not able to find any
solutions of this kind in peer reviewed literature.

3.2.2 Real-time Monitoring

Monitoring the cache in real time allows an attacker to
respond to state changes in the cache in real time. Here,
the attacker will be looking for specific state change
patterns in the target system, which they can then interpret
in order to trigger some functionality. This method is used
primarily in covert channel attacks as a way for two parties
to communicate without being detected [19, 20, 21, 23, 24,
29]. This is achieved when two conspiring parties treat this

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.2, February 2017

192

side channel as a communications channel and attempt to
set up either one-way or two-way data transmission. In this
way, attackers are able to exfiltrate data [19, 20, 21] and
may even allow for a reverse shell connection [29]. Our
attack results in section 2.2.4 (Fig 14) are an example of
the real-time analysis method and illustrate how an
attacker can monitor specific user inputs or system states
in real time. This information may prompt the attacker to
launch further attacks or it may be used to trigger
automated scripts.

4. Conclusion and Future Work

In this paper, we accomplish three main objectives; we
have documented our attack environment, we have
dissected in detail our attack methodology, and we
discussed the process of collecting and analysing results
from the recreation attack. In order to set up our attack
environment, we utilized industry standard Linux based
technology. This allowed us to execute a recreation of the
cross VM Flush+Reload cache timing attack. We
documented this entire process in detail, including the
process of collecting and analysing results to extract
information. It is clear from the literature that this field of
research is gaining popularity as virtualization technology
is becoming a more common utility on the internet. From
here we aim to further the research in this field with a
focus on alternate uses for cross VM side channel attacks.

Our attack methodology discusses in detail the specifics of
our attack environment and the execution of our recreation
attack. We show that the vulnerabilities that allow this
cache timing attack to occur are still present in current
hardware and software. Using the Mastik framework, we
then successfully recreated a cache timing attack between
two VMs. Without correctly understanding and mitigating
these vulnerabilities cloud administrators can leave their
users vulnerable which may lead to untraceable data theft
and other compromises. In our paper, we outline our attack
methodology, describing in detail how an attacker is able
to carry out these attacks step by step. We believe that this
information will be valuable to cloud administrators and
new researchers in this field, helping them gain a foothold
in this recently popular topic.

We also discussed result collection and analysis. There are
a few technical pieces of information that an attacker must
obtain in order to correctly gather timing results. By
understanding what this information is and how attackers
obtain it, cloud administrators and developers will be able
to mitigate these attacks by making it harder for attackers
to set up their software. Similarly, understanding how
these results are analysed and interpreted can help
professionals and researchers make it harder for attackers
to gain any meaningful information out of their result
analysis.

Most research in cache timing attacks has been aimed at
cracking encryption algorithms and retrieving secret keys.
This has been true since the inception of this research topic
in the 1970s. We believe that this is due to the single OS
environment of these attacks. The advent of virtualization
technologies introduces new applications for these attacks
that have yet to be explored. It is only recently that
researchers have begun to introduced these new
applications with targets such as key stroke timing, partial
key logging, mouse activity logging, covert channel
attacks, and data exfiltration. Our future research will aim
to answer questions such as:
• What shared resources can and can’t be used as side

channels and what is the extent of their use?
• Can these attacks be used as a form of recognisant,

allowing for further comptonization of the target
system?

• •Is a malicious VM able to directly alter a target VMs
shared resource? If so, to what extent?

We believe that with our current virtualization lab we are
well equipped to tackle these questions and continue
research in this field well into the future.

References

[1] Irazoqui, G., Eisenbarth, T., & Sunar, B. (2016, May). Cross
processor cache attacks. In Proceedings of the 11th ACM on
Asia Conference on Computer and Communications
Security (pp. 353-364). ACM.

[2] Hay, B., Nance, K., & Bishop, M. (2011, January). Storm
clouds rising: security challenges for IaaS cloud computing.
In System Sciences (HICSS), 2011 44th Hawaii
International Conference on (pp. 1-7). IEEE.

[3] Bonneau, J., & Mironov, I. (2006, October). Cache-collision
timing attacks against AES. In International Workshop on
Cryptographic Hardware and Embedded Systems (pp. 201-
215). Springer Berlin Heidelberg.

[4] Inci, M. S., Gulmezoglu, B., Irazoqui, G., Eisenbarth, T., &
Sunar, B. (2015). Seriously, get off my cloud! Cross-VM
RSA Key Recovery in a Public Cloud. Cryptology ePrint
Archive, Report 2015/898, 2015. http://eprint. iacr. org.

[5] Chen, D., & Zhao, H. (2012, March). Data security and
privacy protection issues in cloud computing. In Computer
Science and Electronics Engineering (ICCSEE), 2012
International Conference on (Vol. 1, pp. 647-651). IEEE.

[6] Yu, H., Powell, N., Stembridge, D., & Yuan, X. (2012,
March). Cloud computing and security challenges.
In Proceedings of the 50th Annual Southeast Regional
Conference (pp. 298-302). ACM.

[7] Cayirci, E., Garaga, A., Santana, A., & Roudier, Y. (2014,
December). A cloud adoption risk assessment model.
In Proceedings of the 2014 IEEE/ACM 7th International
Conference on Utility and Cloud Computing (pp. 908-913).
IEEE Computer Society.

[8] van der Veen, V., Andriesse, D., Göktaş, E., Gras, B.,
Sambuc, L., Slowinska, A., ... & Giuffrida, C. (2015,
October). Practical context-sensitive cfi. In Proceedings of

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.2, February 2017 193

the 22nd ACM SIGSAC Conference on Computer and
Communications Security (pp. 927-940). ACM.

[9] Biedermann, S., Mink, M., & Katzenbeisser, S. (2012,
October). Fast dynamic extracted honeypots in cloud
computing. In Proceedings of the 2012 ACM Workshop on
Cloud computing security workshop (pp. 13-18). ACM.

[10] Gutierrez, E., Kohlenberg, T., Mahankali, S., & Sunderland,
B. (2012, January). Virtualizing High-Security Servers in.
Intel White Papers.

[11] Ibrahim, A. S., Hamlyn-harris, J. H., & Grundy, J. (2010).
Emerging security challenges of cloud virtual infrastructure.

[12] Hamlen, K., Kantarcioglu, M., Khan, L., & Thuraisingham,
B. (2012). Security issues for cloud computing. Optimizing
Information Security and Advancing Privacy Assurance:
New Technologies: New Technologies, 150.

[13] Agrawal, S. (2013). Establishing Trust in Cloud Computing.
Journal of Indian Research, 1(1), 91-97.

[14] Takabi, H., Joshi, J. B., & Ahn, G. J. (2010). Security and
privacy challenges in cloud computing environments. IEEE
Security & Privacy, (6), 24-31.

[15] Anthes, G. (2010). Security in the cloud. Communications
of the ACM, 53(11), 16-18.

[16] Kaufman, L. M. (2009). Data security in the world of cloud
computing. Security & Privacy, IEEE, 7(4), 61-64.

[17] Mansukhani, B., & Zia, T. A. (2011). An empirical study of
challenges in managing the security in cloud computing.

[18] Fernandes, D. A., Soares, L. F., Gomes, J. V., Freire, M. M.,
& Inácio, P. R. (2014). Security issues in cloud
environments: a survey. International Journal of
Information Security, 13(2), 113-170.

[19] Bates, A., Mood, B., Pletcher, J., Pruse, H., Valafar, M., &
Butler, K. (2014). On detecting co-resident cloud instances
using network flow watermarking techniques. International
Journal of Information Security, 13(2), 171-189.

[20] Ristenpart, T., Tromer, E., Shacham, H., & Savage, S. (2009,
November). Hey, you, get off of my cloud: exploring
information leakage in third-party compute clouds.
In Proceedings of the 16th ACM conference on Computer
and communications security (pp. 199-212). ACM.

[21] Wu, Z., Xu, Z., & Wang, H. (2015). Whispers in the hyper-
space: high-bandwidth and reliable covert channel attacks
inside the cloud. IEEE/ACM Transactions on Networking
(TON), 23(2), 603-614.

[22] Rodero-Merino, L., Vaquero, L. M., Caron, E., Muresan, A.,
& Desprez, F. (2012). Building safe PaaS clouds: A survey
on security in multitenant software platforms. computers &
security, 31(1), 96-108.

[23] Younis, Y. A., Kifayat, K., Shi, Q., & Askwith, B. (2015,
October). A New Prime and Probe Cache Side-Channel
Attack for Cloud Computing. In Computer and Information
Technology; Ubiquitous Computing and Communications;
Dependable, Autonomic and Secure Computing; Pervasive
Intelligence and Computing (CIT/IUCC/DASC/PICOM),
2015 IEEE International Conference on (pp. 1718-1724).
IEEE.

[24] Aciiçmez, O. (2007, November). Yet another
microarchitectural attack:: exploiting I-cache. In
Proceedings of the 2007 ACM workshop on Computer
security architecture (pp. 11-18). ACM.

[25] Bull, R. L., & Matthews, J. N. (2014). Exploring Layer 2
Network Security in Virtualized Environments. Retrieved
Oct, 19, 2014.

[26] Nir Valtman, Moshe Ferber. (2015). From 0 To Secure In 1
Minute — Securing IAAS. Defcon 23. Las Vegas:
DEFCON.

[27] Flynn, C. (2015). Don't Whisper my Chips: Side channel
and Glitching for Fun and Profit. Defcon 23. Las Vegas:
DEFCON.

[28] Yuriy Bulygin, Mikhail Gorobets, Alexander Matrosov,
Oleksandr Bazhaniuk, Andrew Furtak. (2015). Attacking
Hypervisors Using Firmware and Hardware. Defcon 23. Las
Vegas: DEFCON.

[29] Martineau, E. (2015). Inter-VM data exfiltration: The art of
cache timing covert channel on x86 multi-core. Defcon 23.
Las Vegas: DEFCON.

[30] Lampson, B. W. (1973). A note on the confinement problem.
Communications of the ACM, 16(10), 613-615.

[31] TCSEC, D. O. D. (1985). Trusted computer system
evaluation criteria. DoD 5200.28-STD, 83.

[32] Oren, Y., Kemerlis, V. P., Sethumadhavan, S., & Keromytis,
A. D. (2015). The Spy in the Sandbox--Practical Cache
Attacks in Javascript. arXiv preprint arXiv:1502.07373.

[33] Liu, F., Yarom, Y., Ge, Q., Heiser, G., & Lee, R. B. (2015,
May). Last-level cache side-channel attacks are practical. In
IEEE Symposium on Security and Privacy (pp. 605-622).

[34] VMware Inc., “Security considerations and disallowing
inter-virtual machine transparent page sharing,” VMware
Knowledge Base 2080735
http://kb.vmware.com/selfservice/microsites/search.do?lang
uage=en_US&cmd=displayKC&externalId=2080735, Oct
2014.

[35] Page, D. (2003). Defending against cache-based side-
channel attacks. Information Security Technical Report, 8(1),
30-44.

[36] Yarom, Y., & Falkner, K. (2014). Flush+ reload: a high
resolution, low noise, L3 cache side-channel attack. In 23rd
USENIX Security Symposium (USENIX Security 14) (pp.
719-732).

[37] García, C. P., Brumley, B. B., & Yarom, Y. " Make Sure
DSA Signing Exponentiations Really Are Constant-Time''.

[38] Irazoqui, G., Inci, M. S., Eisenbarth, T., & Sunar, B. (2014,
September). Wait a minute! A fast, Cross-VM attack on
AES. In International Workshop on Recent Advances in
Intrusion Detection (pp. 299-319). Springer International
Publishing.

[39] Yarom, Y., & Benger, N. (2014). Recovering OpenSSL
ECDSA Nonces Using the FLUSH+ RELOAD Cache Side-
channel Attack. IACR Cryptology ePrint Archive, 2014, 140.

[40] Hornby, T. Side-Channel Attacks on Everyday Applications:
Distinguishing Inputs with FLUSH+ RELOAD.

[41] Gruss, D., Spreitzer, R., & Mangard, S. (2015). Cache
template attacks: Automating attacks on inclusive last-level
caches. In 24th USENIX Security Symposium (USENIX
Security 15) (pp. 897-912).

[42] Yarom, Y. (2016, August). Mastik: A Micro-Architectural
Side-Channel Toolkit. Retrieved from School of Computer
Science Adelaide: http://cs.adelaide.edu.au/~yval/Mastik/

