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Abstract 
This paper proposes a design method of digital signature scheme 
based on the difficulty of the discrete logarithm problem. With 
the proposed method, we can develop a lot of other digital 
signature schemes to choose suitable for practical applications. 
Key words: 
Digital signature; Digital signature algorithm; Discrete 
logarithm problem. 

1. Problem Posing 

In 1985, T. ElGamal [l] proposed the digital signature 
scheme based on the discrete logarithm problem. Then, in 
1989, C.P. Schnorr [2] proposed an efficient signature 
scheme to shorten the length of the signature and to speed 
up the signature generation/verification process, and in 
1991, the NIST (National Institute of Standards and 
Technology) proposed the Digital Signature Algorithm 
(DSA) [3] for the digital signature standard based on  
ElGamal and Schnorr signature schemes. Currently, the 
digital signature has been widely applied in e-government, 
e-commerce ... in the world and initially deployed in 
Vietnam. Therefore, it is required to be set out the digital 
signature scheme research - development to design - 
manufacture new products, safe equipment and 
information security in countries such as  Vietnam. This 
paper proposes a construction method of digital signature 
scheme based on the difficulty of the discrete logarithm 
problem by generalizing ElGamal and Schnorr’s method, 
and some digital signature schemes have been developed 
based on this method. 

2. Construction of digital signature scheme 
based on discrete logarithm problem. 

2.1 Discrete logarithm problem 

Let p be a prime number and g is a generating element of 
ℤp* group. Then the discrete logarithm problem – DLP 
(Discrete Logarithm Problem) on the ℤp*, also known as 
the problem DLP(g,p) is stated as follow: 

DLP(g,p): For each positive integer y ∈ ℤp*, find x 
satisfying the following equation: 

ypg x =mod          (1.1) 

The algorithm for the discrete logarithm problem with the 
public parameters {p,g} written as an algorithm for 
calculating DLP(g,p)(.) with the input variable y and the 
value function is the root x of equation (1.1): 

)(),( yDLPx gp=  
In an electronic trading system, digital authentication 
application to authenticate the origin and integrity of 
information for the data message, the problem DLP(g,p) is 
difficult in the sense that it cannot be done in real time. 
There, each member U of the system selects secret key x 
at will satisfying: 1< x < (p-1), calculate and disclose 
parameters:  

pgy x mod=          (1.2) 

Note: 

(i) DLP (g,p) is difficult in the sense that it cannot be 
done in real time, but not difficult with ever y ∈ ℤp* at 
all, DLP (g,p) , for example, the pgy x mod=   with x is 
not large enough, by browsing gradually x = 1, 2, ... 
until finding root of (1.2) we will find the secret key x, 
so the value of the secret key x must be selected so that 
the calculation DLP (g,p)(y) is difficult. 

(ii) Such choice of x means that no one other than U 
knows the value of x, so knowing x is enough to verify 
that it is U. 

Currently, the problem is still considered to be difficult 
since no polynomial time algorithm for it is found and 
ElGamal cryptosystem [1] is an actual proof for the 
difficult solution of the problem. 

2.2 Construct generalized scheme  
Generalized scheme is used to develop digital signature 
scheme for practical applications. Generalized scheme 
proposed here is constructed basing on difficult solution of 
discrete logarithm problem and is designed as a signature 
generation scheme with 2 components similar to DSA in 
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America Digital Signature Standard (DSS) [3] or 
R34.10-94 GOST of Russian Federation [4], including 
methods of forming parameters, methods of forming and 
checking signature shown below. 

Method of initialization-generating parameters and keys 

Input data: p, q, and x. 

Results: g, y, H (.). 

Steps: 

1. Calculate generating elements of ℤp*: 
phg qp mod/)1( −= , with: ph <<1  

2.  Calculate public key:  pgy x mod±=   (2.1)             

3.  Select hash function H: { } qZ→∗1,0 ,  with: 

pq < .                      

Remarks: 

(i)  p, q: 2 prime numbers satisfy q | (p-1). 

(ii) x: secret key of signing object satisfy: qx <<1 . 

Method of signing messages 

Input data: p, q, g, x, M. 

Results: (e, s). 

Steps: 

1. Select value k satisfying: qk <<1 . Calculate value r 
by the formula:      

    (2.2) 

2.  The first component e of digital signature is selected 
in one of two forms: 

   (2.3) 

3. The second component s of digital signature is formed by 
one of following forms: 

   (2.4) 

or:    (2.5) 

or:      (2.6) 

Remarks: 

(i)  M: data messages for signing. 

(ii) (e, s):  signature on M of the object holding {x, y}. 

(iii) ),(),,(),,( 321 eMfeMfeMf : as a function of M and e.                           

Method of verifying signature 

Input data: p, q, g, y, M, (e, s). 

Results: Assert (e, s) is the valid signature ((e,s) = true) or 
(e,s) is false and/or M is no longer intact ((e, s) = false). 

Steps: 

1.  Calculate the value u:  

           ( ) ( ) ( ) pygu eMfeMfeMfs mod,.,,. 322 ×= , if s is 
calculated according to (2.4)                    (2.7) 

      or: 

           ( ) ( ) pygu eMfseMfs mod,.,. 32 ×= , if s is 
calculated according to (2.5)                    (2.8) 

      or: 

           ( ) ( ) ( ) pgyu eMfeMfeMfs mod,.,,. 3
1

2
1

2
−−

×= , if 
s is calculated according to (2.6)                  
(2.9) 

2.  Calculate the value v:  

          quMfv mod),(1=                 (2.10) 

3.  Check if: v = e, then:                     (2.11) 

        (e,s) = true, otherwise: (e,s) = false.                                                                

The correctness of the generalized scheme  

That need proving here is: if parameters and key are 
formed under (2.1), digital signature is formed according 
to the formula from (2.2) to (2.6), while checking digital 
signature shall be implemented from (2.7) to (2.10), the 
condition indicated by (2.11) will be satisfied. 
Proposition 1.1: 

Let p and q be two prime numbers with q is a divisor of 
(p-1), h is a positive integer less than p and 

phg qp mod/)1( −= , qkx << ,1 . If: pgy x mod−= , 
pgr k mod= , qrMfe mod),(1= , 

qeMfxeMfks mod)],(.),(.[ 3
1

2 += − , 

pygu eMfeMfeMfs mod),().,(),(. 322 ×= , 
quMfv mod),(1=   then: ev = . 

Proof: 

Indeed, we have: 

(2.12) 
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From (2.2) and (2.12) we have: u = r.            

Therefore: 

(2.13) 

From (2.3) and (2.13) we infer: v = e. 

Things are proved.  

Proposition 1.2: 

Let p and q be two prime numbers with q is a divisor of 
(p-1), h is a positive integer less than p and 

phg qp mod/1( −= , qkx << ,1 . If: pgy x mod= , 
pgr k mod= , qrMfe mod),(1= , 

qeMfxeMfks mod)],(.),(.[ 1
32

−+= , 

pygu eMfseMfs mod),(.),(. 32 ×= , quMfv mod),(1=  then: 
ev = . 

Proof: 

Indeed, we have: 

       

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

pg
pg

pgg

pygu

k

eMfxeMfeMfxeMfk

eMfxeMfkeMfxeMfxeMfkeMf

eMfseMfs

mod
mod

mod

mod

1
3232

1
323

1
322

32

,.,.,.,.

,.,..,.,.,..,

),(.),(.

=

=

×=

×=

−

−−

++

++

                                          (2.14) 

From (2.2) and (2.14) we have: u = r.            

Therefore: 

        qrMfquMfv mod),(mod),( 11 ==    (2.15) 

From (2.3) and (2.15) we infer: v = e. 

Things are proved. 

Proposition 1.3: 

Let p and q be two prime numbers with q is a divisor of 
(p-1), h is a positive integer less than p and 

phg qp mod/1( −= , qkx << ,1 . If: pgy x mod= , 
pgr k mod= , qrMfe mod),(1= , 

qeMfeMfkxs mod)],(),(..[ 32
1 += −

, 
( ) ( ) ( ) pgyu eMfeMfeMfs mod,.,,. 3

1
2

1
2

−− −×= , quMfv mod),(1=  
then: v=e. 

Proof: 

Indeed, we have: 

       

( ) ( )

( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

pg
pg

pgg

pgyu

k

eMfeMfeMfeMfk

eMfeMfeMfeMfkxeMfx

eMfeMfeMfs

mod
mod

mod

mod

,.,.,.,

,.,.,,...,.

),(.,,.

3
1

23
1

2

3
1

232
11

2

3
1

2
1

2

=

=

×=

×=

−−

−−−

−−

−+

−+

−

 (2.16) 

From (2.2) and (2.16) we have: u = r.            

Therefore: 

 (2.17) 

From (2.3) and (2.17) we infer: v = e. 

Things are proved. 

2.3 Some digital signature schemes developed from 
the generalized form 

2.3.1 The scheme LD 16.12 – 01  

Scheme LD 16.12 – 01 was developed from the 
generalized scheme with (2.4) and (2.7), selections: 

qrrMf mod),(1 = , eeMf =),(2  and )(),(3 MHeMf = , 
where H (.) is a hash function and H (M) is the 
representative value of the signed message M. The public 
key is calculated by using the formula: pgy x mod−= . The 
proposed new signature scheme consists of two 
algorithms: (a) signing messages, and (b) verifying 
signature - are described in Table 1.1 and Table 1.2 below. 
The algorithm initialization – generating parameters and 
keys similar to Generalized scheme. 

a) Algorithm for signing messages  

Table 1.1. Algorithm for signing messages  
Input: p, q, g, x, M. 
Output: (e, s). 
[1].  select k: qk <<1  
[2].  pgr k mod←    (3.1) 
[3].  qre mod←    (3.2) 
[4].  qMHxeks mod)]([ 1 ×+×← −  (3.3) 
[5].  return (e, s) 

Notes: 

(i) U: signing object possesses the secret key x. 

(ii) M: Message signed by the object U. 

(iii) (e, s):  the signature of  U on M. 

b) Algorithm for verifying signature 

Table 1.2. Algorithm for verifying signature 
Input: p, q, g, y, M, (e, s). 
Output: (e, s) = true / false . 
[1].  pygu MHees mod)(.. ×←   (3.4) 
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[2].  quv mod←    (3.5) 
[3].  if ( ev =  ) then {return true } 
      else {return false } 

 

c) The correctness of the scheme LD 16.12 – 01  

Set: qrrMf mod),(1 = , eeMf =),(2  and )(),(3 MHeMf = . 
By (3.1), (3.2), (3.3), (3.4), (3.5) and Proposition 1.1, it is 
easy to get things proved here: ev = . 

2.3.2 The scheme LD 16.12 – 02   

Scheme LD 16.12 – 02  was developed from the 
generalized scheme with (2.5) and (2.8), selections: 

qrrMf mod),(1 = , eeMf =),(2 , )(),(3 MHeMf = , the 
public key is calculated by using the formula: 

pgy x mod= . The algorithms: (a) signing messages, and 
(b) verifying signature are described in Table 2.1 and 
Table 2.2 below. The algorithm initialization-generating 
parameters and keys similar to Generalized scheme. 

a) Algorithm for signing messages 

Table 2.1. Algorithm for signing messages 
Input: p, q, g, x, M. 
Output: (e, s) - the signature of  U on M. 
[1].  select k: qk <<1  
[2].  pgr k mod←    (5.1) 
[3].  qre mod←    (5.2) 
[4].  qMHxeks mod)]([ 1−×+×←  (5.3) 
[5].  return (e, s) 

b) Algorithm for verifying signature 

Table 2.2. Algorithm for verifying signature 
Input: p, q, g, y, M, (e, s) 
Output: (e, s) = true / false . 
[1].  pgyu esMHs mod.)(. ×←   (5.4) 
[2].  quv mod←    (5.5) 
[3].  if ( ev = ) Then {return true } 

      else {return false } 
c) The correctness of the scheme LD 16.12 – 02  

Set: qrrMf mod),(1 = , eeMf =),(2 , )(),(3 MHeMf =  . By 
(5.1), (5.2), (5.3), (5.4), (5.5) and Proposition 1.2, we 
have: v=e. Things are proved. 

2.3.4 The scheme LD 16.12 – 03   

Scheme LD 16.12 – 03 was developed from the 
generalized scheme with (2.6) and (2.9), selections: 

qrMHrMf mod)||(),(1 = , 1),(2 =eMf  and eeMf =),(3 , the 
public key is calculated by using the formula: pgy x mod= . 
The algorithms: (a) signing messages, and (b) verifying 
signature are described in Table 3.1 and Table 3.2 below. 

The algorithm initialization-generating parameters and 
keys similar to Generalized scheme. 

a) Algorithm for signing messages  

Table 3.1. Algorithm for signing messages 
Input: p, q, g, x, M. 
Output: (e, s). 
[1].  select k: qk <<1  

[2].  pgr k mod←    (6.1) 
[3].  qrMHe mod)||(←   (6.2) 

[4].  ( ) qekxs mod1 +×← −   (6.3) 
[5].  return (e, s) 

b) Algorithm for verifying signature 

Table 3.2. Algorithm for verifying signature 
Input: p, q, g, y, M, (e, s). 
Output: (e, s) = true / false . 
[1].  pygu se mod×← −   (6.4) 
[2].  quMHv mod)||(←   (6.5) 
[3].  if ( ev = ) Then {return true } 
      else {return false } 

c) The correctness of the scheme LD 2.02 

Set: qrMHrMf mod)||(),(1 = , 1),(2 =eMf  and 
eeMf =),(3 . By (6.1), (6.2), (6.3) (6.4), (6.5) and 

Proposition 1.3, we have: v=e. Things are proved. 

2.4 The safety level of the proposed schemes 

The safety level of digital signature scheme is generally 
assessed through following capabilities: 
a) Prevent attacks which reveal the secret key 

 In the proposed new schema, the public key of signer is 
formed from the secret key corresponding to: 

pgy x mod±= . Thus, the ability of attack prevention of 
this scheme depends on the difficulty solution of the 
discrete logarithm problem DLP(p,q). 
b) Anti – phishing signature  

Verifying algorithm of the proposed new schema show 
that a fake pair (e,s) will be recognized as valid digital 
signature for a message M if it satisfies conditions shown 
in Table 5 as follows: 

Table 5. 

Scheme Conditions for (e,s) to be the 
valid signature for the message M 

LD 16.12 – 01    ( ) qpyge MHees modmod)(.. ×=  

LD 16.12 – 02  ( ) qpgyu esMHs modmod.)(. ×=  

LD 16.12 – 03  ( )( ) qpgyMHe es modmod|| −×=  
The nature of finding the (e,s) satisfying the conditions 
shown in Table 5 is solving the discrete logarithm problem 
DLP(p,q). 
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3. Conclusion 

This paper proposes the design method of digital signature 
scheme based on the discrete logarithm problem by 
developing a generalized schema, thereby developing 
some schemes that can be applied in practice. The safety 
level of the new proposed schema is evaluated by the 
difficulty level of the discrete logarithm problem. 
However, the schemes should be carefully evaluated in 
terms of the safety level as well as effective 
implementation to be applied in practice. 
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