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Summary 
The use of Gaussian Mixture Model (GMM) is most common in 
speaker identification. The most of the computational processing 
time in GMM is required to compute the likelihood of the test 
speech of the unknown speaker with consider to the speaker 
models in the database. The time required for speaker 
identification is depending to the feature vectors, their 
dimensionality and the number of speakers in the database. In 
this paper, we focused on optimizing the performance of 
Gaussian mixture (GMM) and adapted Gaussian mixture model 
(GMM-UBM) based speaker identification system and proposed 
a new approach for calculation of model parameters by using 
vector quantization (VQ) techniques to increase recognition 
accuracy and reduce the processing time. Our proposed modeling 
is based on forming clusters and assigning weights to them 
according to upon the number of mixtures used for modeling the 
speaker. The advantage of this method is in the reduction in 
computation time which depends upon how many mixtures are 
used for training the speaker model by a substantial value 
compared with approaches which use expectation maximization 
(EM) algorithm for computing the model parameters. 
Key words: 
Speaker identification, Gaussian mixture model, EM algorithm, 
Vector quantization, Feature extraction. 

1. Introduction 

   Statistical models such as Hidden Markov Models 
(HMM), Neural Networks (NN), Support Vector Machines 
(SVM) and Gaussian Mixture Models (GMM) have been 
used in speaker recognition in the past several years. Using 
a Gaussian mixture model due to having a number of 
advantages has become a classic and successful method in 
speaker recognition and makes it suitable for modeling the 
probability distributions over vectors of input features [1]. 
Generally, speaker identification system consists of three 
phases [2-3]. Feature extraction is the first step and 
followed by feature selection where the speech signal is 
extracted to feature vectors. Speech can be characterized in 
terms of the signal carrying message  
 
Information and also this kind of signal has been very 
useful in some applications. Feature extraction could get 
three main types of information: Speech Text, Language 
and Speaker Identity. The second step is speaker modeling 

and developing a speaker model database. By using feature 
vectors extracted from a given speaker’s training 
utterance(s), a speaker model is trained and stored into the 
system database. In text-dependent mode, the model is 
utterance-specific and it includes the temporal 
dependencies between the feature vectors. The last step is 
decision making.  
   This paper focused on the calculation of model 
parameter in text-independent speaker identification 
systems using Gaussian mixture model and adapted 
Gaussian mixture model. We are optimist in searching an 
approach to reduce the computational time in speaker 
modeling [4-6]. The most important step of speaker 
modeling is the calculation of model parameters [7]. In this 
paper EM algorithm is used for the calculation of model 
parameters for both GMM and GMM-UBM approaches. 
   We consider a speaker identification system based on the 
EM algorithm for calculating the model parameters and we 
have investigated another method by using the VQ 
technique to calculate the model parameters. For these 
approaches, i.e., GMM based on EM and GMM based on 
VQ (GMM-UBM based on EM and GMM-UBM based on 
VQ), the recognition rates and computation time are 
compared. It has been shown out that even though the 
recognition accuracy of two methods is nearly equal but 
the computation time is considerably reduced in the new 
method. In Section II, we discuss how to use Mel-
Frequency Cepstral Coefficients (MFCC) for feature 
extraction of speech and explain the front-end processing 
technique in short [8-10]. 
   Section III and IV explain the Gaussian mixture model 
based speaker identification and maximum likelihood 
parameter estimation to compute model parameters 
respectively [11-14]. Adapted Gaussian mixture model is 
explained in section V. The sixth section is dedicated to 
introducing the new method for computing model 
parameters using Vector Quantization. Experimental 
results and its discussion are presented In Section VII, and 
conclusions are shown in last Section. 



IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.2, February 2017 

 

236 

 

2. Speech Feature Extraction 

   For all the recognition systems, there are two main 
phases. The first phase is called training phase and the next 
phase is called identification or (testing) phase.  Training 
and Testing are two important steps of an identification 
system. Training phase is to get the speaker models or 
voiceprints for speaker database. In this phase, the most 
useful features are extracted from speech signal for speaker 
identification or verification, and train models to get 
optimal system parameters. Feature extraction is the heart 
of the speaker identification system. In testing phase, the 
same method for extracting features as in the first phase is 
used for the incoming speech signal, and then the speaker 
models getting from enrollment phase are used to calculate 
the similarity between the new speech signal model and all 
the speaker models in the database. Fig. 1 shows the 
training and testing phases for speaker identification. The 
human speech signal conveys many levels of information 
ranging from phonetic content to speaker identity and even 
emotional status. Human voice before its final form passes 
through two different systems. The first system is vocal 
folds and the second system is vocal tract [15]. The aim of 
feature extraction stage is to extract the speaker particular 
information as feature vectors. 

 

 

Fig. 1 (a) Training phase, (b) Testing phase. 

   The MFCC is a method that analyzes how the Fourier 
transform extracts frequency components of a signal in the 
time-domain. Popular features for describing speech signal 
are MFCC. In this paper, MFCCs is used for feature 
extraction which take human ear's frequency response into 
consideration. Process of feature extraction is shown in Fig. 
2 and the comprehensive method is explained in [16-17]. 
In the frame blocking the input speech waveform is 
divided into frames of approximately 30 milliseconds. The 
windowing block minimizes the discontinuities of the 
signal by tapering the beginning and end of each frame to 
zero. 
 

 

Fig. 2 Mel-frequency Cepstral Coefficients feature extraction process. 
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   Each frame converts from the time domain to the 
frequency domain by the FFT block then the magnitude 
spectrum of the utterance is passed through a bank of 
triangular-shaped filters. The energy output of each filter is 
compressed and transformed to the Cepstral domain via the 
DCT. 

 Cepstrum, )(nc in its simplest form is the discrete cosine 

transformation of the Mel-spectrum of a signal, )(ns in 
logarithmic amplitudes and can be mathematically defined 
as 
 ( ) ( )( )( )nsfftlofifftnc =                                         (1) 

 
   Speech signal consists of many features that all of them 
are not important for speaker discrimination [22], [24]. An 
ideal feature would: 
 

• have large between-speaker variability and small 
within-speaker variability 

• be robust against noise and distortion  
• occur frequently and naturally in speech 
• be easy to measure from speech signal 
• be difficult to impersonate/mimic 
• Not be affected by the speaker’s health or long-

term variations in voice. 

3. Gaussian Mixture Model 

   GMM is a classic parametric method best used for 
speaker modeling due to the fact that Gaussian components 
have the capability of representing some general speaker 
dependent spectral shapes. Modeling techniques like 
GMM are to generate speaker models from Feature vectors 
that obtained from the above step by using statistical 
variations of the features. A GMM is a parametric 
probability density function represented as a weighted sum 
of Gaussian component densities that is shown to provide a 
smooth approximation to the underlying long-term sample 
distribution of observations obtained from utterances by a 
given speaker [18]. An important step in the 
implementation of the likelihood ratio detector is selection 
of the actual likelihood function. The choice of this 
function is largely dependent on the features being used as 
well as specifics of the application. For text-independent 
speaker recognition, where there is no prior knowledge of 
what the speaker will say, the most successful likelihood 
function has been Gaussian mixture models. A Gaussian 
mixture model is generated from a mixture of a finite 
number of Gaussian distributions that each distribution is 

defined by a mean vector µ i , a covariance matrix 
∑ =

M
i 1 and a mixture weight ρ i . In a GMM model, the 

probability distribution density given by the following 
equation: 

                                                               
 
                                           (2) 
 

Where x  is a D-dimensional random 

vector, =ixbi ),(  1,…, M , are the component densities 

and =ipi , 1,…, M, are the mixture weights.  
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   Mean vectors, covariance matrices and mixture weights 
parameterize the complete Gaussian mixture density. 
These parameters are represented by { }∑= iii ,,µρλ , 
i=1,.., M. 
   Each speaker in a speaker identification system can be 
represented by a GMM and is referred to by the speaker’s 
respective model λ. The parameters of a GMM model can 
be estimated using maximum likelihood (ML) estimation. 
The main objective of the ML estimation is to derive the 
optimum model parameters that can maximize the 
likelihood of GMM. 

4. Maximum Likelihood Parameter 
Estimation 

   Unfortunately direct maximization using ML estimation 
is not possible and therefore a special case of ML 
estimation known as Expectation-Maximization (EM) 
algorithm is used to extract the model parameters. The goal 
of this technique is to maximize the following formula with 
best matches in distribution of training vectors.  
 

( ) ( )∏
=

=
T

t
txpXp

1

λλ 
                                                              (4)  

 
   Where { }TxxX  ,...,1= is a set of T training vectors. 
The EM algorithm is used to estimate parameters. The goal 
of the EM algorithm is to compute the model parameters 
iteratively till ( ) ( )kk XpXp λλ ≥+1 . 

 
   To guarantee the above condition, the following 
formulae are used:  
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   Where for acoustic class i is given by 

 
 

                                                  
(8) 

       
 
    A group of S speakers S={1,2,…,S}  is represented by 
GMM’s { }sλλ ,...,1  For speaker identification . Finding 
the speaker model which has the maximum a posteriori 
probability of a given observation sequence is the 
identification's aim. 
 
   ( )kSk

XpS λ
≤≤

=
1
maxargˆ                                             (9) 

5. Adapted Gaussian mixture model 

   In the GMM-UBM system we use a single, speaker 
independent background model to represent )( λXp . The 
UBM is a large GMM trained to represent the speaker-
independent distribution of features. Specifically, we want 
to select speech that is reflective of the expected 
alternative speech to be encountered during recognition. 
This applies to both the type and the quality of speech, as 
well as the composition of speakers. There are many 
approaches that can be used to obtain the final model to 
train the UBM [19]. 
 
   The simplest is to merely pool all the data to train the 
UBM via the EM algorithm. One should be careful that the 
pooled data are balanced over the subpopulations within 
the data. In this system, we derive the hypothesized 
speaker model by adapting the parameters of the UBM 

using the speaker’s training speech and a form of Bayesian 
adaptation Unlike the standard approach of maximum 
likelihood training of a model for the speaker 
independently of the UBM, the basic idea in the adaptation 
approach is to derive the speaker’s model by updating the 
well-trained parameters in the UBM via adaptation. Like 
the EM algorithm, the adaptation is a two steps estimation 
process. The first step is identical to the expectation step of 
the EM algorithm. Unlike the second step of the EM 
algorithm, for adaptation these new sufficient statistic 
estimates are then combined with the old sufficient 
statistics from the UBM mixture parameters using a data-
dependent mixing coefficient. For mixture i in the UBM, 
we compute equation (3) that is the same as the 
expectation step in the EM algorithm. Finally, these new 
sufficient statistics from the training data are used to 
update the old UBM sufficient statistics for mixture i to 
create the adapted parameters for mixture i with the 
equations: 
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   The adaptation coefficients controlling the balance 
between old and new estimates are { }v

i
m
i

w
i ααα ,,  for the 

weights, means and variances, respectively. The scale 
factor γ is computed over all adapted mixture weights to 
ensure they sum to unity. For each mixture and each 
parameter, a data-dependent adaptation coefficient 

ρα i
, { }vmw ,,∈ρ  , is used in the above equations. This is 

defined as 
 

        ρ
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n

i

i
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     Where ρr  is a fixed relevance factor for parameter ρ . 

6. Vector Quantization Approach 

   For calculating model parameters, the vector 
quantization (VQ) method and its uses are introduced in 
this section [20]. Vector quantization is an approach to 
mapping vectors to a finite number of regions in the space 
as it shows in Fig. 3. Regions are called clusters and can be 
represented by their centers. Each center called a code 
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word and the collection of all code words is a code book. 
The VQ codebook has a small number of highly 
representative vectors that efficiently represent the speaker 
specific characteristics. 
This is a method used for reducing or compressing the 
number of training vectors required in a recognition system. 
In this new approach, VQ as a modeling technique was 
used in speaker identification [21]. After obtaining the 
feature vectors of the input speech segment, feature vectors 
are divided into a certain number of clusters, M that 
introduced as a codebook size using the approach in [22]. 
Each cluster has one centroid which representing the mean 
of all the feature vectors related to that cluster. The 
identification error percentage is directly depending on the 
size of the codebook [23]. This technique was used to find 
the M clusters such that each cluster has a weight of at 
least 1/M. In equation (3), we have used the centroids of 
these clusters as a mean. By using feature vectors 
belonging to each of the M clusters the covariance matrix 
is obtained. By this way all the parameters are obtained in 
equation (3). 

-6 -4 -2 0 2 4 6

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

 

Fig. 3 Mapping vectors in the space using VQ approach. 

The means for M mixtures are randomly initialized in the 
previous approach (using EM for calculating model 
parameters). In a 2-dimensional feature vector space, it 
may this space be dense in certain regions where most of 
the feature vectors are located and some feature vectors are 
at larger distances from feature vectors in the dense area, 
so it could devote feature vectors which are at higher 
distances from other feature vectors, as a means but VQ 
technique takes into consideration feature vectors 
belonging to that cluster only by using clustering approach. 
This minimizes the value of x( - µ i ) in equation (3). This 
approach despite keeping all the advantages Gaussian 
Mixture Modeling technique has efficient result for 
calculating model parameter. 

7. Experiments setup, result and discussion 

As a test material for our experiments we used the Farsdat 
database. The experiments were made using a speaker 

database containing speech data from 100 speakers. 
Distribution of male and female speakers on the speaker 
database is almost equal. Two sessions for training and 
testing sessions were used. Our experiments operate on 
Cepstral features, extracted using a 24-ms Hamming 
window with 10 milliseconds overlapping. The signal was 
pre emphasized by the filter H (z) =1-0.97·z-1 and silence 
frame was removed before the feature extraction. 12 
MFCCs together with log energy were calculated using a 
bank of 13 filters as mentioned in [24]. Thus we have 
obtained 12-dimensional feature vectors. For training 
phase, training was done in different durations: 30sec and 
60sec. System was tested using 10sec test frames. 
Two sets of experience were done; EM algorithm is used 
for training the model in the first set of experiments for 
GMM and GMM-UBM approaches. In the second set, 
Vector Quantization have used for computing the model 
parameters. 

Table1: Identification accuracy and running time for EM-GMM and      
VQ-GMM approach (training with 30sec and testing with 10sec) 

 
M EM-GMM VQ-GMM 

 Accuracy Time Accuracy Time 
8 82 9.6321 85 5.8866 

16 89 14.6712 91 7.7798 
32 89 28.0978 91 12.3149 
64 90 45.8909 92 13.9794 

128 90 78.1192 94 22.4089 

Table2: Identification accuracy and running time for EM-GMM and VQ-
GMM approach (training with 60sec and testing with 10sec) 

M EM-GMM VQ-GMM 
 Accuracy Time Accuracy Time 
8 78 4.2298 82 2.6376 

16 83 6.4272 85 3.3267 
32 83 11.8467 85 3.6709 
64 85 21.6620 86 5.9567 

128 85 40.2443 86 8.9876 
 
If the cluster for every centroid has weight of 1/M (M is 
the number of mixtures), stops splitting but if the cluster 
has a weight less than 1/M, the centroids are split again. 
Selection of M is important for shorter training data. The 
covariance is computed based on the data for each cluster. 
Identification accuracy is calculated for 10sec testing data 
using training model parameters obtained from the above 
steps. 
   Tables 1 and Table 2 show a comparison of considering 
the accuracy and timelines required between GMM based 
on EM and GMM based on VQ for different training and 
testing times.  Furthermore, Table 3 shows GMM-UBM 
based on EM and GMM-UBM based on VQ for training 
and testing times as for Table 1 and 2. 
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Table3: Identification accuracy and running time for EM-GMM-UBM 
and VQ-GMM-UBM approach (training with 30sec and testing with 

10sec) 
M 
 

EM-GMM-UBM VQ-GMM-UBM 
Accuracy Time Accuracy Time 

8 84 7.5466 86 3.7655 
16 91 12.6672 93 6.1312 
32 91 19.9879 93 9.8087 
64 93 36.1243 95 12.5998 

128 94 58.2556 95 19.4497 
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Fig. 4 Comparison of VQ-GMM and EM-GMM approach for 128 
mixtures. 

  0.1   0.2  0.5    1     2     5     10    20    40  

  0.1 

  0.2 

 0.5  

  1   

  2   

  5   

  10  

  20  

  40  

False Alarm probability (in %)

M
is

s 
pr

ob
ab

ili
ty

 (i
n 

%
)

DET curve

 

 

VQ-GMM-UBM
6.53
EM-GMM-UBM
12.72

 

Fig. 5: Comparison of VQ-GMM-UBM and EM-GMM-UBM approach 
for 128 mixtures. 

   Fig. 4 and Fig. 5 show the above set of experiments 
which are plotted on the DET curve. 128 mixtures are used 
in this experiment. Training duration is of 60sec and test 

duration is of 10sec. We can see that, VQ-GMM and VQ-
GMM-UBM approaches have a slightly better performance 
rather than EM-GMM and EM-GMM-UBM respectively. 
We compare the effect of model size using VQ-GMM and 
VQ-GMM-UBM approaches on speaker identification 
performance in the next experiment. The training is 60sec 
and testing is 10sec. Referring to Fig. 6 and Fig. 7, the 
curves showed that the increase in the number of mixtures 
increases the performance of the system.  
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Fig. 6 Effect of model size on speaker identification using VQ-GMM 
approach. 
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Fig. 7 Effect of model size on speaker identification using VQ-GMM-
UBM approach. 
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8. Conclusion 

The implementation of GMM based speaker identification 
has been addressed in this paper. Four approaches were 
used for training the speaker model. It has been shown that 
using VQ-GMM and VQ-GMM-UBM in the model 
parameters calculation have a slight improvement in 
identification accuracy. Considerable improvement is 
observed in computational time. Table I and Table III 
showed a speedup factor of 7 was achieved in the first set 
of experiments with 128 mixtures and training duration of 
30 Sec, while in the second set of experiments a speedup 
factor 5 was achieved  with 256 mixtures and training data 
of 60sec as shown in the Table II. 
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