
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.3, March 2017

228

Manuscript received March 5, 2017

Manuscript revised March 20, 2017

An Introduction to Docker and Analysis of its Performance

Babak Bashari Rad, Harrison John Bhatti, Mohammad Ahmadi
Asia Pacific University of Technology and Innovation

Technology Park Malaysia, Kuala Lumpur, Malaysia

Summary
Docker provide some facilities, which are useful for developers

and administrators. It is an open platform can be used for building,

distributing, and running applications in a portable, lightweight

runtime and packaging tool, known as Docker Engine. It also

provide Docker Hub, which is a cloud service for sharing

applications. Costs can be reduced by replacing traditional virtual

machine with docker container. It excellently reduces the cost of

re-building the cloud development platform.

Key words:
Docker, Docker Container, Virtual Machine, Virtualization,

Cloud Computing.

1. Introduction

Docker is an open source platform that run applications and

makes the process easier to develop, distribute. The

applications that are built in the docker are packaged with

all the supporting dependencies into a standard form called

a container. These containers keep running in an isolated

way on top of the operating system’s kernel. The extra layer

of abstraction might effect in terms of performance [1].

Even thou, the technologies of the container have been

around for over 10 years, but docker, a generally new

hopeful is right now a standout amongst the best

innovations, since it accompanies new capacities that prior

technologies did not have. Initially, it gives the facility to

create and control containers. Besides that, applications can

easily be packed into lightweight docker containers by the

developer. These virtualized applications can easily be

worked anywhere without any alteration. Moreover, docker

can convey more virtual situations than different

innovations, on the same equipment. To wrap things up,

docker can easily coordinate with third-party instruments,

which help to easily deploy and manage docker containers.

Docker containers can easily be deployed into the cloud-

based environment [2].

This paper is a review on technology of docker, and will

analyse its performance by a systematic literature review.

The article is organised as follow. Next section will

introduce the technology of docker. In Section 3, a more

detailed description of docker and its components will be

presented. Section 4 briefly compare technology of Virtual

Machine and Docker. Sections 5 and 6 will discuss the

advantages and disadvantages of docker container,

respectively. In Section 6 and 7, we briefly review few

recent researches on measuring the performance of Docker

and compare it with other container technologies. Finally,

in section 9 and 10, features in virtual machines and

containers will be briefly summarised, following with a

short summary of the paper.

2. Docker

Docker provides a facility to automate the applications

when they are deployed into Containers. In a Container

environment where the applications are virtualized and

executed, docker adds up an extra layer of deployment

engine on top of it. The way that docker is designed is to

give a quick and a lightweight environment where code can

be run efficiently and moreover it provides an extra facility

of the proficient work process to take the code from the

computer for testing before production [9]. Russell (2015)

confirms that, as quick as it is possible docker allows you to

test your code and deploy it into the production environment

[6]. Turnbull (2014) concludes by saying that docker is

amazingly simple [9]. Certainly, you can begin with a

docker with a simple configuration system, a docker binary

with Linux kernel.

3. Docker Inside

There are four main internal components of docker,

including Docker Client and Server, Docker Images,

Docker Registries, and Docker Containers. These

components will be explained in details in the following

sections.

3.1 Docker Client and Server

Docker can be explained as a client and server based

application, as depicted in Figure 1.

The docker server gets the request from the docker client

and then process it accordingly. The complete RESTful

(Representational state transfer) API and a command line

client binary are shipped by docker. Docker daemon/server

and docker client can be run on the same machine or a local

docker client can be connected with a remote server or

daemon, which is running on another machine [9].

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.3, March 2017

229

Fig. 1 Docker architecture [9].

3.2 Docker Images

There are two methods to build an image. The first one is to

build an image by using a read-only template. The

foundation of every image is a base image. Operating

system images are basically the base images, such as

Ubuntu 14.04 LTS, or Fedora 20. The images of operating

system create a container with an ability of complete

running OS. Base image can also be created from the

scratch. Required applications can be added to the base

image by modifying it, but it is necessary to build a new

image. The process of building a new image is called

“committing a change”. The second method is to create a

docker file. The docker file contains a list of instructions

when “Docker build” command is run from the bash

terminal it follows all the instructions given in the docker

file and builds an image. This is an automated way of

building an image.

3.3 Docker Registries

Docker images are placed in docker registries. It works

correspondingly to source code repositories where images

can be pushed or pulled from a single source. There are two

types of registries, public and private. Docker Hub is called

a public registry where everyone can pull available images

and push their own images without creating an image from

the scratch. Images can be distributed to a particular area

(public or private) by using docker hub feature.

3.4 Docker Containers

Docker image creates a docker container. Containers hold

the whole kit required for an application, so the application

can be run in an isolated way. For example, suppose there

is an image of Ubuntu OS with SQL SERVER, when this

image is run with docker run command, then a container

will be created and SQL SERVER will be running on

Ubuntu OS.

4. Virtual Machine vs. Docker

Virtualization is an old concept, which has been in used in

cloud computing, after IaaS has been accepted as a crucial

technique for system constitution, resource provisioning,

and multi-tenancy. Virtualized resources play the main role

in solving the problems using the core technique of cloud

computing. The Figure 2 shows the architecture of the

virtual machine.

 Fig. 2 Virtual Machine architecture [11].

Hypervisor is lying between host and guest operating

systems. It is a virtual platform and it handles more than one

operating system in the server. It works between the

operating system and CPU. The virtualization divides it into

two segments: the first one is Para-Virtualization and the

second one is Full Virtualization [3]. Figure 3 depicts the

architecture of the Docker Container.

Linux containers are managed by the docker tool and it is

used as a method of operating system level virtualization.

Figure 3 shows that in single control host there are many

Linux containers, which are isolated. Resources such as

Network, Memory, CPU, and Block I/O are allocated by

Linux kernel and it also deals with cgroups without starting

virtualization machine [8].

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.3, March 2017

230

Fig. 3 Docker Container architecture [11].

According to Waldspurger (2002), in the Linux containers,

an architecture is to manage CPU and distribute its

resources more proficiently. In any example of Hyper-V or

VMWare, because of overhead incurred, it is not easy to run

more than ten virtual machines [13]. Up to a great extent,

this issue has been solved by the containers. Containers only

utilize those resources, which are needed for the services or

applications. Therefore, on a weak configured machine,

above 50 requests of the containers can be executed.

For example, suppose an organisation provides email

security services. The major functions of these services are

to check emails for viruses, spam, and malware. Moreover,

it could manage to transfer messages to the agent, logs and

report delivery failure if the product is installed in the cloud

[10]. Mostly in these cases, there is no use of any associated

dependencies or OS level libraries or any kernel data

structure. Therefore, it is worthwhile to containerized every

component by sandboxing them utilizing OpenVZ or

Docker instead of having virtual machines.

In many enterprises, virtual machines are used to perform

element testing. In this process, a lot of CPU resources and

memory space are consumed. Whereas, container

technology provides a guarantee to their users that excess of

a workload would not affect the efficiency of the resources.

The container takes less time for installation as compared to

virtual machines, so the adaptability of containers is much

higher than VMs.

Furthermore, both Docker and OpenVZ have been under

great examination in terms of their security aspects. When

isolation is reduced, it directly affects the security, which

also decreases rapidly. Root users of Linux can easily get

access to containers as containers also use the same kernel

and operating system. The isolation of docker is not as

strong as a virtual machine, even though docker isolates the

application, which is running in the docker container from

its primary host. Additionally, it is possible that some of the

applications would not be able to run in a containerized

technology and they need to run on a different operating

system.

5. Advantages of Docker Container

The demand and the advancement of Linux containers

can be seen in the last few years. Docker has become

popular very quickly, because of the benefits provided

by docker container. The main advantages of docker

are speed, portability, scalability, rapid delivery, and

density.

5.1 Speed

Speed is one of the most exceedingly touted advantages of

Containers. When the benefits of using docker are

highlighted, it would be incredible not to mention about the

speed of docker in the conversation (Chavis & Architect,

2015). The time required to build a container is very fast

because they are really small. Development, testing, and

deployment can be done faster as containers are small.

Containers can be pushed for testing once they have been

built and then from there, on to the production environment

[12].

5.2 Portability

Those applications that are built inside docker containers

are extremely portable. These portable applications can

easily be moved as a single element and the performance

remains the same [12].

5.3 Scalability

Docker has the ability that it can be deployed in several

physical servers, data servers, and cloud platforms. It can

also be run on every Linux machine. Containers can easily

be moved from a cloud environment to local host and from

there back to cloud again at a fast pace. Adjustments can

easily be done; the scale can simply be adjusted by the user

according to the need [5].

5.4 Rapid Delivery

The format of a Docker Containers is standardized so

programmers do not have to stress over one another’s tasks.

The responsibility of the administrator is to deploy and

maintain the server with containers, whereas the

responsibility of the programmer is to look after the

applications inside the docker container. Containers can

work in every environment as they have all the required

dependencies embedded within the applications and they

are all tested [12]. Docker provides a reliable, consistent,

and improved environment, so predictable results can be

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.3, March 2017

231

achieved when codes are moved between development, test

and production systems (Chavis & Architect, 2015).

5.5 Density

Docker uses the resources that are available more efficiently

because it does not use a hypervisor. This is the reason that

more containers can be run on a single host as compared to

virtual machines. The performance of a Docker Containers

is higher because of higher density and no overhead wastage

of resources [5].

6. Disadvantages of Docker Container

There are some drawbacks of docker containers, which are

listed below [1, 4]:

 Complete virtualization is not provided by a docker

because it depends on the Linux kernel, which is

provided by the local host.

 Currently, docker does not run on older machines. It

only supports 64-bit local machines.

 The complete virtualized environment must be

provided by the docker container for Windows and

Mac machines. Even though the boot2docker tool fills

this gap, but still, it should be checked whether it makes

obstructions to acceptance by users of these systems or

the integration and performance with the host

machine’s operating system are adequate [4].

 It is necessary that the possibility of security issues

should be evaluated. Building off trusting binaries

could be made easier by digitally signing docker

images, for future support.

 An important concern is to check if the teaching

community or scientific researcher will significantly

think of adopting docker.

7. Docker Performance

Seo et al. (2014) used two servers with the same

configuration in the cloud environment. One server was

used for docker and the other one was for an Open Stack

platform for KVM by means of a virtualization tool [8].

According to him, a VM works independently. This factor

make it easy to apply and manage the policy of network,

security, user, and the system. However, docker does not

contain a guest operating system. Therefore, it takes very

little time in distributing and gathering images. The boot

time is also very short. These are the main advantages of

utilizing Docker Cloud as compared with VM Cloud.

Scheepers (2014) compares LXC and Xen virtualization

technologies to benchmark some applications [7]. He

explains that Xen would be a better choice in the sense of

equally distributing resources, performance is not

dependent on the other tasks, and it is executed on the same

machine. However, LXC is much better in the sense of

getting most of the hardware resources or for the execution

of smaller isolated processes. In private and dot clouds,

LXC is a better option.

Felter et al. (2014) evaluate the performance of three

different environments, Native, Docker, and KVM [3]. He

clarifies that containers and VMs are both mature

innovation that has profited from last 10 years of

incremental equipment and programming enhancements.

According to this research, docker is equivalent to or

surpasses KVM execution for each situation they tried.

Their outcomes demonstrate that both KVM and docker

present irrelevant overhead for CPU and memory execution.

It has also been shown that the overall performance of

docker is better than the Local Host, as the applications

were executed and responded faster than in Local Host.

Moreover, fewer hardware resources were used in docker

container to perform the tasks.

Docker is really a future demanding technology. As users

and developers would know more about the docker and its

capabilities then they would consider replacing traditional

virtualization with docker technology. Docker provides

many simple and useful features. To get the best

performance and results, it is highly recommended to move

up from the default configuration. Containers provide

advanced density, better performance, scalability, and

usability as compared with traditional virtualization

because containers smartly utilize its resources, which

reduce the chance of unnecessary overhead. Containers are

better in performance than virtual machine, because

containers take less start-up time. Docker has removed the

biggest issue of “dependency”. Now containers have all of

their required dependencies, which help containers to be

properly built, and to execute them in any docker

environment. An additional layer of isolation is provided by

the container, which increases the containers’ security.

Docker is not as insecure as people normally think, but it

provides a complete protection.

8. Docker vs. other Container Technology

In this section, the performance of application virtualization

and the performance of the docker container will be

discussed, and the evaluation of other containerize

technology will be compared and reviewed. Seo et al.

(2014) summarize that there is no guest OS of docker in the

cloud, so the storage and the wastage of CPU resources are

less [8]. The images are not disturbed; boot time is faster

and the time of generating the images is short. These are the

benefits of docker cloud in comparison with VM Cloud.

They used two similar servers with the same configuration

in the cloud environment. One server was used for docker

and the other one was for an Open Stack platform for KVM

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.3, March 2017

232

by means of a virtualization tool. Ubuntu Server was used

as a base platform [8].

To calculate the approximate boot-time, 20 images were

generated on each server and boot time was checked. Figure

4 shows that the boot time of docker is lesser than the boot

time of KVM. Docker uses the Host OS, whereas KVM

uses Guest OS. Thus, the boot time of docker is shorter than

the boot time of KVM.

Fig. 4 Docker vs KVM Average boot time [8].

To calculate the operational speed, python language was

used. Figure 5 shows that operation speed of 100,000 is

averagely around 4.5s. To measure the operation speed,

they obtain the average process time and standard deviation,

by repeating the same process 100 times on docker and VM.

Fig. 5 CPU Calculation Performance [8].

Figure 5 shows the calculation speed of docker is slightly

faster than the calculation speed of the VM [7].

Seo et al. (2014) concluded that VM works independently

[8]. This is one of the reasons that it is easy to apply and

manage the policy of network, security, user, and the system.

However, docker does not contain a guest operating System.

Therefore, it takes very less time in distributing and

gathering images. Its boot time is also very short. These are

the main advantages of utilizing docker cloud as compared

with VM Cloud.

Scheepers (2014) compares LXC and Xen virtualization

technologies to benchmark some applications [7]. For this

purpose, Scheepers uses two servers Core OS 324.3.0 and

XenServer 6.2 with docker version 0.11.1. The

configuration of these systems is RAM 4GB, CPU Intel

Xeon Quad core and the virtualization support is Intel VT-

X. The base operating system is Ubuntu 12.04 and

containers will run on both machines. 2GB of memory is

allotted to the first virtual machine and Apache 2.2,

WordPress 3.9 and PHP 5.3. This was used as an application

Server. 1GB of memory is used by the second virtual

machine with MYSQL Database 5.5. This database was

filled by the WordPress sample contents. This machine was

used as a database Server. JMeter was used as a

benchmarked tool.

Figure 6 shows that LXC experienced less overhead as

compared to Xen when the SELECT query was run. The

focus on running this benchmark process is to see the

utilization of the CPU and the performance of the Network

speed because these are the main resources consumed in this

test.

Fig. 6 Time in millisecond to complete a one SQL select query [7].

Figure 7 shows that in Xen setup, it took 16 seconds to

accomplish when the INSERT query was run in the

database, whereas in LXC setup it took longer–around 335

seconds. This reveals the inability of LXC container to

isolate resources efficiently.

Fig. 7 Time in millisecond to complete 10,000 SQL INSERT queries [7].

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.3, March 2017

233

Scheepers (2014) concludes that Xen would be a better

choice in the sense of equally distributing resources,

performance is not dependent on the other tasks, and it is

executed on the same machine [7]. However, LXC is much

better in the sense of utilizing most of the hardware

resources or the execution of smaller isolated processes. In

private and dot clouds, LXC is a better option.

Felter et al. (2014) evaluated the performance of three

different environments, Native, Docker, and KVM [3].

Overhead issues are also highlighted in their research.

Scenarios were investigated where more than one hardware

resource was completely utilized. To perform the tests, they

used an IBM x3650 M4 server, 16 core processors of Xeon

E5-2665, Two Intel Sandy Bridge-EP of 2.4 - 3.0 GHz and

256 GB of RAM. To make a non-uniform memory access,

two processors were linked together with QPI link. Cloud

providers also use this kind of similar Server. The base

operating system was Ubuntu 13.10, docker version 1.0,

Linux kernel 3.11.0, libvirt version 1.1.1 and QEMU 1.5.0.

This Figure 8 shows that the average size of 1 MB was used

for I/O, little over 60 seconds by measuring the performance

of sequential read and write. In this case, slight overhead

can be seen by Docker and KVM. In other cases, KVM has

almost a four times performance difference.

Fig. 8 Sequential I/O throughput (MB/sec) [3].

Figure 9 demonstrates the execution of irregularly read,

write and mixed workloads utilizing a 4 kB square size and

simultaneousness of 128, which we tentatively decided

gives the greatest execution to this specific SSD. As we

would expect, docker acquaints no overhead contrasted and

Linux, however, KVM conveys just have the same number

of IOPS since every I/O operation must experience QEMU.

While the VM's supreme execution is still very high, it

utilizes more CPU cycles per I/O operation, leaving less

CPU accessible for application work.

Fig. 9 Random I/O throughput (IOPS) [3].

Felter et al. (2014) conclude that containers and VMs are

both mature innovations that have profited from the last 10

years of incremental equipment and programming

enhancements [3]. When all is said and done, docker is

equivalent to or surpasses KVM execution for each

situation we tried. Our outcomes demonstrate that both

KVM and docker present irrelevant overhead for CPU and

memory execution.

To conclude these past works, regardless of utilizing

distinctive techniques and having diverse centres, one thing

is common that is measured and comparing the performance

of applications and different types of containerized and

virtualized technology.

9. Virtual Machines vs. Containers

Table 1 compare features of different containerized and

virtual machine technologies. Virtual machine uses an extra

layer between the host operating system and guest operating

system. This layer is known as a Hypervisor. Whereas

docker adds up an extra layer between host operating

systems and where the applications are virtualized and

executed, which is known as a Docker Engine. As docker

does not use any guest operating system that makes a big

difference in performance between a docker container and

a virtual machine technology. In Table 1, the performances

of applications running in different containers and virtual

machines are also briefly compared.

As it is given in the table above, according to Seo et al.

(2014) the docker performance is better than KVM, in terms

of boot time and calculation speed [8], whereas Felter et al.

(2014) proves that there is no difference of wastage of

resources (overhead) between Docker and KVM but there

is a noticeable difference in execution, as KVM is faster

than Docker [3]. Scheepers (2014) found out that LXC takes

a longer time to accomplish tasks, whereas Xen Server takes

less time [7]. LXC is better in the sense of fewer wasted

resources while Xen is better in the sense of equally

distributing resources.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.3, March 2017

234

Table 1: Comparison Table based on Different Virtual Machines and Containerized Technology

Seo et al. (2014) [8] Scheepers (2014) [7] Felter et al. (2014) [3]

Docker KVM
XenServer

(Xen)
CoreOS (LXC) Native Docker KVM

Boot Time short Boot time long

More overhead

(wastage of

resources)

Less overhead

(wastage of

resources)

Overhead

(wastage of

resources)

Slightly less

overhead than

Native

Slightly less than

Native and

Docker

Calculation

Speed is faster

Calculation

Speed is Slower

Less time to

accomplish

request

Longer time to

accomplish

request

Slow Execution

equal to Docker

Slow Execution

equal to Native
Fast Execution

No Guest OS
Works

Independently

Better in sense

of equally

distributing

resources

Better in sense

of executing

isolated

processes

-
Mature

Innovation

Mature

Innovation

10. Summary

Docker automates the applications when they are

containerized. An extra layer of docker engine is added to

the host operating system. The performance of docker is

faster than virtual machines as it has no guest operating

system and less resource overhead.

References
[1] Boettiger, C. (2015). An introduction to Docker for

reproducible research. ACM SIGOPS Operating Systems

Review, 49(1), 71-79.

[2] Bui, T. (2015). Analysis of docker security. arXiv preprint

arXiv:1501.02967.

[3] Felter, W., Ferreira, A., Rajamony, R., & Rubio, J. (2014).

An updated performance comparison of virtual machines and

linux containers. technology, 28, 32.

[4] Harji, A. S., Buhr, P. A., & Brecht, T. (2013). Our troubles

with Linux Kernel upgrades and why you should care. ACM

SIGOPS Operating Systems Review, 47(2), 66-72.

[5] Joy, A. M. (2015). Performance comparison between Linux

containers and virtual machines. Paper presented at the

Computer Engineering and Applications (ICACEA), 2015

International Conference on Advances in.

[6] Russell, B. (2015). Passive Benchmarking with docker LXC,

KVM & OpenStack.

[7] Scheepers, M. J. (2014). Virtualization and containerization

of application infrastructure: A comparison.

[8] Seo, K.-T., Hwang, H.-S., Moon, I.-Y., Kwon, O.-Y., & Kim,

B.-J. (2014). Performance Comparison Analysis of Linux

Container and Virtual Machine for Building Cloud.

[9] Turnbull, J. (2014). The Docker Book: Containerization is the

new virtualization.

[10] Van der Aalst, W., Weijters, T., & Maruster, L. (2004).

Workflow mining: Discovering process models from event

logs. Knowledge and Data Engineering, IEEE Transactions

on, 16(9), 1128-1142.

[11] Varghese, B., Subba, L. T., Thai, L., & Barker, A. (2016).

Container-Based Cloud Virtual Machine Benchmarking.

arXiv preprint arXiv:1601.03872.

[12] Vase, T. (2015). Advantages of Docker.

[13] Waldspurger, C. A. (2002). Memory resource management in

VMware ESX server. ACM SIGOPS Operating Systems

Review, 36(SI), 181-194.

[14] ACM SIGOPS Operating Systems Review. 36 p.181-194.

Dr Babak Bashari Rad received his

B.Sc. of Computer Engineering (Software)

in 1996 and M.Sc. of Computer

Engineering (Artificial Intelligence and

Robotics) in 2001 from University of

Shiraz and Ph.D. of Computer Science in

2013 from University Technology of

Malaysia. Currently, he is the Programme

Leader of postgraduate studies and senior

lecturer in the School of Computing, Asia

Pacific University of Technology and Innovation (APU), Kuala

Lumpur Malaysia. His main research interest covers a broad range

of various areas in computer science and information technology

including Information Security, Malware Detection, Machine

Learning, Artificial Intelligence, Image Processing, Robotics,

Cloud Computing, Big Data, and other related fields.

Harrison John Bhatti received his

Bachelors of Science in Computer Science

(BCS) degree in 2003 and M.Sc. of

Information Technology Management in

the field of Cloud Computing and

Virtualization in 2016 from Asia Pacific

University of Technology and Innovation

(APU), Kuala Lumpur in Collaboration

with Staffordshire University, UK.

Harrison John is currently doing his second

Masters of Engineering in Industrial

Management and Innovation from University of Halmstad,

Sweden. His core research areas are Cloud Computing,

Virtualization, Docker Container and Strategic Planning and

Innovation.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.3, March 2017

235

Dr Mohammad Ahmadi received his PhD

in computer science with specialization in

multimedia computing from UPM

university of Malaysia in 2014, M.Sc. in IT

engineering from AmirKabir Poly-

technique University of Tehran in 2007,

Iran, and B.Sc. in computer software

engineering from Shiraz Azad University,

Iran in 2003.

He is a Senior Lecturer in faculty of Computing, Technology and

Engineering of Asia Pacific University of Technology and

Innovation, Malaysia. He used to be lecturer in different

universities in Iran, and He has experienced Casual Lecturer at

Western Sydney University, Australia. Dr. Ahmadi has published

several papers on high ranked journals such as Emerald or IJST.

His main research interest covers a broad range of various areas in

computer science and information technology including serious

games, multimedia, cloud computing, mobile applications, e-

learning, and computer graphics.

