
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

129

Manuscript received April 5, 2017
Manuscript revised April 20, 2017

An Efficient Algorithm for K-Rank Queries on Large Uncertain
Databases

Abdu Gumaei1*, Rachid Sammouda1, and AbdulMalik S. Al-Salman1

1Department of Computer Science, King Saud University, Riyadh, Saudi Arabia

Summary
Recently, large uncertain databases have attracted much attention
in many applications, including data management, data
integration, social media and security investigation and so on.
K-Rank queries, according to matching scores, are an important
tool for exploring large uncertain data sets. Few algorithms have
been developed to solve this problem. In spite of these works,
developing more efficient algorithm is on demand. The problem
can be represented as a model of 𝑛𝑛 tuples consist of 𝑚𝑚
instances, and each query-tuple randomly instantiates into one or
more tuples based on a set of multi-alternative instances. In this
paper, we present an effective backtracking-based algorithm,
called Fast Multi-Objective Optimization (FMOO) algorithm. It
is able to find K-Rank queries on uncertain databases with
efficient memory usage and time complexity 𝑂𝑂(𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛) ,
whereas all existing algorithms run in quadratic space and time
complexity. Experimental evaluation on synthetic data with
theoretical analysis have been provided to demonstrate the
efficiency of the new algorithm.
Key words:
Large uncertain databases, K-Rank queries, dominating vectors,
Tuples, Instances.

1. Introduction

In our life, some problems need to be ranked for getting
results. In [1], the authors give some scenarios of some
applications which need to be ranked such as, “when a
search engine searches something on the Internet, it often
needs to rank a large number of web pages and return the
most relevant ones as the result. When querying a database,
there could be many tuples that satisfy a given
requirement. These tuples need to be ranked and the most
relevant ones returned. In general, when many things
satisfy a given requirement, we are interested only in the
most relevant ones; in particular, we typically do not care
about the ranks of the rest”. Recently, large uncertain
databases have attracted much attention in many
applications, including security investigation in social
media, data integration [2], web services [3], data cleaning
and query processing [4-11], data management of mobiles
and sensors [12, 13] and so on. Some important works
based on this topic appeared from time to time, such as
probabilistic in databases and semantics [14-18]. However,
only few works [3, 19, 20] tried to solve the time
complexity of Top K-Rank queries algorithms. In the

literature, there is another definition of Top K-Rank
queries which is the uncertain k-Ranks query (U-k-Ranks),
where each tuple in the result is the most probable tuple to
appear at a given rank over all possible attributes. The first
work [19] started to investigate top-k queries in uncertain
databases with exponential time complexity. After that, in
[20], the authors proposed an algorithm to solve
U-k-Ranks problem with time complexity 𝑂𝑂(𝑘𝑘𝑛𝑛2) .
Skoutas et al. [3] proposed an algorithm for finding Top-k
dominant web services under multi-criteria matching with
time complexity 𝑂𝑂(𝑘𝑘𝑛𝑛2𝑚𝑚2) . Even for such works,
identifying a correct ranking for the candidate matches
with efficient time is not straightforward. In this paper, we
proposed a general and effective FMOO algorithm to
solve K-Rank queries on large uncertain databases with
time complexity 𝑂𝑂(𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛) and efficient memory usage.
This work is considered the first work which reduces the
running time to near linear compared to all previous and
existing works. The remaining part of this paper is
organized as follows: Section 2 presents the research
methodology and the proposed algorithm. Section 3
introduces the time complexity analysis of the proposed
algorithm and some comparisons with other algorithms.
Experimental evaluation is presented in Section 5. Finally,
Section 6 concludes the work of this paper.

2. Methodology

The problem of K-Rank queries based on multi-alternative
instances is described in this section. The formal definition
of our model is as follows: Let N be the set of all tuples
stored in the database and let A and V be the sets of
possible instances and values, respectively. Let S be the
set of possible instance-value pairs, such that S = {(a, v): a
∈ A and v ∈ V}. We define two functions: Instance: S
→ A and Value: S → V, which give the instance and
value, respectively. When we apply those two functions to
a specific tuple t where Instance (t) = a, and Value (t) = v,
a Rank-k queries T ∈ N, is a set of tuples where no two
distinct tuples can have the same instance, as in Eq. (1).

)}2(tan)1(tan21,2,1{ tceInstceInsttSttT ≠↔≠∈∀= . (1)

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

130

For every query request, the matching process is done on
all tuples stored on the uncertain databases to compute the
similarity matrix M, as shown in Fig. 1.
Next step starts by sorting the rows of similarity matrix
(M) in descending order using merge sort to get a sorted
matrix (SM). To keep track of the new locations of
matched instances, we store the old indices of M in a
matrix called INDXES, as shown in Fig. 1.
In the final step, we apply the proposed algorithm to
obtain the K-rank queries based on multi-alternative
instances. The proposed algorithm is also able to retrieve a
sub-set of K-Rank tuples using a threshold on the average
value of current candidate query vector. The main idea of
the proposed algorithm is to use the backtracking
technique for efficient memory usage and fast processing.

Fig. 1: Matching and sorting processes to obtain sorted and indices
matrices

The problem that our algorithm tries to solve can be
formulated as a search space problem. The initial state of
this space is the first column of matrix (SM), and its
weight is computed based on the average of using this
column using Eq. (2).

N

C
avg

N

i
i∑

== 1
1,

1 (2)

where 1,iC represents the value of row i of the first column

in the matrix SM, N is the number of rows in the matrix
SM. Expanding states are generated by taking each
element in the next column for each row of the matrix SM.
The weight value of each expanded state is calculated by
the value of that element plus the average value of
previous column using Eq. (3).

ji

N

i
ji

ji C
N

C
w ,

1
1,

, +

=
∑
=

−

 (3)

where jiC , denotes the value of row i and column j in the

matrix SM, j = 2 … M , N is the number of rows and
M is the number of columns in the matrix SM. In our
algorithm, we take the average because it is a closer
approximation of the largest column’s values. The pseudo
code of the proposed algorithm are shown in Fig. 2.

3. Time Complexity Analysis

In general, time complexity is an extremely important
issue when the scale of an application grows. Complexity
analysis helps us understand and estimate the efficiency of
any algorithm. The Big-O notation is used to approximate
the time complexity and the worst case performance of an
algorithm for a large number of 𝑛𝑛. In this section, the time
complexity of the proposed algorithm is analyzed, as
follows. Lines 3-8 of the algorithm cost 𝑂𝑂(𝑛𝑛), lines 11-17
cost 𝑂𝑂(𝑛𝑛𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛) and lines 19-41 cost 𝑂𝑂(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛 + 𝑘𝑘𝑛𝑛 +
𝑘𝑘𝑛𝑛 + 𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛). Therefore, total time complexity of the
algorithm is 𝑂𝑂(𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛) . Compared to the other
algorithms in literature, the time complexity is reduced, as
shown in Table 1.

Table 1: The Time complexity of FMOO proposed algorithm compared
to other algorithms in state-of-the-art

Running Time for K-Ranks with multi-alternatives
Proposed algorithm 𝑂𝑂(𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛)

[20] 𝑂𝑂(𝑘𝑘𝑛𝑛2)
[3] 𝑂𝑂(𝑘𝑘𝑛𝑛2𝑚𝑚2)

[19] 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘𝑛𝑛𝐸𝐸𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

131

Fig. 2: The pseudo code of FMOO algorithm for finding K-Ranks based on backtracking strategy

4. Experimental Evaluation

In this section, the computational cost is evaluated to
prove the correctness of the proposed algorithm.
Experimental evaluation is done on synthetic data
generated randomly for different number of tuples starting
from 100,000 to 1000,000. The other parameters are fixed
and summarized in Table 2. As 𝑘𝑘 is a constant, Fig. 3

proves that the running time curve of our algorithm is
approximately similar to the curve of 𝑛𝑛𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛 function.

Table 2: The parameters values of experimental evaluation
K-Ranks Number of Tuples

(n)
Number of Instances

(m)
Time
(ms)

12 100,000 50 1405
12 200,000 50 1647
12 300,000 50 1848
12 400,000 50 2148

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

132

12 500,000 50 2610
12 600,000 50 3268
12 700,000 50 3917
12 800,000 50 4859
12 900,000 50 5735
12 1000,000 50 6968

Fig. 3: Running time of the proposed algorithm on large number of tuples

4. Conclusion and future work

In this paper, a backtracking based algorithm, called
FMOO algorithm is proposed to solve the problem of
K-Rank queries on uncertain databases. The FMOO
algorithm runs in 𝑂𝑂(𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛)-time complexity with low
memory usage. Compared to other algorithms in the
literature review, the time complexity is reduced. This
research is considered the first work to solve the K-Ranks
problem in near polynomial time. The algorithm is also
applicable for many applications, including K-Ranks of
web services, K-Ranks of crimes in digital forensics,
K-Ranks of choices in shopping and many other
applications which use the K-Ranks of queries on
uncertain databases. In the future work, we will apply the
FMOO algorithm in different applications and evaluate its
efficiency and applicability.

Acknowledgment

This project was funded by the National Plan for Science,
Technology and Innovation (MAARIFAH), King
Abdulaziz City for Science and Technology, Kingdom of
Saudi Arabia, Award no. INF2696-02-12 support.

References
[1] C. Wang, L. Y. Yuan, and J. You. “Top-k ranking for

uncertain data,” in Fuzzy Systems and Knowledge
Discovery (FSKD), 2010 Seventh International Conference
on, vol. 1, pp. 363-368. IEEE, 2010.

[2] A. Halevy, A. Rajaraman, and J. Ordille, “Data integration:
the teenage year,” in VLDB, 2006.

[3] D. Skoutas, D. Sacharidis, A. V. Kantere, and T. Sellis,
“Top-k dominant web services under multi-criteria
matching,” in Proceedings of the 12th international
conference on extending database technology: advances in
database technology, pp. 898-909. ACM, 2009.

[4] C. Subramanian, T. Bhuvaneswari, and S. P. Rajagopalan,
“Multi Structural Query Engine on a Large Database using
Vector Space Approach,” IJCSNS, vol.11, no.6, pp.152-159,
2011.

[5] C. V. Neethu, “A Survey of Techniques for Answering
Top-k queries,” Global Journal of Computer Science and
Technology, vol.13, no.2, 2013.

[6] Y. Wang, X. Li, X. Li, and Y. Wang, “A survey of queries
over uncertain data,” Knowledge and information
systems, vol.37, no.3, pp.485-530, 2013.

[7] Y. Lan, S. Niu, J. Guo, and X. Cheng, “Is top-k sufficient
for ranking?,” in Proceedings of the 22nd ACM
international conference on Conference on information &
knowledge management, pp.1261-1270. ACM, 2013.

[8] J. Zhang, J. Tang, C. Ma, H. Tong, Y. Jing, and J. Li,
“Panther: Fast top-k similarity search on large networks,” in
Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining,
pp.1445-1454. ACM, 2015.

[9] J. Sajeev, and V. A. Noorjahan, “Top-K Dominating
Queries on Incomplete Data: A Survey,” 2016.

[10] P. Wang, B. Wang, and S. Luo, “Top-K Similarity Search
for Query-By-Humming,” in International Conference on
Web-Age Information Management, pp. 198-210. Springer
International Publishing, 2016.

[11] H. Dinari, “A Survey on Graph Queries Processing:
Techniques and Methods,” 2017.

[12] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Evaluating
probabilistic queries over imprecise data,” in SIGMOD,
2003.

[13] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and
W. Hong, “Model-driven data acquisition in sensor
networks,” in VLDB, 2004.

[14] S. Abiteboul, P. Kanellakis, and G. Grahne, “On the
representation and querying of sets of possible worlds,” in
SIGMOD, 1987.

[15] D. Barbara, H. Garcia-Molina, and D. Porter, “The
management of probabilistic data,” IEEE TKDE, vol.4, no.5,
pp.487–502, 1992.

[16] N. Fuhr, “A probabilistic framework for vague queries and
imprecise information in databases” in VLDB, 1990.

[17] T. Imielinski, and W. Lipski, “Incomplete information in
relational databases,” J. ACM, vol.31, vol.4, 1984.

[18] L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S.
Subrahmanian, “ProbView: a flexible probabilistic database
system,” ACM TODS, vol.22, no.3, pp.419–469, 1997.

[19] M. A. Soliman, I. F. Ilyas, and K. C. Chang, “Top-K Query
Processing in Uncertain Databases,” Proc. IEEE Int’l Conf.
Data Eng. (ICDE), 2007.

[20] K. Yi, F. Li, G. Kollios, and D. Srivastava, “Efficient
processing of top-k queries in uncertain databases with
x-relations,” IEEE transactions on knowledge and data
engineering, vol.20, no.12, pp.1669-1682, 2008.

0
1000
2000
3000
4000
5000
6000
7000
8000

Time (ms) vs. Number of Tuples

