
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017 

 

129 

Manuscript received April 5, 2017 
Manuscript revised April 20, 2017 

An Efficient Algorithm for K-Rank Queries on Large Uncertain 
Databases 

Abdu Gumaei1*, Rachid Sammouda1, and AbdulMalik S. Al-Salman1 
 

1Department of Computer Science, King Saud University, Riyadh, Saudi Arabia 
 
Summary 
Recently, large uncertain databases have attracted much attention 
in many applications, including data management, data 
integration, social media and security investigation and so on. 
K-Rank queries, according to matching scores, are an important 
tool for exploring large uncertain data sets. Few algorithms have 
been developed to solve this problem. In spite of these works, 
developing more efficient algorithm is on demand. The problem 
can be represented as a model of 𝑛𝑛  tuples consist of  𝑚𝑚 
instances, and each query-tuple randomly instantiates into one or 
more tuples based on a set of multi-alternative instances. In this 
paper, we present an effective backtracking-based algorithm, 
called Fast Multi-Objective Optimization (FMOO) algorithm. It 
is able to find K-Rank queries on uncertain databases with 
efficient memory usage and time complexity  𝑂𝑂(𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛) , 
whereas all existing algorithms run in quadratic space and time 
complexity. Experimental evaluation on synthetic data with 
theoretical analysis have been provided to demonstrate the 
efficiency of the new algorithm. 
Key words: 
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1. Introduction 

In our life, some problems need to be ranked for getting 
results. In [1], the authors give some scenarios of some 
applications which need to be ranked such as, “when a 
search engine searches something on the Internet, it often 
needs to rank a large number of web pages and return the 
most relevant ones as the result. When querying a database, 
there could be many tuples that satisfy a given 
requirement. These tuples need to be ranked and the most 
relevant ones returned. In general, when many things 
satisfy a given requirement, we are interested only in the 
most relevant ones; in particular, we typically do not care 
about the ranks of the rest”. Recently, large uncertain 
databases have attracted much attention in many 
applications, including security investigation in social 
media, data integration [2], web services [3], data cleaning 
and query processing [4-11], data management of mobiles 
and sensors [12, 13] and so on. Some important works 
based on this topic appeared from time to time, such as 
probabilistic in databases and semantics [14-18]. However, 
only few works [3, 19, 20] tried to solve the time 
complexity of Top K-Rank queries algorithms. In the 

literature, there is another definition of Top K-Rank 
queries which is the uncertain k-Ranks query (U-k-Ranks), 
where each tuple in the result is the most probable tuple to 
appear at a given rank over all possible attributes. The first 
work [19] started to investigate top-k queries in uncertain 
databases with exponential time complexity. After that, in 
[20], the authors proposed an algorithm to solve 
U-k-Ranks problem with time complexity  𝑂𝑂(𝑘𝑘𝑛𝑛2) . 
Skoutas et al. [3] proposed an algorithm for finding Top-k 
dominant web services under multi-criteria matching with 
time complexity  𝑂𝑂(𝑘𝑘𝑛𝑛2𝑚𝑚2) . Even for such works, 
identifying a correct ranking for the candidate matches 
with efficient time is not straightforward. In this paper, we 
proposed a general and effective FMOO algorithm to 
solve K-Rank queries on large uncertain databases with 
time complexity 𝑂𝑂(𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛) and efficient memory usage. 
This work is considered the first work which reduces the 
running time to near linear compared to all previous and 
existing works. The remaining part of this paper is 
organized as follows: Section 2 presents the research 
methodology and the proposed algorithm. Section 3 
introduces the time complexity analysis of the proposed 
algorithm and some comparisons with other algorithms. 
Experimental evaluation is presented in Section 5. Finally, 
Section 6 concludes the work of this paper. 

2. Methodology 

The problem of K-Rank queries based on multi-alternative 
instances is described in this section. The formal definition 
of our model is as follows: Let N be the set of all tuples 
stored in the database and let A and V be the sets of 
possible instances and values, respectively. Let S be the 
set of possible instance-value pairs, such that S = {(a, v): a 
∈ A and v ∈ V}. We define two functions: Instance: S 
→ A and Value: S → V, which give the instance and 
value, respectively. When we apply those two functions to 
a specific tuple t where Instance (t) = a, and Value (t) = v, 
a Rank-k queries T ∈ N, is a set of tuples where no two 
distinct tuples can have the same instance, as in Eq. (1). 

)}2(tan)1(tan21,2,1{ tceInstceInsttSttT ≠↔≠∈∀= .   (1) 
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For every query request, the matching process is done on 
all tuples stored on the uncertain databases to compute the 
similarity matrix M, as shown in Fig. 1. 
Next step starts by sorting the rows of similarity matrix 
(M) in descending order using merge sort to get a sorted 
matrix (SM). To keep track of the new locations of 
matched instances, we store the old indices of M in a 
matrix called INDXES, as shown in Fig. 1. 
In the final step, we apply the proposed algorithm to 
obtain the K-rank queries based on multi-alternative 
instances. The proposed algorithm is also able to retrieve a 
sub-set of K-Rank tuples using a threshold on the average 
value of current candidate query vector. The main idea of 
the proposed algorithm is to use the backtracking 
technique for efficient memory usage and fast processing. 

 

Fig. 1: Matching and sorting processes to obtain sorted and indices 
matrices 

The problem that our algorithm tries to solve can be 
formulated as a search space problem. The initial state of 
this space is the first column of matrix (SM), and its 
weight is computed based on the average of using this 
column using Eq. (2). 
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where 1,iC represents the value of row i of the first column 

in the matrix SM, N is the number of rows in the matrix 
SM. Expanding states are generated by taking each 
element in the next column for each row of the matrix SM. 
The weight value of each expanded state is calculated by 
the value of that element plus the average value of 
previous column using Eq. (3). 
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where jiC , denotes the value of row i and column j in the 

matrix SM, j = 2 … M , N is the number of rows and 
M is the number of columns in the matrix SM. In our 
algorithm, we take the average because it is a closer 
approximation of the largest column’s values. The pseudo 
code of the proposed algorithm are shown in Fig. 2.  

3. Time Complexity Analysis 

In general, time complexity is an extremely important 
issue when the scale of an application grows. Complexity 
analysis helps us understand and estimate the efficiency of 
any algorithm. The Big-O notation is used to approximate 
the time complexity and the worst case performance of an 
algorithm for a large number of  𝑛𝑛. In this section, the time 
complexity of the proposed algorithm is analyzed, as 
follows. Lines 3-8 of the algorithm cost 𝑂𝑂(𝑛𝑛), lines 11-17 
cost  𝑂𝑂(𝑛𝑛𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛)  and lines 19-41 cost 𝑂𝑂(𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛 + 𝑘𝑘𝑛𝑛 +
𝑘𝑘𝑛𝑛 + 𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛). Therefore, total time complexity of the 
algorithm is  𝑂𝑂(𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛) . Compared to the other 
algorithms in literature, the time complexity is reduced, as 
shown in Table 1. 

Table 1: The Time complexity of FMOO proposed algorithm compared 
to other algorithms in state-of-the-art 

Running Time for K-Ranks with multi-alternatives 
Proposed algorithm 𝑂𝑂(𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛) 

[20] 𝑂𝑂(𝑘𝑘𝑛𝑛2) 
[3] 𝑂𝑂(𝑘𝑘𝑛𝑛2𝑚𝑚2) 

[19] 𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘𝑛𝑛𝐸𝐸𝑛𝑛𝐸𝐸𝐸𝐸𝐸𝐸𝑘𝑘 
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Fig. 2: The pseudo code of FMOO algorithm for finding K-Ranks based on backtracking strategy 

4. Experimental Evaluation 

In this section, the computational cost is evaluated to 
prove the correctness of the proposed algorithm. 
Experimental evaluation is done on synthetic data 
generated randomly for different number of tuples starting 
from 100,000 to 1000,000. The other parameters are fixed 
and summarized in Table 2. As 𝑘𝑘 is a constant, Fig. 3 

proves that the running time curve of our algorithm is 
approximately similar to the curve of 𝑛𝑛𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛 function. 

Table 2: The parameters values of experimental evaluation 
K-Ranks Number of Tuples 

(n) 
Number of Instances 

(m) 
Time 
(ms) 

12 100,000 50 1405 
12 200,000 50 1647 
12 300,000 50 1848 
12 400,000 50 2148 
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12 500,000 50 2610 
12 600,000 50 3268 
12 700,000 50 3917 
12 800,000 50 4859 
12 900,000 50 5735 
12 1000,000 50 6968 

 

 

Fig. 3: Running time of the proposed algorithm on large number of tuples 

4. Conclusion and future work 

In this paper, a backtracking based algorithm, called 
FMOO algorithm is proposed to solve the problem of 
K-Rank queries on uncertain databases. The FMOO 
algorithm runs in 𝑂𝑂(𝑘𝑘𝑛𝑛𝑘𝑘𝑘𝑘𝑘𝑘𝑛𝑛)-time complexity with low 
memory usage. Compared to other algorithms in the 
literature review, the time complexity is reduced. This 
research is considered the first work to solve the K-Ranks 
problem in near polynomial time. The algorithm is also 
applicable for many applications, including K-Ranks of 
web services, K-Ranks of crimes in digital forensics, 
K-Ranks of choices in shopping and many other 
applications which use the K-Ranks of queries on 
uncertain databases. In the future work, we will apply the 
FMOO algorithm in different applications and evaluate its 
efficiency and applicability. 

Acknowledgment 

This project was funded by the National Plan for Science, 
Technology and Innovation (MAARIFAH), King 
Abdulaziz City for Science and Technology, Kingdom of 
Saudi Arabia, Award no. INF2696-02-12 support. 
 
References 
[1] C. Wang, L. Y. Yuan, and J. You. “Top-k ranking for 

uncertain data,” in Fuzzy Systems and Knowledge 
Discovery (FSKD), 2010 Seventh International Conference 
on, vol. 1, pp. 363-368. IEEE, 2010. 

[2] A. Halevy, A. Rajaraman, and J. Ordille, “Data integration: 
the teenage year,” in VLDB, 2006. 

[3] D. Skoutas, D. Sacharidis, A. V. Kantere, and T. Sellis, 
“Top-k dominant web services under multi-criteria 
matching,” in Proceedings of the 12th international 
conference on extending database technology: advances in 
database technology, pp. 898-909. ACM, 2009. 

[4] C. Subramanian, T. Bhuvaneswari, and S. P. Rajagopalan, 
“Multi Structural Query Engine on a Large Database using 
Vector Space Approach,” IJCSNS, vol.11, no.6, pp.152-159, 
2011. 

[5] C. V. Neethu, “A Survey of Techniques for Answering 
Top-k queries,” Global Journal of Computer Science and 
Technology, vol.13, no.2, 2013. 

[6] Y. Wang, X. Li, X. Li, and Y. Wang, “A survey of queries 
over uncertain data,” Knowledge and information 
systems, vol.37, no.3, pp.485-530, 2013. 

[7] Y. Lan, S. Niu, J. Guo, and X. Cheng, “Is top-k sufficient 
for ranking?,” in Proceedings of the 22nd ACM 
international conference on Conference on information & 
knowledge management, pp.1261-1270. ACM, 2013. 

[8] J. Zhang, J. Tang, C. Ma, H. Tong, Y. Jing, and J. Li, 
“Panther: Fast top-k similarity search on large networks,” in 
Proceedings of the 21th ACM SIGKDD international 
conference on knowledge discovery and data mining, 
pp.1445-1454. ACM, 2015. 

[9] J. Sajeev, and V. A. Noorjahan, “Top-K Dominating 
Queries on Incomplete Data: A Survey,” 2016. 

[10] P. Wang, B. Wang, and S. Luo, “Top-K Similarity Search 
for Query-By-Humming,” in International Conference on 
Web-Age Information Management, pp. 198-210. Springer 
International Publishing, 2016. 

[11] H. Dinari, “A Survey on Graph Queries Processing: 
Techniques and Methods,” 2017. 

[12] R. Cheng, D. Kalashnikov, and S. Prabhakar, “Evaluating 
probabilistic queries over imprecise data,” in SIGMOD, 
2003. 

[13] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and 
W. Hong, “Model-driven data acquisition in sensor 
networks,” in VLDB, 2004. 

[14] S. Abiteboul, P. Kanellakis, and G. Grahne, “On the 
representation and querying of sets of possible worlds,” in 
SIGMOD, 1987. 

[15] D. Barbara, H. Garcia-Molina, and D. Porter, “The 
management of probabilistic data,” IEEE TKDE, vol.4, no.5, 
pp.487–502, 1992. 

[16] N. Fuhr, “A probabilistic framework for vague queries and 
imprecise information in databases” in VLDB, 1990. 

[17] T. Imielinski, and W. Lipski, “Incomplete information in 
relational databases,” J. ACM, vol.31, vol.4, 1984. 

[18] L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. 
Subrahmanian, “ProbView: a flexible probabilistic database 
system,” ACM TODS, vol.22, no.3, pp.419–469, 1997. 

[19] M. A. Soliman, I. F. Ilyas, and K. C. Chang, “Top-K Query 
Processing in Uncertain Databases,” Proc. IEEE Int’l Conf. 
Data Eng. (ICDE), 2007. 

[20] K. Yi, F. Li, G. Kollios, and D. Srivastava, “Efficient 
processing of top-k queries in uncertain databases with 
x-relations,” IEEE transactions on knowledge and data 
engineering, vol.20, no.12, pp.1669-1682, 2008. 

0
1000
2000
3000
4000
5000
6000
7000
8000

Time (ms) vs. Number of Tuples


