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Summary 
In real-time systems, scheduling algorithms are used in control 
situations where it is a crucial or a critical to complete a task 
successfully within a specific time interval. Many scheduling 
techniques consider scheduling tasks according to their Worst-
Case Execution Time (WCET) or average execution time while 
neglecting a change in their probability distributions. In real-time 
applications such as multimedia, Using either WCET or the 
average value to schedule several tasks is impractical and 
inappropriate and could cause a catastrophic result. The previous 
studies show that the multimedia real-time applications such as 
Audio or Video statistically has a great variation in their 
execution times which means scheduling them according to the 
WCET or the average execution time is insufficient and 
unwanted results may occur. In this paper, a new effective and 
efficient dynamic method to schedule periodic real-time tasks is 
presented based on using a dynamic moving average approach. 
Dynamic moving average refers to a change in a probability 
distribution being used when a task is added or removed.  The 
objective is to develop a method that guarantees the delivering of 
all tasks to meet their timing constraints and also to minimize the 
overhead occurring from context switching between different 
tasks. Furthermore, enhancing the response time minimization is 
desired. Our intensive experiments on a developed simulation 
performance evaluation indicate that the developed method is 
capable of handling all tasks to meet their deadline times, 
achieving around an average of 24% to 49% reduction in the 
overhead and the response time enhancing by average of 50%. 
Key words: 
Real-time applications, efficient dynamic scheduling algorithm, 
timing constraints, periodic tasks, probability distribution. 

1. Introduction 

Particularly, many real-time applications consist of 
precedence timing constrained stochastic tasks. Stochastic 
tasks are defined as tasks which their execution and 
communication times are random variables and follow 
certain probability distributions [1,2]. Ability to schedule 
completely and successfully all those constrained tasks is 
needed. However, it is not easy procedure since scheduling 
problems are considered NP-hard problems [2]. Image and 
Information processing along with the weather modeling 
are perfect examples for real-time applications where 

processing mainly depends on the amount of data being 
received with a great variation [1]. In addition, the 
communication time for different tasks could fluctuate the 
execution time according to the network capacity, routing 
methods and traffic issues [2]. Several scheduling 
approaches focus and aim only to schedule different tasks 
with deterministic execution and communication times [2]. 
In another word, they assume tasks or processes with fixed 
execution times, mostly is the WCET. However, relaying 
on that factor is impractical since many applications may 
have conditional instructions or operations which require 
different execution times for different inputs [2,3,4]. In 
addition, considering only the WCET or the average times 
as a factor to schedule tasks is inappropriate when dealing 
with several tasks which share randomness and uncertainty 
in their execution times [1,2,3,4]. A system under 
consideration performance is affected by scheduling 
methods since they determine the processors and resource 
utilizations. The objective of scheduling schemes is to map 
between several tasks or processes with a uniprocessor or 
multiprocessor environments to guarantee the satisfaction 
of their timing constrains [2,3,4]. Modern high 
performance processors such as Intel and AMD Athlon 
perform several operations at the same time. Performing 
those operations require a good scheduling method in 
order to keep a system stable and under control. When 
several application run and compete for resources on the 
uniprocessor or multi processors, there is a need to have an 
efficient, a sufficient and an effective approach that 
handled different tasks properly. Scheduling stochastic 
real-time tasks requires the known of the execution time in 
advanced which is very hard in real-time multimedia 
applications [1,4,5,6]. Several significant works on 
stochastic tasks scheduling have been performed. Next 
section explores the recent researches and studies. 
Nowadays, two categories of scheduling algorithms are 
found which are static and dynamic. Preemptive and Non 
preemptive techniques exist in each type. Preemptive 
method refers to blocking a current executed task by 
another task with a higher priority while non preemptive 
refers to the continuous of the execution procedure even 
there is another task with high priority in the ready queue. 
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In many real-time systems, applications may be composed 
of a task or several tasks that are independent which need 
to be executed under very strict timing constraints 
[3,4,5,6,7]. They need to be dynamically scheduled 
according to their unpredictable execution times [6]. 
Schedulability analysis must be performed prior to a task 
execution process. It involves a significant sufficient 
information about the probability distribution being used 
and behavior of the execution [6,7].  Several tasks 
characteristics must be taken into account when develop a 
scheduling method which can be summarized as follows: 1. 
Arrival times “r”: can be defined as the time when a task 
becomes available in the ready queue list, also known as 
the release time,  2. Execution times and 3. Deadline times 
“d”. Several heuristic scheduling techniques neglect the 
importance of the execution times behavior and their 
uncertainty nature when developing methods to schedule 
periodic real-time tasks [7,8]. This neglection issue is the 
motivation key to investigate an algorithm that schedules 
stochastic tasks with a minimum overhead and minimum 
response time.  The contribution in this paper is done by 
proposing and developing a very efficient and effective 
hybrid dynamic scheduling technique for periodic real-time 
tasks, works either on the uniprocessor or multiple 
processors systems, according to unpredictable execution 
time behaviour in order to minimize the overhead occurs 
from context switching and to improve the response time. 
Hybrid method indicates that it cooperates with the Earliest 
Deadline First (EDF) algorithm when and if needed. The 
proposed approach works during run-time to decide which 
task or a set of tasks should be selected first from ready 
queue and gains system resources such as CPU. 
Minimizing the overhead, enhancing the speed up of 
response time reduction by providing a good timely 
response reaction, delivering all tasks completely and 
successfully, maximizing the used CPU(s) utilizations and 
keeping the stability of a system under investigation are the 
main objectives for the proposed scheme. Table 1 
illustrates the assumptions and characteristics for the 
proposed technique to perform properly. In the remainder 
of this paper, related work on scheduling schemes is 
presented in Section 2, followed by a detailed discussion 
of the proposed approach in section 3. Section 4 includes 
simulation results to show the validation of the proposed 
approach on a multiprocessor environment. Section 5 is the 
conclusion of the paper. 

Table 1: The proposed method characteristics 
Dynamic and Preemptive 
Hybrid: cooperates with the EDF algorithm 
All tasks are independent 
The probability distribution is known or can be estimated 
Applicable on any probability distribution being used 
Works on all platforms: Uniprocessor and multiple 
processors 
Appearing on different processors at a same time is strictly 
banned 

2. Related Work 

Recently, scheduling techniques for periodic real-time 
tasks have been studied and developed extensively due to 
increasing demands for real-time systems and applications. 
There has been several works purely on periodic tasks with 
uncertainty execution times and behaviors [2,3,4]. An 
efficient dynamic method to schedule periodic real-time 
tasks with variant execution times using dynamic average 
estimation is presented in [1]. A. Alsheikhy et al developed 
the algorithm based on the probability distribution being 
used and existed in the system under consideration. The 
developed approach in [1] delivers all tasks perfectly with 
no deadline miss occurs. However, high overhead from 
context switching and required computations for 
determining the selected tasks are existed. In this paper, 
the proposed scheme reduces the overhead by nearly 49% 
maximum and improves the speed up of the response time 
over 50% as observed from the intensive simulation 
experiments. In [1], each unfinished task is examined and 
checked every time unit to determine task or set of tasks 
must be chosen first based on their rate value. In addition, 
when multiple tasks share the same value for their rate, a 
task or set of tasks with the shortest deadline time is 
selected and then allocated to the CPU(s). The rate is 
computed according to the slack, deadline “d” and current 
time “t” values. The proposed method within this paper 
uses the same principle and idea but in different way. It 
determines a minimum value x for all uncompleted tasks 
by computing the difference between their deadline and the 
remaining execution times. The minimum value x is 
defined as the time slot assigned by the CPU(s) to every 
unfinished task in the ready queue list. The value for x 
varies dynamically from time to time which makes it very 
flexible. Using flexible dynamic value for x reduces the 
overhead and improves the response time as well. However, 
the minimum value x in [1] is fixed at all time which 
makes it static.   
A model of scheduling stochastic parallel tasks in 
application on heterogeneous cluster systems is proposed 
in [3]. K. L. Xiaoyong et al discussed the stochastics 
scheduling attributes to deal with various random variables 
in order to show that the expected execution times is 
greater than or equal to the value of determined tasks. A 
Stochastic Dynamic Level Scheduling (SDLS) scheme is 
proposed. The proposed method combines the stochastic 
bottom levels with stochastic dynamic levels. Speed up and 
standard deviation were the performance parameters being 
tested and evaluated. The SDLS approach is applicable 
only on normal distribution while the proposed method 
within this paper deals with various probability 
distributions which makes it very flexible to be used and 
applied in many applications regardless their distributions. 
The SDLS scheme was compared with other three existing 
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heuristics scheduling algorithms which were SHEET, 
HEFT and Rob-HEFT. More information about the SDLS 
method is found in [3].  
J. Li et al in [4] proposed a method to schedule parallel 
real-time tasks using a federated scheduling technique. 
Federated scheduling method is a scheme to schedule 
parallel tasks by allocating a dedicated cluster to a task or 
a set of tasks when its/their utilization ≥ 1 while execution 
other lower utilization tasks sequentially on a shared 
cluster. The average case of workload was used instead of 
the worst case load. Only stochastic tasks in soft real-time 
systems. A bounded expected tardiness criteria was used as 
the factor to estimate the boundary for stochastic tasks 
using federated scheduling methods. They mapped three 
federated schemes with different complexities for core 
allocation. Numerical evaluations for the proposed method 
was performed using randomly generated tasks sets. 
However, the proposed algorithm within this paper 
considers only hard stochastic real-time tasks where any 
deadline miss may cause a catastrophic or unwanted result. 
The authors in [4] calculated the expected tardiness in 
order to estimate the upper bound, BASIC and FAIR 
mapping approaches were used with a help from Linear 
Programming procedures. The WCET approach was not 
investigated in [4], however, the proposed method within 
this paper uses either the WCET or the average ones. 
Interested readers are referred to [4] for more information 
about the SDLS approach. 
In [7], J. F. Kempf et al proposed a framework to estimate 
the expected performance of a given scheduling policy. A 
dynamic programming style procedure for automatically 
synthesizing an optimal scheduler for the expected time. 
An iterative computation of a stochastic time-to-go 
function was used. They presented an automatic derivation 
of optimal controller for non markovian continuous time 
processes. Initially, the estimation for the expected 
termination time under a given scheduler is developed 
according to the computation of the duration space. 
Furthermore, a local stochastic time-to-go and a global 
stochastic time-to-go values are computed. More 
information about the proposed framework can be found in 
[7].  
K. Li et al in [8] proposed an energy-aware scheduling 
method for task execution cycles on heterogeneous 
computing systems with normal distribution only. A 
heuristic energy-aware stochastic tasks scheduling 
algorithm (ESTS) was developed by them by using linear 
programming approach. They claimed that their scheme 
achieved high scheduling performance for independent 
tasks with lower complexity. However, a trade-off between 
the scheduling length and energy consumption occurred. 

3. The Proposed Algorithm 

The proposed scheme in [1] is very efficient since it 
delivers all tasks successfully with no deadline miss occurs. 
However, it suffers from high computational demands 
according to the algorithm policy. In addition, high 
overhead from context switching takes place too since the 
approach checks each time unit to decide which task must 
be selected first from the tasks present in the ready queue. 
The proposed algorithm within this paper improves the 
mentioned scheme in [1] since it minimizes the overhead 
from context switching and also reduces the response time 
needed to complete a task successfully as observed from 
our experiments. The motivations to develop the proposed 
approach in this paper are summarized as follows: 

• Developing dynamic and hybrid method to 
schedule periodic real-time tasks effectively and 
efficiently. Hybrid refers to cooperating with the 
EDF algorithm as stated earlier. 

• Reducing the overhead from context switching 
and speeding up the required response time to 
finish any process completely and successfully. 

• A method that works either on uniprocessor or 
multiprocessor environments.  

• Maximizing CPUs and resources utilization 
while it keeps a system stable under several 
conditions or circumstances. 

• Eliminating idling state “mode” to prevent any 
deadline miss that may occur.  

• Feasible and realistic approach by ensuring that 
all processes meet their deadline times under any 
circumstance. 

• Guaranteeing all tasks meet their timing 
constraints and all available resources are fully 
utilized are considered the main objectives for 
the proposed method. 

In order for the proposed scheme to work effectively, 
several assumptions are made and taken into consideration 
which can be summarized as follows: 
I. Preemptive approach which means any task can 
be blocked by another task with higher priority. 
II. Task migration is allowed so any task finishes its 
execution on any available processor. 
III. All tasks in the ready queue are available upon 
selection and they are independent. 
IV. Any process is not allowed to appear on multiple 
processors at the same time. 
IV. Combines with EDF algorithm when and if 
needed. 
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Each periodic real-time tasks has timing constraints which 
are: release times “r”, deadline times “d”, execution times, 
period times “P’. The period time is defined as a time 
when each process is repeated. For the proposed scheme, P 
and d are the same. The achieved overhead reduction is 

nearly 50% as observed in the simulation experiments. 
Furthermore, the response time speed up increases around 
50% for uniprocessor and more than 60% for multiple 
processor environments.  
       O(1) is the complexity of determining the remaining 
execution time as shown and proved in [21]. The 
probability vector P, which is associated with the tasks 
available in the ready list, is normalized automatically 
when a new process is added to it or an existing process is 
removed when it is successfully done. The remaining 
execution time “Cir” takes either positive or negative value 
according to changing in a type of distribution being used 
whereas the rate “Ri” takes only value ≥ 0. It is very 
clearly that the rate “R” becomes bigger as the process 
approaches its deadline time. The proposed approach can 
be applied on any real-time system where processing time 
varies from time to time such as multimedia systems where 
processing depends on amount of data which has great 
variations in voice and video. 

4. Simulation Experiments and Numerical 
Evaluation 

The developed simulation system was used to evaluate the 
proposed algorithm. Various conditions and circumstances 
were applied on the approach to prove its validity and 
strength. The intensive simulation experiments showed that 
the proposed method provided the desired results by: 
1.  Delivering all processes successfully completely with     
no deadline miss. 
2.   Reducing the overhead from context switching around 
50% in average. However, the maximum obtained 
reduction in the overhead was nearly 64% when 10 CPUs 
were used with 45 tasks existed in 6 sets. So 45 tasks were 
randomly generated in each set.  
3.  Enhancing the speed up of the response time was 
around 35% to 42% in the uniprocessor environment while 
over than 50% was obtained for multiple processor 
environments. 
       Around 400,000 tasks with more than 200 sets were 
randomly generated and tested with an average of 10,000 
times. Each set was composed of 10,000 to 20,000 tasks 
with random values for deadline and execution times, also 
each set of tasks was associated with probability vector “P” 
where ∑ Pi = 1. The maximum number of used CPUs “M” 
in the simulation was 10 and the developed simulation 
system works either in the uniprocessor or multiprocessor 
environments. The simulation is capable of telling the total 
number of processes that met their timing constraints 
successfully, the total number of overhead took place in 
the proposed algorithm, the response time taken to 
complete each set and the total number of tasks that failed 
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to complete their execution times before or at their 
deadline times.  
In addition, a comparison between the overhead occurred 
and the response time needed for the algorithm in [1] and 
the proposed scheme within this paper was conducted and 
included in the simulation. The execution time (C), 
deadline time (d) and probability vectors were randomly 
generated by the simulation where d is greater than C and 
several tasks may have the same deadline times; the same 
applies on the execution time (C). The maximum deadline 
time was set to 325 time units. The arrival times (r) was 
also generated randomly by the simulation under a 
constraint that r < c and d. Table 2 illustrates the 
characteristics of used device to test the proposed 
algorithm and shows its validation. 

Table 2: characteristics and platform of used device 
Platform 

Name 
System 
Type CPU Speed RAM 

Windows     
10 Pro    64 bit 

Intel I5-
3210M 
Core 2 Due 

   2.50 Ghz 4 GB 

The following tables show the results of applying the 
proposed algorithm for both environments under several 
circumstances and/or conditions. The tables illustrate the 
total number of tasks that met their timing constraints 
“TTC”, the total number of tasks that were unable to meet 
their deadline times “TTF”, the total number of overhead 
happened from context switching between several 
processes on different CPUs “TOV” and the response time 
needed to deliver all tasks successfully “RT” in seconds. 
The second column in each table represents the total 
number of sets being generated and the total number of 
generated tasks in each set. All experiments were 
performed in normal distribution. However, several 
probability distributions can be applied on the proposed 
algorithm. 
Example 1: Uniprocessor with the same arrival time (r = 0) 

Table 3. Results of uniprocessor with the same arrival time 

Number 
of 

Iterations 

Number 
of sets 

and 
tasks 

TTC TTF TOV RT 
“s” 

3500 4/30 179 0 153 69 
5000 12/64 802 0 751 178 

10,000 7/95 936 0 922 368 
15,000 20/300 6103 0 5897 892 
23,000 25/500 12596 0 12495 1368 

The proposed method delivered all tasks completely and 
successfully without any deadline miss occurred. Example 
2 illustrates the result of applying the scheme in the 
uniprocessor environment with different arrival times for 
several tasks. There is a chance that several processes may 
share the same arrival time. However, using different 

arrival times influence the needed response time to finish 
all tasks as observed as shown in table 4 
Example 2: Uniprocessor with the different arrival times (r 
≥ 0) 

Table 4. Results of uniprocessor with different arrival time 

Number 
of 

Iterations 

Number 
of sets 

and 
tasks 

TTC TTF TOV RT 
“s” 

2450 6/20 142 0 178 397 
4500 10/90 1092 0 1390 531 

15,000 8/110 921 0 858 785 
30,000 15/350 5591 0 6034 2944 
50,000 48/400 25692 0 25534 5428 

As illustrated in table 4, having different arrival times 
impacts the response needed by increasing it which is very 
obvious since several processes start their cycles later. 
Nevertheless, the proposed algorithm handled all tasks 
perfectly since there was no deadline miss. 
Example 3: different arrival times (r ≥ 0) with M = 5 

Table 5. Results of using 5 CPUs 

Number 
of 

Iterations 

Number 
of sets 

and 
tasks 

TTC TTF TOV RT 
“s” 

5000 11/50 1396 0 759 394 
7000 15/210 5293 0 3298 639 

10,000 20/200 7120 0 3989 542 
28,000 20/482 15587 0 6119 921 
35,000 70/690 70385 0 38596 3849 

Table 5 illustrates that using several CPUs enhanced the 
speed up nearly 50% when comparing the same 
circumstances in the uniprocessor environment. The 
overhead occurred was significantly reduced too since the 
dynamic moving average mechanism adjusts the value of 
time slot assigned by the CPUs to each task. 
Example 4: different arrival times (r ≥ 0) with M = 9 

Table 6. Results of using 9 CPUs 

Number 
of 

Iterations 

Number 
of sets 

and 
tasks 

TTC TTF TOV RT 
“s” 

20,000 9/30 4437 0 692 317 
7000 21/33 5932 0 2894 478 

14,000 35/120 8710 0 3911 499 
54,000 50/566 49912 0 710 635 

100,000 100/1000 140,03 0 33,029 1,381 
Example 5: different arrival times (r ≥ 0) with M = 10 

Table 7. Results of using 10 CPUs 

Number 
of 

Iterations 

Numbe
r of sets 

and 
tasks 

TTC TTF TOV RT 
“s” 
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10,000 15/20 2673 0 398 291 
13000 20/35 4918 0 551 611 
21,000 25/200 13254 0 468 498 
65,000 40/250 42699 0 10332 1204 

100,000 88/500 103451 0 32007 20510 
Tables 6 and 7 clarify that the proposed approach was able 
to deliver all processes with different arrival times. Next 
tables demonstrate the comparison study conducted 
between the developed algorithm in [1] and the proposed 
scheme within this paper based on the TOV and RT for 
both methods. The conducted comparison was performed 
in multiple processor environments with 5 CPUs. 
Furthermore, the arrival time values were set to 0 which 
indicates that all processes were randomly generated at the 
same time. In tables 8 and 9, “TPA” represents The 
Proposed Approach whereas “DM” refers to the 
Developed Method in [1].  “NoI” refers to the Number Of 
Iterations and “NoST” refers to the Number Of Sets and 
Tasks in each set. Third column for both performance 
metrics “TOV and RT” in tables 7 and 8 which is 
represented by % refers to the improvement obtained when 
using the proposed method (TPA). 

Table 8. Conducted comparison analysis for TOV 

NoI NoST  TOV 
DM TPA % 

10,000 10/20 782 419 46.4 
25,000 15/50 1496 683 54.3 
50,000 30/250 3599 1927 46.5 

100,000 50/600 13,528 7012 48.2 
200,000 100/800 54,982 30,419 44.7 

Table 9. Conducted comparison analysis for RT 

NoI NoST RT 
DM TPA % 

10,000 10/20 201 83 58.7 
25,000 15/50 568 393 30.8 
50,000 30/250 1249 538 56.9 

100,000 50/600 7917 4833 39 
200,000 100/800 15958 8992 43.7 

Both previous tables (8 and 9) clearly show that the TPA 
outperforms the DM, which developed in [1], in terms of 
reduction in the TOV and the obtained speed up for the RT. 
Nearly 50% was achieved for both performance metrics for 
either uniprocessor or multiple processors environments. 
Several conditions were applied to determine the behaviors 
of both methods and investigate how they react under 
severe circumstances. 
Table 10 lists some of the known distributions with a 
formula to determine the remaining execution time (Cr) 
values as illustrated in [21], more information can be found 
in [21] 
 
 
 

Table 10. List of known probability distributions 

Distribution 
Type 

Remaining 
Execution Time 

Equation 
Explanation 

Uniform Cr =  
t represents the current 

time 

Exponential Cr =  

μ is the service rate,  

 

Power tail Cr = 1 +   

Erlangian-3 

Cr =  

 

Has 3 identical 
exponential servers in 
cascade. One at a time 

5. Conclusion and Future Work 
This paper presented improved scheme to minimize the 
overhead occurs from context switching and enhance the 
speed for the response time needed to deliver all tasks 
successfully for periodic real-time tasks using dynamic 
moving average based on the approach developed in [1]. 
The proposed scheme guarantees that all processes in the 
ready queue meet their timing constraints while producing 
minimum overhead and response time. Using dynamic 
moving average method for uncertainty execution times to 
schedule real-time tasks gives the flexibility needed to 
achieve the obtained results.  
        The proposed approach can be applied on different 
probability distribution. However, this paper presented 
only discrete distribution. Furthermore, the proposed 
algorithm keeps all available CPUs in the system busy at 
all times to schedule more tasks. Furthermore, it keeps 
systems stable and provides a good timely response time as 
observed in the experiments that were performed and 
conducted. Several examples were given to demonstrate 
how the proposed scheme works. In addition, comparison 
study and analysis evaluation between the TPA and DM 
were performed and conducted. The results from the 
comparison analysis indicate that the TPA outperforms the 
DM with around 50% improvement for TOV and RT 
metrics.   
For future work, investigating the impact of using the 
proposed approach on the produced power consumption 
during the evaluation procedures will be conducted. Also, 
developing a method to apply the proposed method for 
Internet of Things (IoT) applications where the execution 
time varies from time to time will be studied and 
performed. 
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