
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

133

Manuscript received April 5, 2017
Manuscript revised April 20, 2017

Using Dynamic Moving Average in Real-Time Systems to
Minimize Overhead and Response Time for Scheduling Periodic

Tasks

Ahmed Alsheikhy

Northern Border University, College of Engineering, Electrical Engineering Department, Arar, Saudi Arabia

Summary
In real-time systems, scheduling algorithms are used in control
situations where it is a crucial or a critical to complete a task
successfully within a specific time interval. Many scheduling
techniques consider scheduling tasks according to their Worst-
Case Execution Time (WCET) or average execution time while
neglecting a change in their probability distributions. In real-time
applications such as multimedia, Using either WCET or the
average value to schedule several tasks is impractical and
inappropriate and could cause a catastrophic result. The previous
studies show that the multimedia real-time applications such as
Audio or Video statistically has a great variation in their
execution times which means scheduling them according to the
WCET or the average execution time is insufficient and
unwanted results may occur. In this paper, a new effective and
efficient dynamic method to schedule periodic real-time tasks is
presented based on using a dynamic moving average approach.
Dynamic moving average refers to a change in a probability
distribution being used when a task is added or removed. The
objective is to develop a method that guarantees the delivering of
all tasks to meet their timing constraints and also to minimize the
overhead occurring from context switching between different
tasks. Furthermore, enhancing the response time minimization is
desired. Our intensive experiments on a developed simulation
performance evaluation indicate that the developed method is
capable of handling all tasks to meet their deadline times,
achieving around an average of 24% to 49% reduction in the
overhead and the response time enhancing by average of 50%.
Key words:
Real-time applications, efficient dynamic scheduling algorithm,
timing constraints, periodic tasks, probability distribution.

1. Introduction

Particularly, many real-time applications consist of
precedence timing constrained stochastic tasks. Stochastic
tasks are defined as tasks which their execution and
communication times are random variables and follow
certain probability distributions [1,2]. Ability to schedule
completely and successfully all those constrained tasks is
needed. However, it is not easy procedure since scheduling
problems are considered NP-hard problems [2]. Image and
Information processing along with the weather modeling
are perfect examples for real-time applications where

processing mainly depends on the amount of data being
received with a great variation [1]. In addition, the
communication time for different tasks could fluctuate the
execution time according to the network capacity, routing
methods and traffic issues [2]. Several scheduling
approaches focus and aim only to schedule different tasks
with deterministic execution and communication times [2].
In another word, they assume tasks or processes with fixed
execution times, mostly is the WCET. However, relaying
on that factor is impractical since many applications may
have conditional instructions or operations which require
different execution times for different inputs [2,3,4]. In
addition, considering only the WCET or the average times
as a factor to schedule tasks is inappropriate when dealing
with several tasks which share randomness and uncertainty
in their execution times [1,2,3,4]. A system under
consideration performance is affected by scheduling
methods since they determine the processors and resource
utilizations. The objective of scheduling schemes is to map
between several tasks or processes with a uniprocessor or
multiprocessor environments to guarantee the satisfaction
of their timing constrains [2,3,4]. Modern high
performance processors such as Intel and AMD Athlon
perform several operations at the same time. Performing
those operations require a good scheduling method in
order to keep a system stable and under control. When
several application run and compete for resources on the
uniprocessor or multi processors, there is a need to have an
efficient, a sufficient and an effective approach that
handled different tasks properly. Scheduling stochastic
real-time tasks requires the known of the execution time in
advanced which is very hard in real-time multimedia
applications [1,4,5,6]. Several significant works on
stochastic tasks scheduling have been performed. Next
section explores the recent researches and studies.
Nowadays, two categories of scheduling algorithms are
found which are static and dynamic. Preemptive and Non
preemptive techniques exist in each type. Preemptive
method refers to blocking a current executed task by
another task with a higher priority while non preemptive
refers to the continuous of the execution procedure even
there is another task with high priority in the ready queue.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

134

In many real-time systems, applications may be composed
of a task or several tasks that are independent which need
to be executed under very strict timing constraints
[3,4,5,6,7]. They need to be dynamically scheduled
according to their unpredictable execution times [6].
Schedulability analysis must be performed prior to a task
execution process. It involves a significant sufficient
information about the probability distribution being used
and behavior of the execution [6,7]. Several tasks
characteristics must be taken into account when develop a
scheduling method which can be summarized as follows: 1.
Arrival times “r”: can be defined as the time when a task
becomes available in the ready queue list, also known as
the release time, 2. Execution times and 3. Deadline times
“d”. Several heuristic scheduling techniques neglect the
importance of the execution times behavior and their
uncertainty nature when developing methods to schedule
periodic real-time tasks [7,8]. This neglection issue is the
motivation key to investigate an algorithm that schedules
stochastic tasks with a minimum overhead and minimum
response time. The contribution in this paper is done by
proposing and developing a very efficient and effective
hybrid dynamic scheduling technique for periodic real-time
tasks, works either on the uniprocessor or multiple
processors systems, according to unpredictable execution
time behaviour in order to minimize the overhead occurs
from context switching and to improve the response time.
Hybrid method indicates that it cooperates with the Earliest
Deadline First (EDF) algorithm when and if needed. The
proposed approach works during run-time to decide which
task or a set of tasks should be selected first from ready
queue and gains system resources such as CPU.
Minimizing the overhead, enhancing the speed up of
response time reduction by providing a good timely
response reaction, delivering all tasks completely and
successfully, maximizing the used CPU(s) utilizations and
keeping the stability of a system under investigation are the
main objectives for the proposed scheme. Table 1
illustrates the assumptions and characteristics for the
proposed technique to perform properly. In the remainder
of this paper, related work on scheduling schemes is
presented in Section 2, followed by a detailed discussion
of the proposed approach in section 3. Section 4 includes
simulation results to show the validation of the proposed
approach on a multiprocessor environment. Section 5 is the
conclusion of the paper.

Table 1: The proposed method characteristics
Dynamic and Preemptive
Hybrid: cooperates with the EDF algorithm
All tasks are independent
The probability distribution is known or can be estimated
Applicable on any probability distribution being used
Works on all platforms: Uniprocessor and multiple
processors
Appearing on different processors at a same time is strictly
banned

2. Related Work

Recently, scheduling techniques for periodic real-time
tasks have been studied and developed extensively due to
increasing demands for real-time systems and applications.
There has been several works purely on periodic tasks with
uncertainty execution times and behaviors [2,3,4]. An
efficient dynamic method to schedule periodic real-time
tasks with variant execution times using dynamic average
estimation is presented in [1]. A. Alsheikhy et al developed
the algorithm based on the probability distribution being
used and existed in the system under consideration. The
developed approach in [1] delivers all tasks perfectly with
no deadline miss occurs. However, high overhead from
context switching and required computations for
determining the selected tasks are existed. In this paper,
the proposed scheme reduces the overhead by nearly 49%
maximum and improves the speed up of the response time
over 50% as observed from the intensive simulation
experiments. In [1], each unfinished task is examined and
checked every time unit to determine task or set of tasks
must be chosen first based on their rate value. In addition,
when multiple tasks share the same value for their rate, a
task or set of tasks with the shortest deadline time is
selected and then allocated to the CPU(s). The rate is
computed according to the slack, deadline “d” and current
time “t” values. The proposed method within this paper
uses the same principle and idea but in different way. It
determines a minimum value x for all uncompleted tasks
by computing the difference between their deadline and the
remaining execution times. The minimum value x is
defined as the time slot assigned by the CPU(s) to every
unfinished task in the ready queue list. The value for x
varies dynamically from time to time which makes it very
flexible. Using flexible dynamic value for x reduces the
overhead and improves the response time as well. However,
the minimum value x in [1] is fixed at all time which
makes it static.
A model of scheduling stochastic parallel tasks in
application on heterogeneous cluster systems is proposed
in [3]. K. L. Xiaoyong et al discussed the stochastics
scheduling attributes to deal with various random variables
in order to show that the expected execution times is
greater than or equal to the value of determined tasks. A
Stochastic Dynamic Level Scheduling (SDLS) scheme is
proposed. The proposed method combines the stochastic
bottom levels with stochastic dynamic levels. Speed up and
standard deviation were the performance parameters being
tested and evaluated. The SDLS approach is applicable
only on normal distribution while the proposed method
within this paper deals with various probability
distributions which makes it very flexible to be used and
applied in many applications regardless their distributions.
The SDLS scheme was compared with other three existing

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

135

heuristics scheduling algorithms which were SHEET,
HEFT and Rob-HEFT. More information about the SDLS
method is found in [3].
J. Li et al in [4] proposed a method to schedule parallel
real-time tasks using a federated scheduling technique.
Federated scheduling method is a scheme to schedule
parallel tasks by allocating a dedicated cluster to a task or
a set of tasks when its/their utilization ≥ 1 while execution
other lower utilization tasks sequentially on a shared
cluster. The average case of workload was used instead of
the worst case load. Only stochastic tasks in soft real-time
systems. A bounded expected tardiness criteria was used as
the factor to estimate the boundary for stochastic tasks
using federated scheduling methods. They mapped three
federated schemes with different complexities for core
allocation. Numerical evaluations for the proposed method
was performed using randomly generated tasks sets.
However, the proposed algorithm within this paper
considers only hard stochastic real-time tasks where any
deadline miss may cause a catastrophic or unwanted result.
The authors in [4] calculated the expected tardiness in
order to estimate the upper bound, BASIC and FAIR
mapping approaches were used with a help from Linear
Programming procedures. The WCET approach was not
investigated in [4], however, the proposed method within
this paper uses either the WCET or the average ones.
Interested readers are referred to [4] for more information
about the SDLS approach.
In [7], J. F. Kempf et al proposed a framework to estimate
the expected performance of a given scheduling policy. A
dynamic programming style procedure for automatically
synthesizing an optimal scheduler for the expected time.
An iterative computation of a stochastic time-to-go
function was used. They presented an automatic derivation
of optimal controller for non markovian continuous time
processes. Initially, the estimation for the expected
termination time under a given scheduler is developed
according to the computation of the duration space.
Furthermore, a local stochastic time-to-go and a global
stochastic time-to-go values are computed. More
information about the proposed framework can be found in
[7].
K. Li et al in [8] proposed an energy-aware scheduling
method for task execution cycles on heterogeneous
computing systems with normal distribution only. A
heuristic energy-aware stochastic tasks scheduling
algorithm (ESTS) was developed by them by using linear
programming approach. They claimed that their scheme
achieved high scheduling performance for independent
tasks with lower complexity. However, a trade-off between
the scheduling length and energy consumption occurred.

3. The Proposed Algorithm

The proposed scheme in [1] is very efficient since it
delivers all tasks successfully with no deadline miss occurs.
However, it suffers from high computational demands
according to the algorithm policy. In addition, high
overhead from context switching takes place too since the
approach checks each time unit to decide which task must
be selected first from the tasks present in the ready queue.
The proposed algorithm within this paper improves the
mentioned scheme in [1] since it minimizes the overhead
from context switching and also reduces the response time
needed to complete a task successfully as observed from
our experiments. The motivations to develop the proposed
approach in this paper are summarized as follows:

• Developing dynamic and hybrid method to
schedule periodic real-time tasks effectively and
efficiently. Hybrid refers to cooperating with the
EDF algorithm as stated earlier.

• Reducing the overhead from context switching
and speeding up the required response time to
finish any process completely and successfully.

• A method that works either on uniprocessor or
multiprocessor environments.

• Maximizing CPUs and resources utilization
while it keeps a system stable under several
conditions or circumstances.

• Eliminating idling state “mode” to prevent any
deadline miss that may occur.

• Feasible and realistic approach by ensuring that
all processes meet their deadline times under any
circumstance.

• Guaranteeing all tasks meet their timing
constraints and all available resources are fully
utilized are considered the main objectives for
the proposed method.

In order for the proposed scheme to work effectively,
several assumptions are made and taken into consideration
which can be summarized as follows:
I. Preemptive approach which means any task can
be blocked by another task with higher priority.
II. Task migration is allowed so any task finishes its
execution on any available processor.
III. All tasks in the ready queue are available upon
selection and they are independent.
IV. Any process is not allowed to appear on multiple
processors at the same time.
IV. Combines with EDF algorithm when and if
needed.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

136

Each periodic real-time tasks has timing constraints which
are: release times “r”, deadline times “d”, execution times,
period times “P’. The period time is defined as a time
when each process is repeated. For the proposed scheme, P
and d are the same. The achieved overhead reduction is

nearly 50% as observed in the simulation experiments.
Furthermore, the response time speed up increases around
50% for uniprocessor and more than 60% for multiple
processor environments.
 O(1) is the complexity of determining the remaining
execution time as shown and proved in [21]. The
probability vector P, which is associated with the tasks
available in the ready list, is normalized automatically
when a new process is added to it or an existing process is
removed when it is successfully done. The remaining
execution time “Cir” takes either positive or negative value
according to changing in a type of distribution being used
whereas the rate “Ri” takes only value ≥ 0. It is very
clearly that the rate “R” becomes bigger as the process
approaches its deadline time. The proposed approach can
be applied on any real-time system where processing time
varies from time to time such as multimedia systems where
processing depends on amount of data which has great
variations in voice and video.

4. Simulation Experiments and Numerical
Evaluation

The developed simulation system was used to evaluate the
proposed algorithm. Various conditions and circumstances
were applied on the approach to prove its validity and
strength. The intensive simulation experiments showed that
the proposed method provided the desired results by:
1. Delivering all processes successfully completely with
no deadline miss.
2. Reducing the overhead from context switching around
50% in average. However, the maximum obtained
reduction in the overhead was nearly 64% when 10 CPUs
were used with 45 tasks existed in 6 sets. So 45 tasks were
randomly generated in each set.
3. Enhancing the speed up of the response time was
around 35% to 42% in the uniprocessor environment while
over than 50% was obtained for multiple processor
environments.
 Around 400,000 tasks with more than 200 sets were
randomly generated and tested with an average of 10,000
times. Each set was composed of 10,000 to 20,000 tasks
with random values for deadline and execution times, also
each set of tasks was associated with probability vector “P”
where ∑ Pi = 1. The maximum number of used CPUs “M”
in the simulation was 10 and the developed simulation
system works either in the uniprocessor or multiprocessor
environments. The simulation is capable of telling the total
number of processes that met their timing constraints
successfully, the total number of overhead took place in
the proposed algorithm, the response time taken to
complete each set and the total number of tasks that failed

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

137

to complete their execution times before or at their
deadline times.
In addition, a comparison between the overhead occurred
and the response time needed for the algorithm in [1] and
the proposed scheme within this paper was conducted and
included in the simulation. The execution time (C),
deadline time (d) and probability vectors were randomly
generated by the simulation where d is greater than C and
several tasks may have the same deadline times; the same
applies on the execution time (C). The maximum deadline
time was set to 325 time units. The arrival times (r) was
also generated randomly by the simulation under a
constraint that r < c and d. Table 2 illustrates the
characteristics of used device to test the proposed
algorithm and shows its validation.

Table 2: characteristics and platform of used device
Platform

Name
System
Type CPU Speed RAM

Windows
10 Pro 64 bit

Intel I5-
3210M
Core 2 Due

 2.50 Ghz 4 GB

The following tables show the results of applying the
proposed algorithm for both environments under several
circumstances and/or conditions. The tables illustrate the
total number of tasks that met their timing constraints
“TTC”, the total number of tasks that were unable to meet
their deadline times “TTF”, the total number of overhead
happened from context switching between several
processes on different CPUs “TOV” and the response time
needed to deliver all tasks successfully “RT” in seconds.
The second column in each table represents the total
number of sets being generated and the total number of
generated tasks in each set. All experiments were
performed in normal distribution. However, several
probability distributions can be applied on the proposed
algorithm.
Example 1: Uniprocessor with the same arrival time (r = 0)

Table 3. Results of uniprocessor with the same arrival time

Number
of

Iterations

Number
of sets

and
tasks

TTC TTF TOV RT
“s”

3500 4/30 179 0 153 69
5000 12/64 802 0 751 178

10,000 7/95 936 0 922 368
15,000 20/300 6103 0 5897 892
23,000 25/500 12596 0 12495 1368

The proposed method delivered all tasks completely and
successfully without any deadline miss occurred. Example
2 illustrates the result of applying the scheme in the
uniprocessor environment with different arrival times for
several tasks. There is a chance that several processes may
share the same arrival time. However, using different

arrival times influence the needed response time to finish
all tasks as observed as shown in table 4
Example 2: Uniprocessor with the different arrival times (r
≥ 0)

Table 4. Results of uniprocessor with different arrival time

Number
of

Iterations

Number
of sets

and
tasks

TTC TTF TOV RT
“s”

2450 6/20 142 0 178 397
4500 10/90 1092 0 1390 531

15,000 8/110 921 0 858 785
30,000 15/350 5591 0 6034 2944
50,000 48/400 25692 0 25534 5428

As illustrated in table 4, having different arrival times
impacts the response needed by increasing it which is very
obvious since several processes start their cycles later.
Nevertheless, the proposed algorithm handled all tasks
perfectly since there was no deadline miss.
Example 3: different arrival times (r ≥ 0) with M = 5

Table 5. Results of using 5 CPUs

Number
of

Iterations

Number
of sets

and
tasks

TTC TTF TOV RT
“s”

5000 11/50 1396 0 759 394
7000 15/210 5293 0 3298 639

10,000 20/200 7120 0 3989 542
28,000 20/482 15587 0 6119 921
35,000 70/690 70385 0 38596 3849

Table 5 illustrates that using several CPUs enhanced the
speed up nearly 50% when comparing the same
circumstances in the uniprocessor environment. The
overhead occurred was significantly reduced too since the
dynamic moving average mechanism adjusts the value of
time slot assigned by the CPUs to each task.
Example 4: different arrival times (r ≥ 0) with M = 9

Table 6. Results of using 9 CPUs

Number
of

Iterations

Number
of sets

and
tasks

TTC TTF TOV RT
“s”

20,000 9/30 4437 0 692 317
7000 21/33 5932 0 2894 478

14,000 35/120 8710 0 3911 499
54,000 50/566 49912 0 710 635

100,000 100/1000 140,03 0 33,029 1,381
Example 5: different arrival times (r ≥ 0) with M = 10

Table 7. Results of using 10 CPUs

Number
of

Iterations

Numbe
r of sets

and
tasks

TTC TTF TOV RT
“s”

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

138

10,000 15/20 2673 0 398 291
13000 20/35 4918 0 551 611
21,000 25/200 13254 0 468 498
65,000 40/250 42699 0 10332 1204

100,000 88/500 103451 0 32007 20510
Tables 6 and 7 clarify that the proposed approach was able
to deliver all processes with different arrival times. Next
tables demonstrate the comparison study conducted
between the developed algorithm in [1] and the proposed
scheme within this paper based on the TOV and RT for
both methods. The conducted comparison was performed
in multiple processor environments with 5 CPUs.
Furthermore, the arrival time values were set to 0 which
indicates that all processes were randomly generated at the
same time. In tables 8 and 9, “TPA” represents The
Proposed Approach whereas “DM” refers to the
Developed Method in [1]. “NoI” refers to the Number Of
Iterations and “NoST” refers to the Number Of Sets and
Tasks in each set. Third column for both performance
metrics “TOV and RT” in tables 7 and 8 which is
represented by % refers to the improvement obtained when
using the proposed method (TPA).

Table 8. Conducted comparison analysis for TOV

NoI NoST TOV
DM TPA %

10,000 10/20 782 419 46.4
25,000 15/50 1496 683 54.3
50,000 30/250 3599 1927 46.5

100,000 50/600 13,528 7012 48.2
200,000 100/800 54,982 30,419 44.7

Table 9. Conducted comparison analysis for RT

NoI NoST RT
DM TPA %

10,000 10/20 201 83 58.7
25,000 15/50 568 393 30.8
50,000 30/250 1249 538 56.9

100,000 50/600 7917 4833 39
200,000 100/800 15958 8992 43.7

Both previous tables (8 and 9) clearly show that the TPA
outperforms the DM, which developed in [1], in terms of
reduction in the TOV and the obtained speed up for the RT.
Nearly 50% was achieved for both performance metrics for
either uniprocessor or multiple processors environments.
Several conditions were applied to determine the behaviors
of both methods and investigate how they react under
severe circumstances.
Table 10 lists some of the known distributions with a
formula to determine the remaining execution time (Cr)
values as illustrated in [21], more information can be found
in [21]

Table 10. List of known probability distributions

Distribution
Type

Remaining
Execution Time

Equation
Explanation

Uniform Cr =
t represents the current

time

Exponential Cr =

μ is the service rate,

Power tail Cr = 1 +

Erlangian-3

Cr =

Has 3 identical
exponential servers in
cascade. One at a time

5. Conclusion and Future Work
This paper presented improved scheme to minimize the
overhead occurs from context switching and enhance the
speed for the response time needed to deliver all tasks
successfully for periodic real-time tasks using dynamic
moving average based on the approach developed in [1].
The proposed scheme guarantees that all processes in the
ready queue meet their timing constraints while producing
minimum overhead and response time. Using dynamic
moving average method for uncertainty execution times to
schedule real-time tasks gives the flexibility needed to
achieve the obtained results.
 The proposed approach can be applied on different
probability distribution. However, this paper presented
only discrete distribution. Furthermore, the proposed
algorithm keeps all available CPUs in the system busy at
all times to schedule more tasks. Furthermore, it keeps
systems stable and provides a good timely response time as
observed in the experiments that were performed and
conducted. Several examples were given to demonstrate
how the proposed scheme works. In addition, comparison
study and analysis evaluation between the TPA and DM
were performed and conducted. The results from the
comparison analysis indicate that the TPA outperforms the
DM with around 50% improvement for TOV and RT
metrics.
For future work, investigating the impact of using the
proposed approach on the produced power consumption
during the evaluation procedures will be conducted. Also,
developing a method to apply the proposed method for
Internet of Things (IoT) applications where the execution
time varies from time to time will be studied and
performed.

References
[1] Alsheikhy A., Ammar R., Elfouly R., Alharthi M. and

Alshegaifi A., “An Efficient Dynamic Scheduling Algorithm
for Periodic Tasks in Real-Time Systems Using Dynamic

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

139

Average Estimation”, 2016 IEEE Symposium on Computers
and Communication (ISCC 2016), pp. 820-824, Italy, June
2016.

[2] Alsheikhy A., Elfouly R., Alharthi M., Ammar R. and
Alshegaifi A., “An Effective Real-Time Dynamic
Scheduling Approach for Periodic Tasks”, International
Journal of Computing, Communications and
Instrumentation Engg. (IJCCIE), Vol. 3, Issue 2, pp. 279-
383, May 2016.

[3] Li K., Tang X. and Veeravalli B., “Scheduling
Precedence Constrained Stochastic Tasks on Heterogeneous
Cluster Systems”, IEEE Transactions on computers, Vol. 64,
No. 1, pp. 191-204, January 2015.

[4] Li J., Agrawal K., Gill C. and Lu C., “Federated
Scheduling for Stochastic Parallel Real-Time Tasks”,
Proceedings of IEEE 20th International Conference on
Embedded and Real-Time Computing Systems and
Applications (RTCSA 2014), pp. 1-10, August 2014.

[5] Miller B., Vahid F. and Givargis T., “RIOS: A
Lightweight Task Scheduler for Embedded Systems”,
WESE 12th Proceedings of the workshop on Embedded and
Cyber-Physical Systems Education, ACM, New York, NY,
USA, 2013.

[6] Muller G., “Scheduling Techniques and Analysis”,
Buskerud University College, March 2013.

[7] Kempf J. F., Bozga M. and Maler O., “As Soon as
Probable: Optimal Scheduling Under Stochastic
Uncertainty”, Proceedings of International Conference on
Tools and Algorithms for Construction and Analysis of
Systems (TACAS 2013), pp. 385-400, Rome, Italy, March
2013.

[8] Li K., Tang X. and Yin Q., “Energy-Aware
Scheduling Algorithm for Task Execution Cycles with
Normal Distribution on Heterogeneous Computing
Systems”, 41st International conference on parallel
processing, pp. 40-47, 2012.

[9] Tasneem S., Zhang F., Lipsky L. and Thompson S.,
“Comparing Different Scheduling Schemes for M/G/1
Queue”, 6th International Journal on Electrical and
Computer Engineering (ICECE), pp. 746-749, Dhaka,
Bangladesh, 2010.

[10] Abdelmaksoud E. Y., “Performance and Reliability-Driven
Scheduling Approach for Efficient Execution of
Parallelizable Stochastic Tasks in Heterogeneous
Computing Systems”, International Journal Open Problems
in Computer Science and Mathematics, Vol. 3, No. 2, pp.
137-163, June 2010.

[11] Iqbal N. and Henkel J., “SETS: Stochastic Execution Time
Scheduling for Multicore Systems by Joint State Space and
Monte Carlo”, Proceedings of IEEE/ACM International
Conference on Computer-Aided Design (ICCAD 2010), pp.
123-130, San Jose, CA, 2010.

[12] Tasneem S., Ammar R., Lipsky L. and Sholl
H., ”Improvement of Real-Time Job Completion Using
Residual Time-Based (RTB) Scheduling”, International
Journal of Computers and their Applications, Vol. 17, No. 3,
pp. 117-132, March 2010.

[13] Cong J. and Gururaj K., “Energy Efficient Multiprocessor
Task Scheduling Under Input-Dependent Variation”,

Proceedings of IEEE C on Design, Automation and Test in
Europe conference Exhibition, pp. 411-416, April 2009.

[14] Satish N., Ravindran K. and Keutzer K., “Scheduling Task
Dependence Graphs with Variable Task Execution Times
onto Heterogeneous Multiprocessors”, Electrical
Engineering and Computer Sciences, University of
California at Berkley April 2008.

[15] Chen J. J., Yang C. Y., Lu H. I. and Kuo T. W.,
“Approximation Algorithms for Multiprocessor Energy-
Efficient Scheduling of Periodic Real-Time Tasks with
Uncertain Task Execution Time”, Proceedings of IEEE
Real-Time and Embedded Technology and Applications
Symposium (RTAS 2008), pp. 13-23, 2008.

[16] Beck J. C. and Wilson N., “Proactive Algorithms for Job
Shop Scheduling with Probabilistic Durations”, Journal of
Artificial Intelligence Research 28, pp. 183-232, 2007.

[17] Kamthe A. and Lee S. Y., “Stochastic Approach to Schedule
Multiple Divisible Tasks on a Heterogeneous Distributed
Computing System”, IEEE International Parallel and
Distributed Processing Symposium on Heterogeneous
Computing Workshop, pp. 1-11, March 2007.

[18] Tasneem S., Lipsky L., Ammar R. and Sholl H., “Using
Residual Times to Meet Deadlines in M/G/C Queues”, NCA,
pp. 128-138, 2005.

[19] Tasneem S., Sholl H. and Ammar R., “Practical Methods for
Deadline Scheduling using Process Residual Time”, CAINE,
pp. 175-180, 2005.

[20] Cortes L. A., “Verification and Scheduling Techniques for
Real-Time Embedded Systems”, Department of Computer
and Information Science, Dissertation No. 920, Linkoping
University, Sweden, 2005.

[21] Tasneem S., “Applications and Effects of Process Residual
Time Information in Time Sensitive Dynamic Scheduling”,
Ph.D. Dissertation, University of Connecticut, USA, 2005.

[22] Tasneem S., Ammar R. and Sholl H., “A Methodology to
Compute Task Remaining Execution Time”, Proceedings of
the International Symposium on Computers and
Communications (ISCC), pp. 74-79, 2004.

[23] Dogan A. and Ozguner F., “Genetic Algorithm Based
Scheduling of Meta-Tasks with Stochastic Execution Times
in Heterogeneous Computing System”, Proceedings of
Cluster Computing, Vol. 7, No. 2, pp. 177-190, April 2004.

[24] Baruah S. and Goossens J., “Scheduling Real-Time Tasks:
Algorithms and Complexity”, pp. 1-35, 2003.

Ahmed Alsheikhy, received the B.S. and
M.S. degrees in Electrical and Computer
Engineering from King Abdulaziz
University 2004 and 2010, respectively. In
2016, he received the Ph.D. degree in
Computer Science and Engineering from
University of Connecticut, USA. During
2004-2010, he stayed in Technical
Vocational Training Corporation (TVTC),

Saudi Arabia to train military soldiers about computer networks
and technical support. His research interests are on Performance
Evaluation, Artificial Intelligence, Satellite and Radar
communication systems and Internet of Things.

	Number of sets and tasks
	Number of Iterations
	RT “s”
	TOV
	TTF
	TTC
	System Type
	Platform Name
	RAM
	Speed
	CPU
	Number of sets and tasks
	Number of Iterations
	RT “s”
	TOV
	TTF
	TTC
	Number of sets and tasks
	Number of sets and tasks
	Number of Iterations
	Number of Iterations
	RT “s”
	RT “s”
	TOV
	TTF
	TTC
	TOV
	TTF
	TTC
	Number of sets and tasks
	Number of Iterations
	RT “s”
	TOV
	TTF
	TTC
	Remaining Execution Time Equation
	Distribution Type
	Explanation
	TOV
	NoST
	NoI
	%
	TPA
	DM
	RT
	NoST
	NoI
	%
	TPA
	DM

