
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

160

Manuscript received April 5, 2017
Manuscript revised April 20, 2017

An Effective Deep Autoencoder Approach for Online Smartphone-
Based Human Activity Recognition

Bandar Almaslukh, Jalal AlMuhtadi, and Abdelmonim Artoli

Department of Computer Science, King Saud University, Riyadh, Saudi Arabia

Summary
Smartphones based human activity recognition (HAR) has a
variety of applications such as healthcare, fitness tracking, etc.
Nowadays, the signals generated by smartphone-embedded
sensors such as accelerometer and gyroscope are used for HAR.
However, achieving high recognition accuracy with low
computation cost is required in smartphone based HAR. Therefore,
we utilize one of the well-known deep learning approach named
stacked autoencoder (SAE) to enhance the recognition accuracy
and decrease recognition time. To evaluate the proposed method,
we applied it on a public benchmark dataset; and compared it
against available methods known of highest recognition accuracy
on the same dataset. We have found that the new method increase
the overall classification accuracy from 96.4% to 97.5% and as
well the average recognition time of each testing sample is
decreased from 0.2724ms to 0.0375ms.

Key words:
Deep Learning, Stacked Autoencoder, Human Activity
Recognition, Machine Learning.

1. Introduction

Smartphone-based Human activity recognition (HAR) has
aided new applications such as, healthcare, entertainment
and safety. [1]. in the past, special wearable body motion
sensors were used to recognize different human activities
[1]. However, the availability of different sensors in
smartphones such as accelerometer and gyroscope has
enabled researchers to use these sensors for activity
recognition as a result of their continuous enhancement in
computational capabilities which made them cost-effective.

According to [2], the human activity recognition systems
consist of four main steps as follow:
1) Sensing: here the sensors collect signal at a specific

sampling rate.
2) Pre-processing: in this step, the collected signals is

handled using different methods such as noise
reduction and segmentation.

3) Feature Extraction: several data features are extracted
from the segmented raw data.

4) Training or Classification: In training phase, that
usually is conducted offline, the model is built and
tuned with the optimal parameters. After constructing
the optimized model, it become ready to use in

classification phase. In this paper we mainly focus on
training and classification phases.

In recent times, many training and classification methods
for HAR have been applied on the smartphones. These
methods were implemented using different machine
learning approaches such as Naive Bayes [3], K-Nearest
Neighbor (KNN) [3, 4 and 5], Decision Tree [6], Support
Vector Machine (SVM) [7 and 8], Neural Network [9],
Boosting algorithm [10] etc.

Deep Learning is one of the main classes of machine
learning. Recently, deep learning methods have been
gaining an intensive attention because they provide better
performance in many fields such as image and speech
recognition. However, in the past (before 2006) training
supervised deep neural network with many layers (2 hidden
layers or more) the weights are randomly initialized from a
Gaussian distribution. After that, back-propagation
optimization method is applied to the network in order to
find the optimal parameters. Practically it was proved that
this way of random initialization will lead to very slow
optimization as well as it may stuck in poor local minima
since the loss function is extremely uncontrolled when
parameterized by millions of dependence variables. In
response to these limitation Hinton et al. [11] in 2006
significantly reduce the learning problem by pre-train each
layer of the network in unsupervised way to learn a
discriminative representation of data before the
classification task. In addition, in 2006 Hinton et al [2]
proposed the first successful deep stacked autoencoder
(SAE) to reduce the dimensionality of the data effectively.
Therefore, stacked SAE is used in this paper but with a
random weights initialization.

Currently, there are few works that utilized deep learning
approaches for smartphone based HAR. For instance, works
in [13, 14 and 15] utilized deep convolution neural network.
SAE and denoising autoencoder (DAE) [16] were utilized
in [17]. In addition, the study in [18] utilize Deep Belief
Networks (DBN) [19]. The majority of these works apply
the deep learning approach directly to the original signal
(raw data). In contrast, our study apply SAE to the extracted
feature from the original signal data.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

161

We summarized the main contribution of this paper as
follow:

• We propose a low cost SAE model for
smartphone-based HAR.

• To get a high recognition accuracy, we optimize
the parameters of the proposed method using the
best practice techniques in the literature.

• We have conducted experimental analysis on
public dataset and demonstrated that the proposed
model is outperforms state-of-art studies on the
same dataset.

The reminder of the paper is structured as follows: Section
2 we describe the dataset used in this paper. We explain the
proposed method in section 3. Results and discussions are
demonstrated in section 4. Finally, the conclusions and
several promising venue for future works are stated in
section 5.

2. Data Sets Description

We have used Smartphones based Human Activity
Recognition data set created in [20]. The data set built with
a group of 30 volunteers within an age between 19 and 48
years. Each person was wearing a smartphone (Samsung
Galaxy S II) on the waist; and performed six different
activities (walking, upstairs, downstairs, sitting, standing
and lying). The generated dataset was divided into two
parts: 70% of the volunteers were selected for the training
set while the other 30% were used for the test set.
Specifically , the training set contains 7352 instances while
the test set contains 2947 instances , all instances are
manually labeled with one of the six activities.

The dataset provides a large number of extracted features
(561 feature) extracted by prepossessing the raw signals
generated from the accelerometer and the gyroscope
sensors. First, at a sampling rate of 50Hz the triaxial linear
acceleration and angular velocity signals using the
smartphone accelerometer and gyroscope are collected.
After that, the median filter is applied to the collected
signals to remove the noise. Then, the acceleration signals
are separated by using Butterworth low-pass filter into body
acceleration and gravity. Finally, the time signals sampled
in fixed-width sliding windows of 2.56 sec and 50% overlap.

3. Methods

3.1 The Overall Procedure

The workflow that we follow in this paper is shown in Fig.
1. First, we implement the Stacked Autoencoder (SAE)
classifier using Matlab, with the default setting. After that,
the SAE model parameters were adjusted continuously until

obtaining the best mixture of parameters that provide the
highest accuracy on the test set. Then, we store the best-
tuned model for further use. Finally, in terms of recognition
accuracy we compare our model with state-of-the-arts
works that had used the same dataset. However, in the
following sections one of the deep learning models SAE
classifier is explained in details.

Fig. 1 The overall procedure of this paper.

3.2 Autoencoder (AE)

The basic unit of the SAE model is the AE. Architecturally,
the AE (Fig 2) is a feed-forward neural network much
similar to the multilayer perceptron (MLP). It has an input
layer, one or more hidden layer(s) and an output layer.
Exceptionally, for AE the number of neurons in the output
and input layers are equal. In addition, it considered as an
unsupervised learning since it learn to reconstruct its input
instead of predicting the target value.
AE consists of two phases: the encoder phase (from input
layer to hidden layer) and the decoder phase (from hidden
layer to output layer). The encoder phase can be formulated
as in Eq. (1), where 𝑊𝑊 is the weight matrix and 𝑏𝑏1 is bias

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

162

vector for the encoder phase. In Eq. (2), the decoder phase
is formulated, where 𝑊𝑊𝑇𝑇is the weight matrix and 𝑏𝑏2 is bias
vector for the decoder phase. The 𝑓𝑓 in Eq. (1) and (2) refers
to one of the well-known nonlinear activation functions, in
this work the sigmoid function is used. In the following, we
describe𝑥𝑥,ℎ and 𝑥𝑥� in Fig. 2 as:

• 𝑥𝑥 is the input layer.
• ℎ is the latent representation (code) of the input

layer 𝑥𝑥.
• 𝑥𝑥� is 𝑝𝑝(𝑥𝑥|ℎ) which approximately should have the

same shape of 𝑥𝑥.

 ℎ = 𝑓𝑓(𝑊𝑊𝑥𝑥 + 𝑏𝑏1) (1)
 𝑥𝑥� = 𝑓𝑓(𝑊𝑊𝑇𝑇ℎ + 𝑏𝑏2) (2)

Input layer
x

Hidden layer
(code)

h
Output layer

x ̃

Encoding Decoding

Fig. 2 The basic architecture of the AE.

3.3 Proposed SAE Classifier (AE)

The SAE architecture used in this work is shown in Fig. 3.
It is formed by stacking two AE (AE1 and AE2) on top of
each other then adding softmax layer on top of the AEs.
However, there are two stages to train the SAE. The first
stage is unsupervised pre-training where a greedy layer wise
method is used to pre-training a deep network one layer at
a time. At each layer the error in reconstructing of its input
using unlabeled samples is minimized. Feeding the latent
representation (code) of the AE1 as an input for the AE2,
where the input of the AE1 is the original data features.
After the AE1 and AE2 are trained, the second stage called
supervised fine-tuning is started. It called supervised since
we want to minimize prediction error using labeled samples.
To minimize the prediction error we added a softmax layer

on top of the network then train the whole network using
the back-propagation as a regular MLP.

In details, the proposed SAE classifier operate as follows:
1) AE1 is trained on the input data (561 features) to learn

the compressed code (80 features) called Code1.
2) AE2 is trained using the Code1 as an input to learn

extremely compressed code (5 features) called Code2.
3) Construct the whole network that is called SAE by

stacking AE1, AE2 and Softmax classifier; then the
whole network is fine-tuned using back-propagation
algorithm.

P(Y= walking | X)

P(Y= upstair | X)

P(Y= downstair | X)

P(Y= sitting | X)

P(Y= standing | X)

P(Y= lying | X)

Input (561 neurons)

Code1 (80 neurons)

Code2 (5 neurons)

Softmax Classifier

…
…
…
…
…
…
…
…
…
…

.

…
…
…
…
…
…
…

..

Fig. 3 The SAE classifier architecture use in this study.

In deep learning models such as SAE, it is non-trivial to
optimize the model parameters that provide high
recognition accuracy. However, in this study, we assess the
accuracy of the model after each run to check if the model
over-fits or under-fits; then we take the right action that
could reduce the problem. There are many strategies to
improve deep learning performance as mentioned in [21 and
22]. Actually, there is no rule of thumb to find the optimal
parameters, but there are some of good practical strategies.
For example, to choose the best network topology, first use
one hidden layer with many neurons, if not work use more
than one hidden layer (deep) with few neurons in each layer,
or finally by combining the two techniques (more than one
hidden layer with many neurons in each layer). However,
the best model parameters used in this paper is provided in

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

163

Table.1, where in section 4.1 we show how some of the
proposed SAE model parameters were optimized.

4. Results and Discussions

In this section, we demonstrate the experimental results of
the proposed SAE model. Matlab R2016b installed on
conventional computer with a 2.4GHZ CPU and 16GB
memory is used to conduct the experiments. SAE classifier
is trained using 7352 training instances (using dataset in
section 2). Some of the classifier parameters are adjusted
until we get the maximum possible accuracy using 2947 test
instances. The impact of main parameters on the recognition
accuracy of the proposed SAE is discussed in section 4.1.
It is important to mention that a competition aiming to
develop novel classification approaches (for the dataset
used in this study) was organized in European Symposium
on Artificial Neural Networks (ESANN) in 2013. However,
in [23] the dataset originator mentioned that the competition
winner work has achieved the best overall accuracy, with
96.4 [7]. Therefore, (in section 4.2) we will compare our
work with the competition winner in term of recognition
accuracy and the computational cost. Moreover, we will
compare the accuracy of our work with the state-of-art
studies that utilize conventional machine learning or deep
learning approaches on the same dataset.

4.1 Model Parameters Optimization

The recognition accuracy of SAE classifier at unsupervised
pre-training and supervised fine-tuning stages is affected by
many parameters. The main parameters of SAE classifier
are the number of layers, the number of neurons in each
layer, max epoch, learning rate batch size, etc. In this study,
primarily we fine-tune three important parameters which
are number of hidden layers, number of neurons in each
layer and max epoch. According to Matlab documentation,
other parameters are set to the default value. By adjusting
the number of hidden layers (1, 2, 3 and 4 layers), the results
show the best recognition accuracy when the number of
hidden layers is two.
To choose the optimal number of neurons in each layer, we
have obtained the highest possible accuracy using one
hidden layer with 150 neuroses. Then, we added the second
hidden layer with few neurons while reducing the number
of neurons in first hidden layer. After that, we frequently
adjusted the number of neurons in each layer until we get
the highest classification accuracy with (80 neurons) in the
first hidden layer and (5 neurons) in the second hidden layer.
However, for the max epoch parameter, we initially used
the default value in Matlab then we increase it by 20 until
we get the best accuracy (for more details about the SAE
parameter see Table 1.

Table 1: The main parameters of the proposed method

Network
Model Parameters

AE1

hiddenSize = 80
Encoder and Decoder Transfer Function = Logistic

sigmoid function
MaxEpochs=500

L2WeightRegularization= 0.004
Loss Function= Mean squared error function

Training Algorithm= Conjugate gradient descent

AE2

hiddenSize = 5
Encoder and Decoder Transfer Function = Logistic

sigmoid function
MaxEpochs=400

L2WeightRegularization= 0.002
Loss Function= Mean squared error function

Training Algorithm= Conjugate gradient descent

SAE

Number of layers = 4 (561-80-5-6 neurons in each
layer)

MaxEpochs=1300
L2WeightRegularization= 0.01

Training Algorithm= Conjugate gradient descent

4.2 Comparison with the Competition Winner

In this section, we compare the proposed method with the
best recognition accuracy archived on this benchmark
datasets [20]. According to [23], the competition winner
used the One-Vs-One Multiclass linear SVM with majority
voting and get the highest overall recognition accuracy
with 96.4%. The competition winner and our method are
compared in terms of overall recognition accuracy and
average recognition time. However, we have found that the
overall accuracy of the proposed method outperforms the
competition winner method by 1.1%, as shown in Table 4.
From the confusion matrix of the competition winner
method (Table 3) and the proposed method (Table 2), it is
obvious that the recognition accuracy of each
corresponding activity is not the same. Significantly, the
recognition accuracy of standing activity in the competition
winner method is better than our method by 5.81%. In
contrast, for sitting activity our method outperform the
classification accuracy of the competition winner by
10.71%.

 Table 2: Confusion matrix for SAE classifier (proposed method)
Activity Wa Up Do Si St Ly Accuracy

%
Walking
Upstairs

Downstair
s

Sitting
Standing

Lying

491 8 3 0 0 0 97.8
2 458 6 3 0 0 97.7
3 5 411 0 0 0 98.1
0 0 0 455 5 0 98.9
0 0 0 43 527 0 92.5

0 0 0 0 0 53
7 100

Precision
%

99.
0

97.
2

97.
9

90.
6

99.
1

10
0

97.5

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

164

Table 3: Confusion matrix of The competition winner method [7]
Activity Wa Up Do Si St Ly Accuracy %

Walking
Upstairs

Downstairs
Sitting

Standing
Lying

493 0 0 3 0 0 99.4
28 430 0 0 0 0 94.06
2 6 412 0 0 0 98.1
0 2 0 433 56 0 88.19
0 0 0 9 523 0 98.31
0 0 0 0 0 537 100

Precision% 94.3 98.2 99.3 98 90.3 100 96.4

Table 4: Performance Comparison with the competition winner method
Method Overall

Accuracy %
Average Recognition

Time (ms)
The competition winner

[7]
96.4 0.2724

Our work 97.5 0.0375

On the other hand the training time of the proposed method
is very small (less than 9 minutes) using conventional
computer with a 2.4GHZ CPU and 16GB memory. Since
the training phase is done offline on conventional computer,
it will not be compared with other methods. However,
recently for online HAR the classification phase is run using
limited-resources smartphones, so it is very important to
compare average classification time with other methods. As
shown in Table 4, the average recognition time of our
method is decreased from 0.2724ms to 0.0375ms compared
to the competition winner method.
Finally, the overall recognition accuracy of the proposed
method is compared with some of the related works as
shown in Table 5. Making the comparison meaningful, we
compared the proposed method with state-of-art studies that
use the same dataset in this paper. From Table 5. , it is clear
that our method outperforms all the methods in term of
overall recognition accuracy. Even though some of the
related works utilize deep learning approachs as we do in
this paper, the proposed method still outperforms those
studies.

Table 5: Comparison of our method with some state-of-art studies.
Machine
Learning
Approach

Method Overall
Accuracy %

Deep
Learning

Deep Convolutional Neural Network
[14]

95.75

Stacked Autoencoder [17] 92.16
Denoising Autoencoder [17] 90.50

Shallow
Learning

Two-Stage Continuous Hidden
Markov Models [24]

91.76

Confidence-based boosting algorithm
Conf-AdaBoost.M1 [10]

94.33

A sparse kernelized matrix learning
vector quantization model [25]

96.23

OVO Multiclass linear SVM with
majority voting [7]

96.4

Our method 97.5

5. Conclusions and future works

In this paper, we proposed a smartphone-based HAR system
that utilizes one of the well-known deep learning
approaches called stacked autoencoder (SAE).
Experimentally, the proposed method enhances the
recognition accuracy by 1.1%. In addition, it reduce the
average recognition time of each test sample from 0.2724ms
to 0.0375ms compared to the competition winner method.
However, making the comparison more realistic, we have
compared the proposed method with other state-of-art
methods that use the same dataset in this paper. It is shown
that the proposed method outperforms all of these work in
term of overall recognition accuracy. Since it is not difficult
to collect unlabeled data, in the future work we will use
more data in pre-training phase in hope of enhancing the
accuracy of the proposed method. In this paper, some of the
model parameters are not optimized so we will optimize
these parameters in future work. However, the accuracy
might enhance using different deep learning approaches
such as Deep Convolutional Neural Network.

Acknowledgments

This work was supported by the Research Center of College
of Computer and Information Sciences, King Saud
University. The authors are grateful for this support.

References
[1] O. D. Lara, and M. A. Labrador, “A survey on human activity

recognition using wearable sensors,” IEEE Communications
Surveys and Tutorials, vol.15, no.3, pp.1192-1209, 2013.

[2] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human
activity recognition using body-worn inertial sensors,” ACM
Computing Surveys (CSUR), vol.46, no.3, 2014.

[3] M. Kose, O. D. Incel, and C. Ersoy, “Online human activity
recognition on smart phones,” in Workshop on Mobile
Sensing: From Smartphones and Wearables to Big Data,
vol.16, no.2012, pp.11-15, 2012.

[4] S. Das, L. Green, B. Perez, M. Murphy, and A. Perring,
“Detecting user activities using the accelerometer on android
smartphones,” TRUST REU the Team for Research in
Ubiquitous Secure Technology, no.29, 2010.

[5] S. Thiemjarus, A. Henpraserttae, and S. Marukatat, “A study
on instance-based learning with reduced training prototypes
for device-context-independent activity recognition on a
mobile phone,” in Body Sensor Networks (BSN), 2013 IEEE
International Conference on, pp.1-6. IEEE, 2013.

[6] Z. Yan, V. Subbaraju, D. Chakraborty, A. Misra, and K.
Aberer, “Energy-efficient continuous activity recognition on
mobile phones: An activity-adaptive approach,” in Wearable
Computers (ISWC), 2012 16th International Symposium on,
pp.17-24. IEEE, 2012.

[7] B. Romera-Paredes, M. S. Aung, and N. Bianchi-Berthouze,
“A one-vs-one classifier ensemble with majority voting for
activity recognition,” in ESANN 2013 proceedings, 21st
European Symposium on Artificial Neural Networks,

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

165

Computational Intelligence and Machine Learning, pp.443-
448, 2013.

[8] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. Luis Reyes-
Ortiz, “Energy Efficient Smartphone-Based Activity
Recognition using Fixed-Point Arithmetic,” J. UCS vol.19,
no.9, pp.1295-1314, 2013.

[9] A. M. Khan, M. H. Siddiqi, and S. Lee, ”Exploratory data
analysis of acceleration signals to select light-weight and
accurate features for real-time activity recognition on
smartphones,”Sensors vol.13, no.10, pp.13099-13122, 2013.

[10] A. Reiss, G. Hendeby, and D. Stricker, ”A competitive
approach for human activity recognition on smartphones,”
in European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning (ESANN
2013), 24-26 April, Bruges, Belgium, pp.455-460. ESANN,
2013.

[11] G. E. Hinton, S. Osindero, and Y. The, “A fast learning
algorithm for deep belief nets,” Neural computation vol.18,
no.7, pp.1527-1554, 2006.

[12] G. E. Hinton and R. R. Salakhutdinov, “Reducing the
dimensionality of data with neural networks,”
science vol.313, no.5786, pp.504-507, 2006.

[13] M. Zeng, L. T. Nguyen, B. Yu, O. J. Mengshoel, J. Zhu, P.
Wu, and J. Zhang, “Convolutional neural networks for human
activity recognition using mobile sensors,” in Mobile
Computing, Applications and Services (MobiCASE), 2014
6th International Conference on, pp.197-205. IEEE, 2014.

[14] C. A. Ronao, and S. Cho, “Deep convolutional neural
networks for human activity recognition with smartphone
sensors,” in International Conference on Neural Information
Processing, pp.46-53, Springer International Publishing,
2015.

[15] D. Ravi, C. Wong, B. Lo, and G. Yang, “Deep learning for
human activity recognition: A resource efficient
implementation on low-power devices,” in Wearable and
Implantable Body Sensor Networks (BSN), 2016 IEEE 13th
International Conference on, pp.71-76. IEEE, 2016.

[16] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.
Manzagol, “Stacked denoising autoencoders: Learning useful
representations in a deep network with a local denoising
criterion,” Journal of Machine Learning Research vol.11, no.
Dec (2010), pp.3371-3408, 2010.

[17] Y. Li, D. Shi, B. Ding, and D. Liu, “Unsupervised feature
learning for human activity recognition using smartphone
sensors,” in Mining Intelligence and Knowledge Exploration,
pp.99-107, Springer International Publishing, 2014.

[18] T. Plötz, N. Y. Hammerla, and P. Olivier, “Feature learning
for activity recognition in ubiquitous computing,” in IJCAI
Proceedings-International Joint Conference on Artificial
Intelligence, vol.22, no.1, pp.1729. 2011.

[19] H. E. Geoffrey, “Deep belief networks,” Scholarpedia, vol.4,
no.5, 2009.

[20] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-
Ortiz, “A Public Domain Dataset for Human Activity
Recognition using Smartphones,” in ESANN. 2013.

[21] B. D. Ripley, “Pattern recognition and neural networks,”
Cambridge university press, 2007.

[22] M. J. A. Berry, and G. Linoff, “Data Mining Techniques: for
Marking,” Sales, and Customer Support, New York: John
Wiley&Sons Inc, 1997.

[23] J. L. R. Ortiz, “Smartphone-based human activity
recognition,” Springer, 2015.

[24] C. A. Ronao, and S. Cho, “Human activity recognition using
smartphone sensors with two-stage continuous hidden
Markov models,” in Natural Computation (ICNC), 2014 10th
International Conference on, pp.681-686. IEEE, 2014.

[25] M. Kästner, M. Strickert, T. Villmann, and S. Mittweida, “A
sparse kernelized matrix learning vector quantization model
for human activity recognition,” in ESANN. 2013.

Bandar Almaslukh is a PhD
candidate in Computer Science at KSU
University, Saudi Arabia. His on-going
research of interest in human activity
recognition using deep learning approaches.
He holds a master degree in computer
science from KSU University, Saudi Arabia.
He is working as Lecturer at computer
science department, Prince Sattam bin

Abdul Aziz University, Saudi Arabia. He has taught many courses
such as programming language and data structure. He worked as
Database Developer in Arriyadh Development Authority in Saudi
Arabia for many years.

Jalal F. Al-Muhtadi is the Director of the
Center of Excellence in Information
Assurance (CoEIA) at King Saud University.
He is also an Assistant Professor at the
department of Computer Science at King
Saud University. Areas of expertise include
cybersecurity, information assurance,
privacy, and Internet of Things. He received
his PhD and MS degrees in Computer
Science from the University of Illinois at

Urbana-Champaign, USA. He has over 50 scientific publications
in the areas of cybersecurity and the Internet of Things.

A.M. Artoli is a leading computational
scientist in the fields of biocomputing,
lattice Boltzmann method and non-
newtonian fluid flow. His diverse research
interest includes blood flow at microscale,
density matrix renormalization, and
complex system dynamics. Artoli has
published many articles in the above
disciplines which are heavily cited. His Ph.D.

thesis on "mesoscopic computational haemodynamics" has been
cited more than 100 times. Artoli have worked at the Informatics
Institute, University van Amsterdam and In IST, Portugal and in
Sudan as a dean of the Graduate College, Alneelain University. He
has received the Sudanese Ministry of High Education Award as
the best scientist. He is also a member of a number of Scientific
societies and an organizer of a conference sereies, editor in chief
and regular reviewer of a number of journals. Artoli have
supervised 10s of M.Sc. students and a few Ph.D. students in
Europe, Sudan and Saudi Arabia.

	Network Model
	Parameters
	hiddenSize = 80
	Encoder and Decoder Transfer Function = Logistic sigmoid function
	MaxEpochs=500
	AE1
	L2WeightRegularization= 0.004
	Loss Function= Mean squared error function
	Training Algorithm= Conjugate gradient descent
	hiddenSize = 5
	Encoder and Decoder Transfer Function = Logistic sigmoid function
	MaxEpochs=400
	AE2
	L2WeightRegularization= 0.002
	Loss Function= Mean squared error function
	Training Algorithm= Conjugate gradient descent
	Number of layers = 4 (561-80-5-6 neurons in each layer)
	MaxEpochs=1300
	SAE
	L2WeightRegularization= 0.01
	Training Algorithm= Conjugate gradient descent
	Overall Accuracy %
	Method
	Machine Learning Approach

