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Summary 
Smartphones based human activity recognition (HAR) has a 
variety of applications such as healthcare, fitness tracking, etc. 
Nowadays, the signals generated by smartphone-embedded 
sensors such as accelerometer and gyroscope are used for HAR. 
However, achieving high recognition accuracy with low 
computation cost is required in smartphone based HAR. Therefore, 
we utilize one of the well-known deep learning approach named 
stacked autoencoder (SAE) to enhance the recognition accuracy 
and decrease recognition time. To evaluate the proposed method, 
we applied it on a public benchmark dataset; and compared it 
against available methods known of highest recognition accuracy 
on the same dataset.  We have found that the new method increase 
the overall classification accuracy from 96.4% to 97.5% and as 
well the average recognition time of each testing sample is 
decreased from 0.2724ms to 0.0375ms.  
 
Key words: 
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1. Introduction 

Smartphone-based Human activity recognition (HAR) has 
aided new applications such as, healthcare, entertainment 
and safety. [1]. in the past, special wearable body motion 
sensors were used to recognize different human activities 
[1]. However, the availability of different sensors in 
smartphones such as accelerometer and gyroscope has 
enabled researchers to use these sensors for activity 
recognition as a result of their continuous enhancement in 
computational capabilities which made them cost-effective. 
 
According to [2], the human activity recognition systems 
consist of four main steps as follow:  
1) Sensing: here the sensors collect signal at a specific 

sampling rate. 
2) Pre-processing:  in this step, the collected signals is 

handled using different methods such as noise 
reduction and segmentation. 

3) Feature Extraction: several data features are extracted 
from the segmented raw data. 

4) Training or Classification: In training phase, that 
usually is conducted offline, the model is built and 
tuned with the optimal parameters. After constructing 
the optimized model, it become ready to use in 

classification phase. In this paper we mainly focus on 
training and classification phases. 
 

In recent times, many training and classification methods 
for HAR have been applied on the smartphones. These 
methods were implemented using different machine 
learning approaches such as Naive Bayes [3], K-Nearest 
Neighbor (KNN) [3, 4 and 5], Decision Tree [6], Support 
Vector Machine (SVM) [7 and 8], Neural Network [9], 
Boosting algorithm [10] etc.  
 
Deep Learning is one of the main classes of machine 
learning. Recently, deep learning methods have been 
gaining an intensive attention because they provide better 
performance in many fields such as image and speech 
recognition. However, in the past (before 2006) training 
supervised deep neural network with many layers (2 hidden 
layers or more) the weights are randomly initialized from a 
Gaussian distribution.  After that, back-propagation 
optimization method is applied to the network in order to 
find the optimal parameters. Practically it was proved that 
this way of random initialization will lead to very slow 
optimization as well as it may stuck in poor local minima 
since the loss function is extremely uncontrolled when 
parameterized by millions of dependence variables. In 
response to these limitation Hinton et al. [11]   in 2006 
significantly reduce the learning problem by pre-train each 
layer of the network in unsupervised way to learn a 
discriminative representation of data before the 
classification task. In addition, in 2006 Hinton et al [2] 
proposed the first successful deep stacked autoencoder 
(SAE) to reduce the dimensionality of the data effectively. 
Therefore, stacked SAE is used in this paper but with a 
random weights initialization.  
 
Currently, there are few works that utilized deep learning 
approaches for smartphone based HAR. For instance, works 
in [13, 14 and 15] utilized deep convolution neural network. 
SAE and denoising autoencoder (DAE) [16] were utilized 
in [17]. In addition, the study in [18] utilize Deep Belief 
Networks (DBN) [19]. The majority of these works apply 
the deep learning approach directly to the original signal 
(raw data). In contrast, our study apply SAE to the extracted 
feature from the original signal data. 
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We summarized the main contribution of this paper as 
follow: 

• We propose a low cost SAE model for 
smartphone-based HAR. 

• To get a high recognition accuracy, we optimize 
the parameters of the proposed method using the 
best practice techniques in the literature.  

• We have conducted experimental analysis on 
public dataset and demonstrated that the proposed 
model is outperforms state-of-art studies on the 
same dataset.  
 

The reminder of the paper is structured as follows: Section 
2 we describe the dataset used in this paper. We explain the 
proposed method in section 3. Results and discussions are 
demonstrated in section 4. Finally, the conclusions and 
several promising venue for future works are stated in 
section 5. 

2. Data Sets Description 

We have used Smartphones based Human Activity 
Recognition data set created in [20]. The data set built with 
a group of 30 volunteers within an age between 19 and 48 
years. Each person was wearing a smartphone (Samsung 
Galaxy S II) on the waist; and performed six different 
activities (walking, upstairs, downstairs, sitting, standing 
and lying).  The generated dataset was divided into two 
parts: 70% of the volunteers were selected for the training 
set while the other 30% were used for the test set. 
Specifically , the training set contains 7352 instances while 
the test set contains 2947 instances , all instances are 
manually labeled with one of the six activities. 
 
The dataset provides a large number of extracted features 
(561 feature) extracted by prepossessing the raw signals 
generated from the accelerometer and the gyroscope 
sensors. First, at a sampling rate of 50Hz the triaxial linear 
acceleration and angular velocity signals using the 
smartphone accelerometer and gyroscope are collected. 
After that, the median filter is applied to the collected 
signals to remove the noise. Then, the acceleration signals 
are separated by using Butterworth low-pass filter into body 
acceleration and gravity. Finally, the time signals sampled 
in fixed-width sliding windows of 2.56 sec and 50% overlap. 

3. Methods 

3.1 The Overall Procedure 

The workflow that we follow in this paper is shown in Fig. 
1. First, we implement the Stacked Autoencoder (SAE) 
classifier using Matlab, with the default setting. After that, 
the SAE model parameters were adjusted continuously until 

obtaining the best mixture of parameters that provide the 
highest accuracy on the test set. Then, we store the best-
tuned model for further use. Finally, in terms of recognition 
accuracy we compare our model with state-of-the-arts 
works that had used the same dataset. However, in the 
following sections one of the deep learning models SAE 
classifier is explained in details. 

 

Fig. 1 The overall procedure of this paper. 

3.2 Autoencoder (AE) 

The basic unit of the SAE model is the AE. Architecturally, 
the AE (Fig 2) is a feed-forward neural network much 
similar to the multilayer perceptron (MLP). It has an input 
layer, one or more hidden layer(s) and an output layer. 
Exceptionally, for AE the number of neurons in the output 
and input layers are equal. In addition, it considered as an 
unsupervised learning since it learn to reconstruct its input 
instead of predicting the target value. 
AE consists of two phases: the encoder phase (from input 
layer to hidden layer) and the decoder phase (from hidden 
layer to output layer). The encoder phase can be formulated 
as in Eq. (1), where 𝑊𝑊 is the weight matrix and 𝑏𝑏1 is bias 
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vector for the encoder phase. In Eq. (2), the decoder phase 
is formulated, where 𝑊𝑊𝑇𝑇is the weight matrix and 𝑏𝑏2 is bias 
vector for the decoder phase. The 𝑓𝑓 in Eq. (1) and (2) refers 
to one of the well-known nonlinear activation functions, in 
this work the sigmoid function is used. In the following, we 
describe𝑥𝑥,ℎ and 𝑥𝑥� in Fig. 2 as:  

• 𝑥𝑥 is the input layer. 
• ℎ is the latent representation (code) of the input 

layer 𝑥𝑥. 
• 𝑥𝑥� is 𝑝𝑝(𝑥𝑥|ℎ) which approximately should have the 

same shape of 𝑥𝑥. 
 

         ℎ = 𝑓𝑓(𝑊𝑊𝑥𝑥 + 𝑏𝑏1)                                               (1) 
         𝑥𝑥� = 𝑓𝑓(𝑊𝑊𝑇𝑇ℎ + 𝑏𝑏2)                                             (2) 

 

Input layer 
x

Hidden layer 
(code)

h
Output layer

x ̃

Encoding Decoding

 

Fig. 2 The basic architecture of the AE. 

3.3 Proposed SAE Classifier (AE) 

The SAE architecture used in this work is shown in Fig. 3. 
It is formed by stacking two AE (AE1 and AE2) on top of 
each other then adding softmax layer on top of the AEs. 
However, there are two stages to train the SAE. The first 
stage is unsupervised pre-training where a greedy layer wise 
method is used to pre-training a deep network one layer at 
a time. At each layer the error in reconstructing of its input 
using unlabeled samples is minimized. Feeding the latent 
representation (code) of the AE1 as an input for the AE2, 
where the input of the AE1 is the original data features. 
After the AE1 and AE2 are trained, the second stage called 
supervised fine-tuning is started. It called supervised since 
we want to minimize prediction error using labeled samples. 
To minimize the prediction error we added a softmax layer 

on top of the network then train the whole network using 
the back-propagation as a regular MLP.  
 
In details, the proposed SAE classifier operate as follows: 
1) AE1 is trained on the input data (561 features) to learn 

the compressed code (80 features) called Code1. 
2) AE2 is trained using the Code1 as an input to learn 

extremely compressed code (5 features) called Code2.  
3) Construct the whole network that is called SAE by 

stacking AE1, AE2 and Softmax classifier; then the 
whole network is fine-tuned using back-propagation 
algorithm.  
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P(Y= upstair | X)

P(Y= downstair | X)

P(Y= sitting | X)

P(Y= standing | X)

P(Y= lying | X)
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Code1 (80 neurons)

Code2 (5 neurons)

Softmax Classifier

…
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…
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.
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…
…
…
…
…
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Fig. 3 The SAE classifier architecture use in this study. 

In deep learning models such as SAE, it is non-trivial to 
optimize the model parameters that provide high 
recognition accuracy. However, in this study, we assess the 
accuracy of the model after each run to check if the model 
over-fits or under-fits; then we take the right action that 
could reduce the problem. There are many strategies to 
improve deep learning performance as mentioned in [21 and 
22]. Actually, there is no rule of thumb to find the optimal 
parameters, but there are some of good practical strategies. 
For example, to choose the best network topology, first use 
one hidden layer with many neurons, if not work use more 
than one hidden layer (deep) with few neurons in each layer, 
or finally by combining the two techniques (more than one 
hidden layer with many neurons in each layer). However, 
the best model parameters used in this paper is provided in 
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Table.1, where in section 4.1 we show how some of the 
proposed SAE model parameters were optimized. 

4. Results and Discussions 

In this section, we demonstrate the experimental results of 
the proposed SAE model. Matlab R2016b installed on 
conventional computer with a 2.4GHZ CPU and 16GB 
memory is used to conduct the experiments.  SAE classifier 
is trained using 7352 training instances (using dataset in 
section 2). Some of the classifier parameters are adjusted 
until we get the maximum possible accuracy using 2947 test 
instances. The impact of main parameters on the recognition 
accuracy of the proposed SAE is discussed in section 4.1.   
It is important to mention that a competition aiming to 
develop novel classification approaches (for the dataset 
used in this study) was organized in European Symposium 
on Artificial Neural Networks (ESANN) in 2013. However, 
in [23] the dataset originator mentioned that the competition 
winner work has achieved the best overall accuracy, with 
96.4 [7]. Therefore, (in section 4.2) we will compare our 
work with the competition winner in term of recognition 
accuracy and the computational cost. Moreover, we will 
compare the accuracy of our work with the state-of-art 
studies that utilize conventional machine learning or deep 
learning approaches on the same dataset. 

4.1 Model Parameters Optimization  

The recognition accuracy of SAE classifier at unsupervised 
pre-training and supervised fine-tuning stages is affected by 
many parameters. The main parameters of SAE classifier 
are the number of layers, the number of neurons in each 
layer, max epoch, learning rate batch size, etc. In this study, 
primarily we fine-tune three important parameters which 
are number of hidden layers, number of neurons in each 
layer and max epoch. According to Matlab documentation, 
other parameters are set to the default value. By adjusting 
the number of hidden layers (1, 2, 3 and 4 layers), the results 
show the best recognition accuracy when the number of 
hidden layers is two.  
To choose the optimal number of neurons in each layer, we 
have obtained the highest possible accuracy using one 
hidden layer with 150 neuroses. Then, we added the second 
hidden layer with few neurons while reducing the number 
of neurons in first hidden layer. After that, we frequently 
adjusted the number of neurons in each layer until we get 
the highest classification accuracy with (80 neurons) in the 
first hidden layer and (5 neurons) in the second hidden layer. 
However, for the max epoch parameter, we initially used 
the default value in Matlab then we increase it by 20 until 
we get the best accuracy (for more details about the SAE 
parameter see Table 1.  

Table 1: The main parameters of the proposed method 

Network 
Model Parameters 

AE1 

hiddenSize = 80 
Encoder and Decoder Transfer Function = Logistic 

sigmoid function 
MaxEpochs=500 

L2WeightRegularization= 0.004 
Loss Function= Mean squared error function 

Training Algorithm= Conjugate gradient descent 

AE2 

hiddenSize = 5 
Encoder and Decoder Transfer Function = Logistic 

sigmoid function 
MaxEpochs=400 

L2WeightRegularization= 0.002 
Loss Function= Mean squared error function 

Training Algorithm= Conjugate gradient descent 

SAE 

Number of layers = 4 (561-80-5-6 neurons in each 
layer) 

MaxEpochs=1300 
L2WeightRegularization= 0.01 

Training Algorithm= Conjugate gradient descent 

4.2 Comparison with the Competition Winner 

In this section, we compare the proposed method with the 
best recognition accuracy archived on this benchmark 
datasets [20].  According to [23], the competition winner 
used the One-Vs-One Multiclass linear SVM with majority 
voting and get the highest overall recognition accuracy 
with 96.4%. The competition winner and our method are 
compared in terms of overall recognition accuracy and 
average recognition time.  However, we have found that the 
overall accuracy of the proposed method outperforms the 
competition winner method by 1.1%, as shown in Table 4. 
From the confusion matrix of the competition winner 
method (Table 3) and the proposed method (Table 2), it is 
obvious that the recognition accuracy of each 
corresponding activity is not the same. Significantly, the 
recognition accuracy of standing activity in the competition 
winner method is better than our method by 5.81%. In 
contrast, for sitting activity our method outperform the 
classification accuracy of the competition winner by 
10.71%. 

 Table 2: Confusion matrix for SAE classifier (proposed method)  
Activity Wa Up Do Si St Ly Accuracy 

% 
Walking  
Upstairs 

Downstair
s 

Sitting 
Standing 

Lying 

491 8 3 0 0 0 97.8 
2 458 6 3 0 0 97.7 
3 5 411 0 0 0 98.1 
0 0 0 455 5 0 98.9 
0 0 0 43 527 0 92.5 

0 0 0 0 0 53
7 100 

Precision
% 

99.
0 

97.
2 

97.
9 

90.
6 

99.
1 

10
0 

97.5 
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Table 3: Confusion matrix of The competition winner method [7]  
Activity Wa Up Do Si St Ly Accuracy % 

Walking  
Upstairs 

Downstairs 
Sitting 

Standing 
Lying 

493 0 0 3 0 0 99.4 
28 430 0 0 0 0 94.06 
2 6 412 0 0 0 98.1 
0 2 0 433 56 0 88.19 
0 0 0 9 523 0 98.31 
0 0 0 0 0 537 100 

Precision% 94.3 98.2 99.3 98 90.3 100 96.4 

Table 4: Performance Comparison with the competition winner method  
Method Overall 

Accuracy % 
Average Recognition 

Time (ms) 
The competition winner 

[7] 
96.4 0.2724 

Our work 97.5 0.0375 
 
On the other hand the training time of the proposed method 
is very small (less than 9 minutes) using conventional 
computer with a 2.4GHZ CPU and 16GB memory. Since 
the training phase is done offline on conventional computer, 
it will not be compared with other methods. However, 
recently for online HAR the classification phase is run using 
limited-resources smartphones, so it is very important to 
compare average classification time with other methods. As 
shown in Table 4, the average recognition time of our 
method is decreased from 0.2724ms to 0.0375ms compared 
to the competition winner method.  
Finally, the overall recognition accuracy of the proposed 
method is compared with some of the related works as 
shown in Table 5. Making the comparison meaningful, we 
compared the proposed method with state-of-art studies that 
use the same dataset in this paper. From Table 5. , it is clear 
that our method outperforms all the methods in term of 
overall recognition accuracy. Even though some of the 
related works utilize deep learning approachs as we do in 
this paper, the proposed method still outperforms those 
studies. 

Table 5: Comparison of our method with some state-of-art studies. 
Machine 
Learning 
Approach  

Method Overall 
Accuracy % 

Deep 
Learning 

Deep Convolutional Neural Network 
[14] 

95.75 

Stacked Autoencoder [17] 92.16 
Denoising Autoencoder [17] 90.50 

Shallow 
Learning 

Two-Stage Continuous Hidden 
Markov Models [24] 

91.76 

Confidence-based boosting algorithm 
Conf-AdaBoost.M1 [10] 

94.33 

A sparse kernelized matrix learning 
vector quantization model [25] 

96.23 

OVO Multiclass linear SVM with 
majority voting [7] 

96.4 

Our method 97.5 

5. Conclusions and future works 

In this paper, we proposed a smartphone-based HAR system 
that utilizes one of the well-known deep learning 
approaches called stacked autoencoder (SAE). 
Experimentally, the proposed method enhances the 
recognition accuracy by 1.1%. In addition, it reduce the 
average recognition time of each test sample from 0.2724ms 
to 0.0375ms compared to the competition winner method.  
However, making the comparison more realistic, we have 
compared the proposed method with other state-of-art 
methods that use the same dataset in this paper. It is shown 
that the proposed method outperforms all of these work in 
term of overall recognition accuracy. Since it is not difficult 
to collect unlabeled data, in the future work we will use 
more data in pre-training phase in hope of enhancing the 
accuracy of the proposed method. In this paper, some of the 
model parameters are not optimized so we will optimize 
these parameters in future work. However, the accuracy 
might enhance using different deep learning approaches 
such as Deep Convolutional Neural Network. 
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