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Abstract: 
In this work we aim to deal with the Multi-objective 
Examination Timetabling MOETP, in which we firstly propose a 
mathematical formulation containing three objectives: the 
minimization of the number of conflicts where students have to 
pass two exams in adjacent periods, the second objective 
represents the minimization of the necessary number of timeslots 
to pass all exams, the third objective is: the minimization of the 
number of students’ enrollments when exams do not satisfy 
temporal relation-ships immediately before/after. Secondly we 
propose to adapt a based ε-constraint method to solve the multi-
objective examination timetabling problem. Our proposed 
approach was experimentally tested on a set of randomly 
generated data.  
Key words: 
Multi-objective optimization, Examination timetabling problem, 
ε-constraint method.  

1. Introduction 

University timetabling problems belong to the larger 
family of general timetabling problem, the main objective 
of the problem is to assign a set of entities (lectures, 
exams, meeting …) to a set resources (timeslots, rooms, 
…). We distinguish two categories of the University 
timetabling problems: examination timetabling problem 
ETP and courses timetabling problem CTP. In this work 
we are interested by the ETP.   
University Examination Timetabling Problem ETP deals 
with assigning a set of exams to a given number of 
timeslots. The principal hard constraints of this process are 
avoiding students’ clashes (i.e.  Each student cannot write 
more than one exam in the same timeslot, certain exams 
must be affected at the same time, certain exams must 
respect the precedence constraint, Some exams must be 
written only in a subset of the available timeslots, no 
student must write more than n examinations in any m 
consecutive periods and rooms’ capacities must not be 
exceeded at any timeslot).  However, a number of 
particular regulations, which depend on the institution, are 
also to be taken into account in the exam timetabling 
problems [1,2,3,4].  
Other constraints are soft (maximization of the number of 
timeslots between two consecutive exams, Spread 

conflicting exams as even as possible for each student  [5, 
7, 6,  8, 9, 10, 11],  Minimize the number of timeslots 
needed [12,13], Minimize the number of students setting 
two exams in a room on the same day  [8, 14], Minimize 
the number of students setting two exams overnight  [8, 
15], Minimize the number of students setting two adjacent 
exams the same day  [16, 17], Minimize the number of 
times that room capacities are exceeded, Minimize the 
number of conflicts where students have exams in 
adjacent days, Minimize the number of conflicts where 
students have exams in overnight adjacent periods, 
Minimize the number of times that students have exams 
that are not scheduled in period of proper duration, 
Minimize the number of students having exams that are 
not scheduled before/after another specified exams, 
minimize the number students having exams that are not 
scheduled immediately before/after another specified 
exams). 
Examination timetabling problems can be formulated as a 
multiobjective problem where objectives measure the 
violations of the soft constraints. The Multiobjective 
optimization [18, 19, 20] is concerned with the 
minimization of a vector of objectives F(x) that can be the 
subject of a number of constraints or bounds. The 
conventional challenge of multiobjective optimization is 
assessment of the quality of solutions. Formally, one 
solution can be considered to be better than another only 
in the case when the values of all its criteria outperform 
those of the second ones: i.e. the first solution “dominates” 
the second one. All solutions which are not dominated by 
any other one, can be considered to be optimal. However, 
only one solution from this non-dominated set (often 
called the “Pareto front”) can become the final result. To 
obtain it, the decision maker must express his/her 
preferences. 
However, several authors (for example [21, 22, 23]) have 
studied the multiobjective university timetabling problem. 

2. Literature review  

The most popular approach applied to the multiobjective 
examination timetabling problem is the weighted sum 
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aggregation of all criteria into one cost function and 
application of some single-objective metaheuristic [24, 1]. 
However, this method has a critical step which was the 
translation of user preferences into the weights of criteria, 
indeed, this step requires experience on the part of the user. 
Another inconvenient of this method is that the results 
produced by its application are usually substantially 
scattered.  
E. Burke and al. in [21] have presented a multicreteria 
approach in british universities. The autors aim in their 
paper to formulate the university examination timetabling 
problems as a multicriteria decision problem. They 
consider many criteria which concern room capacities, the 
proximity of the exams for the students, the order and 
locations of events, etc. Such that each criteria have a 
level of importance in different situations and for different 
institutions.  
The authors propose a new multicriteria approach to solve 
the problem. This approach is divided into two phases. 
The first phase aims to find high-quality timetables with 
respect of each objective separately. In the second phase, 
the goal is to find a compromised solution with respect to 
all the criteria simultaneously, this is done by carrying out 
a trade-offs between criteria values.  
This approach consists of considering a point that 
optimizes all criteria (ideal point). But as known, such a 
solution does not exist. The heuristic search of the criteria 
space starts from the timetables obtained in the first phase 
in order to find a solution that is as close as possible to 
this ideal point with respect to a certain defined distance 
measure. 
In [22], M.P. Carrasco and al. proposed a  multiobjective 
genetic algorithm for the Class/Teacher timetabling 
problem, considering two distinct objectives. Thus, the 
authors described their proposed genetic multiobjective 
approach which represents each timetabling solution with 
a matrix-type chromosome and is characterized by special 
crossover and mutation consisting to act over a secondary 
population and a fixed-dimension main population of 
chromosomes. Favorable results were obtained through an 
application of the proposed approach to a real instance 
taken from a university establishment in Portugal. 
J.M. Thompson and al., aim in their work to resolve a 
Multi-Objective University Examination Scheduling in 
[23]. Their proposed approach was based on a 
lexicographic ordering of criteria which are divided into 
groups and the search is conducted in several phases by 
each group. 

3. Mathematical formulation 

To formulate the problem mathematically we have to hold 
up all the necessary notations as follows: 

• N is the number of exams  

• T is the total number of timeslots 
• The matrix E= (Eij)N×N  where each element is the  

number of students that have to take both exams 
i and j. 

• The matrix M=(Mhk)T×T   defined as: 

 
(Example for T=5 ) 

 
• The preference matrix P=(Pij)N×N   defined as: 

 
• The decision variables are :   

 

 
Our proposed MOETP formulation is as follows:  
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The three objective functions defined by (f1), (f2)  and (f3) 
represent respectively: the number of conflicts, where 
students have exams in adjacent periods on the same day, 
the necessary number of timeslots to pass all exams and 
the number of students having exams that are not 
scheduled immediately before/after another specified 
exams, Subject to: 
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Constraints (1) ensure that each exam must be assigned to 
one and only one timeslot, constraints (2) avoid that each 
student writes more than one exam in the same period. 
Constraints (3) and (4) ensure that a timeslot is active if 
and only if at least one exam is assigned to this timeslot. 

4. Resolution of the MOETP 

4.1 Multi-objective optimization   

Multiobjective optimization is concerned with the 
minimization of a vector of objectives F(x) that can be the 
subject of a number of constraints or bounds [20]. 

 
When a multi-objective optimization problem is solved, a 
multitude of solutions are obtained. Only a limited number 
of these solutions will be interesting. There must be a 
dominance relation between these solutions and the other 
solutions, in the following sense: 
 
Definition: the dominance relation  
A vector x1 dominates another vector x2 if: x1 is at least as 
good as x2 in all the objectives, and x1 is strictly better 
than  x2 in at least one objective. 
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Solutions that dominate others but do not dominate their 
self are called optimal solutions in the Pareto sense (or 
non-dominated solutions).  
 
Definition: weak Pareto optimum 
A point x* is said to be a weak Pareto optimum or a weak 
efficient solution for the multi-objective problem if and 
only if there is no      x ∈  S such that fi(x) < fi(x*) for all i 
∈  {1,..., n}. 
 
Definition: strict Pareto optimum 
A point x* is said to be a strict Pareto optimum or a strict 
efficient solution for the multi-objective problem if and 

only if there is no x ∈  S such that fi(x) ≤ fi(x*) for all i ∈  
{1,...,n}, with at least one strict inequality. 
 
Definition: Pareto front  
The image of the Pareto optimums set, i.e., the image of 
all the efficient solutions, is called Pareto front or Pareto 
curve or surface. The shape of the Pareto front indicates 
the nature of the trade-off between the different objective 
functions.  
In many cases, pareto front cannot be computed efficiently. 
Even if it is theoretically possible to find all these points 
exactly, they are often of exponential size;  
A comprehensive survey of the methods aiming to define 
the pareto front, presented in the literature in the last 33 
years, from 1975, [25]. The survey analyzes separately the 
cases of two objective functions, and the case with a 
number of objective functions strictly greater than two. 
Another interesting survey on these techniques related to 
multiple objective integer programming can be found by 
Ehrgott, M. and al. in [26, 32], where he discusses 
different scalarization techniques. In [27], T’Kind and al. 
presented the multiobjective optimization approaches in a 
part of their book “Multicriteria scheduling”.  

4.2 Approach of resolution:  ε-constraint Method  

The ε-constraint method proposed by Chankong and 
Haimes in 1983 [28] consists to transform a multi-
objective optimization problem into a mono-objective 
optimization problem comprising some additional 
constraints. So, the decision maker chooses one objective 
out of n to be minimized; the remaining objectives are 
constrained to be less than or equal to a given target values.  
The approach is briefly as follows:  

- We choose an objective function to optimize first;  
- An initial constraint vector is selected;  
- The problem is transformed by maintaining the 

priority objective and by transforming the other 
objectives into inequality constraints. 

 
We suppose that the priority objective function is f1. 
We choose a vector of constraints εi, i∈{2, …, k};  
εi ≥0. 

 
This formulation of the ε-constraints method can be 
derived by a more general result by Miettinen’s theorem in 
1999 [29] : 
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Miettinen theorem : 
 
If an objective k and a vector ε =(ε1,...,εk−1, εk+1,...,εn) ∈  
IRn−1 exist, such that x* is an optimal solution to the 
following problem Pε:  
 

 
We say that the solution x* is a weak Pareto optimum. 
This theorem derives from a more general theorem [30] : 
 
Yu  theorem : 
 
x* is a strict Pareto optimum if and only if for each 
objective k, with k = 1,...,n, there exists a vector      ε = 
(ε1,...,εk−1, εk+1,...,εn) ∈  IRn−1 such that f(x*) is the unique 
objective vector corresponding to the optimal solution to 
problem Pε.  
 
The Miettinen theorem is an easy implementable version 
of the result by Yu (1974). Indeed, the uniqueness 
constraint represents one of the difficulties of the result of 
Yu theorem. The weaker result by Miettinen allows one to 
use a necessary condition to calculate weak Pareto optima 
independently from the uniqueness of the optimal 
solutions. However, if the set S and the objectives are 
convex this result becomes a necessary and sufficient 
condition for weak Pareto optima.  
In 1986, Steurer [31]  proposed that the decision maker 
can vary the upper bounds εi to obtain weak Pareto optima. 
Clearly, this is also a drawback of this method, i.e., the 
decision maker has to choose appropriate upper bounds 
for the constraints. Moreover, the method is not 
particularly efficient if the number of the objective 
functions is greater than two. For these reasons, Erghott in 
2005 [32], proposed two modifications to improve this 
method, with particular attention to the computational 
difficulties that the method generates. 
One advantage of the ε -constraints method is that it is 
able to achieve efficient points in a non-convex Pareto 
curve. As shown by Marler and Arora, 2004 in [33], if the 
solution to the ε-constraint method is unique then it is 
efficient.  

4.3 ε-constraint method adaptation 

The ε-constraint method can be applied to any three 
objective optimization problem with two conflicting 
objectives at least. The examination timetabling problem 
treated in this paper is a three-objective combinatorial 

optimization problem as shown in the mathematical 
formulation section. The three objective functions defined 
by (f1), (f3)  et (f2) represent respectively: Number of 
conflicts, where students have exams in adjacent periods 
on the same day, Number of students having exams that 
are not scheduled immediately before/after another 
specified exams, the necessary number of timeslots to pass 
all exams. Thus we confirm that the two conflicting 
objectives are f1 and f3. One issue with this approach is 
that it is necessary to preselect which objective to 
minimize and the εj values. 
Our proposed based ε -constraint approach, consists to 
choose as objective function to optimize, the objective f2, 
which aims to minimize the necessary number of timeslots 
to pass all exams. Since function objectives f1 and f3 are 
contradictory, indeed, f1 represents de minimization of the 
number of conflicts, where students have exams in 
adjacent periods on the same day and f3 represents the 
number of students having exams that are not scheduled 
immediately before/after another specified exams. 
So we define our constrained single-objective problem 
P(ε1 ,ε3) as follows :  

∑
=

T

1h
2 h

k yMin
 

Subject to: 

(1)                 M  x xE 1

N

1i

N

1j

T

1h

T

1k
hkjkihij ε≤∑∑∑∑

= = = =  

(2)            )M-(1  x xP 3

N

1i

N

1j

T

1h

T

1k
hkjkihij ε≤∑∑∑∑

= = = =  

 

 

 

 
 

 

 
 
The proposed approach is based on a gradual variation of 
parameters ε1 and ε3 (increment ε1 and decrement ε3).  
 
Our approach is based in the following steps: 

- Assign to parameter ε1 the different values that can 
be taken by objective f1, starting from the minimum 
value f1min and ending with the maximum value 
f1max. 



IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017 196 

- For each value f1k in the discrete interval [f1min, 
f1max], assign ε3 the maximum value that can take 
the objective function f3. Then we decrement by 
one,   the value of ε3 while the resulting of the 
problem           P(ε1= f1k ,ε3) is feasible. 

- Increment the value of f1k and reiterate the steps. 
 

Each resulted feasible couple ),( *
3

*
1 εε  of the resolved 

problem P(ε1 ,ε3), generates an optimal solution that we 
note ),,( *

3
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11
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1.1. Experimental results : 
 

This section aims to represent the results of our     based ε-
constraints method adaptation. For that, we use a 
randomly generated set of examination timetabling 
problem ETP. For the random generation of data, we have 
inspired from the set of the 13 real-world examination 
timetabling problems introduced by Carter, Laporte and 
Lee in 1996 [13] from three Canadian high schools, five 
Canadian universities, one American university, one 
British university and one university in Saudi Arabia and 
which  can be downloaded from:     
ftp://ftp.mie.utoronto.ca/pub/carter/testprob/.          
Each instance is characterised by five values: 
• The number of examinations 
• The number of students: is the number of students in 
each instance. 
• The number of enrolment 
• The number of timeslots 
• The density of conflict: To indicate the density of the 
conflicting exams in each of the instances,  
 
The proposed approach was implemented with java, and 
the models are solved with CPLEX 12.2. Our 
experiments were performed on a HP Probook 4540s 
with an Intel® Core™ i3-3110 CPU running at 2.4 GHz 
with a RAM 4,00 Go.  
 
Table1 represent the results obtained for some of the 
randomly generated instances : 

Table 1: Results obtained using ε-constraint approach 
instance Extracted 

instance 
S* CPU time 

(sec) 
Gap 
( %) 

Cars91 5e_3t f1=16  
  38 

 
0% f2= 7 

f3=13 
Cars91 6e_4t f1=6  

41 
 

0% f2= 13 
f3=30 

Hec92 6e_5t f1=14  
51 

 
0% f2=7 

f3=26 
Hec92 7e_4t f1=32  

32 
 

2% f2=7 

f3=25 
Yor83 7e_5t f1=30  

41 
 

2% f2=7 
f3=29 

Yor83  8e_7t f1=44  
43 

 
2% f2=83 

f3=34 
 
The column S* represent a solution of the exact Pareto 
front for the instances: 5e_3t, 6e_4t and 6e_5t, and an 
approximate Pareto front for the other instances. Thus, we 
have imposed a non-null tolerance on the relative gap 
(computed by CPLEX solver) for solving problem 
P(ε1 ,ε3) , all that in objective to reduce computing times. 
We define this gap by the relative gap between the best 
upper bound (a feasible solution value) and the best lower 
bound (the linear relaxation value of the best node 
remaining). 
The proposed approach seems unable to be adapted for the 
big instances in terms of resolution time.  
 
Conclusion and perspectives:  
In this work we aimed to treat a MOETP, Firstly we 
proposed a mathematical formulation considering three 
objectives. Then we proposed a based ε-constraint which 
is an exact approach, we have tested our approach for a set 
of small randomly generated instances. The proposed 
approach works well for these instances, but seems unable 
to resolve the big ones. Our perspective is to propose a 
based surrogate Worth Trade-off method (SWT) to resolve 
the big instances which is an approximate approach.  
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