
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

274

Manuscript received April 5, 2017
Manuscript revised April 20, 2017

Rapid Mobile Development: Build Rich, Sensor-Based
Applications using a MDA approach

Mohamed LACHGAR and Abdelmounaïm ABDALI,

Laboratory of Applied Mathematics and Computer Science (LAMAI),
Faculty of Science and Technology (FSTG), Cadi Ayyad University,

Marrakech, Morocco

Summary
Mobile phones are increasingly playing a crucial role in our daily
lives. Nowadays, most smartphones are equipped with various
embedded sensors such as motion, environmental, and position
sensors. Therefore, many functionalities in mobile applications
need to use these sensors. In this work, we are motivated to provide
a meta-model to show the different embedded sensors then
generate mobile applications that use various features offered by
these sensors. In order to achieve this, we are based on model
driven architecture (MDA) proposed by Object Management
Group (OMG). The MDA approach can help us to ensure the
sustainability of expertise, the gain in productivity while dealing
with the challenges of mobile platform fragmentation.
Key words:
Model Driven Architecture; Sensors; Domain Specific Language;
Mobile development;

1. Introduction

The industry of mobile application development is
increasing due to the intensive use of the latter in mobile
devices. Most of these applications run on mobile operating
systems such as Android, iOS and Windows Phone. These
devices are equipped with a set of embedded sensors such
as motion sensors (e.g. accelerometers, gyroscopes),
environmental sensors (e.g. temperature, light) and position
sensors (e.g. orientations, magnetometers, etc.) [1].

Fig. 1 Sensors in Mobile Phones [1]

These sensors are used by applications to support their new
features, like Spirit Level in some applications related to the
camera. However, the development of such applications
requires more concerns such as code efficiency, interaction
with devices, and rapid speed of flooding the market.

Due to the large variety of mobile technologies (e.g.
Android, iOS, Windows Phone, etc.), developing the same
application for this different platforms becomes an
exhausting task. The model-driven engineering (MDE), a
term proposed by [2] proposes to provide an effective
solution to this problem. The MDE is a development
approach that proposes to bring up the models in the rank
of concept the first-class [3]. This is a form of generative
engineering, which is characterized by a rigorous process
from which everything is generated from a model. Thereby
allowing puts the model status contemplative than
productive.

The main purpose of this paper is the establishment of a
meta-model to design a mobile application which makes use
of the services provided by the on-board sensors in every
mobile device. Then, using the MDA approach, we generate
the native code targeting a specific mobile platform.
Moreover, this approach will allow to generate the
configuration files, declaration of objects, retrieval of data
received over the sensor, and then forward them to targets
such as embedded databases, web services, graphical
interfaces, etc. This will allow developers to earn in terms
of time, productivity, avoid programming errors and
generate a code witch complies with coding standards.

This paper is organized as follows. The first section
provides a brief description of embedded sensors followed
by the MDA approach. Some related works are presented in
the second section. The approach taken is described in the
third part. The fourth section presents the proposed meta-
model and different Template for code generation. The fifth
section shows the applicability of our approach through an
illustrating example. The last section concludes the paper
and presents future work.

http://context.reverso.net/traduction/anglais-francais/many+functionalities
http://context.reverso.net/traduction/anglais-francais/by+the+on-board+sensors

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

275

2. Background

This background section is divided in four parts: the sensors
in Android mobile devices, architecture of the Android
sensor Framework, development stages under Android
platform, and model-driven engineering.

2.1. The sensors in Android mobile devices

Android smartphones are equipped with an embedded
sensors assembly. These sensors are used to monitor the
motion of the equipment, position, or other surrounding
environmental conditions. Android systems support many
types of sensors [4, 5] (see Table 1 for more details).

Some sensors are hardware-based, which means that the
sensor data is read directly from the physical components
integrated into the smartphone. Other sensors are software-
based, which means that the sensor data is read from one or
more hardware sensors. The integrated sensors are widely
used in third part applications. For example, a navigation
application can use the magnetic field sensor to determine
the scope of the compass.

Table 1: Sensor types supported by the Android platform
Sensor Type Description System Value

Accelero-
meter Hardware Measures the

acceleration force ACCELEROMETER

Gravity
Software
or
Hardware

Measure the force of
gravity GRAVITY

Gyroscope Hardware Measures a device’s
rate of rotation GYROSCOPE

Light Hardware Measures the ambient
light level LIGHT

Orientation Software

Measures degrees of
rotation that a device
makes around all three
physical axes
Measures

ORIENTATION

Pressure Hardware Measures the ambient
air pressure PRESSURE

Proximity Hardware

Measures the
proximity of an object
relative to the view
screen of a device

PROXIMITY

Temperature Hardware
Measures the
temperature of the
device

TEMPERATURE

Ambient
Temperature Hardware Measures the ambient

room temperature
AMBIENT_TEMPERA
TURE

Linear
Accelero-
meter

Software
or
Hardware

Measures the
acceleration force,
excluding the force of
gravity

LINEAR_ACCELERAT
ION

Magnetic
Field Hardware Measures the ambient

geomagnetic fiel MAGNETIC

Relative
Humidity Hardware Measures the relative

ambient humidity
RELATIVE_HUMIDIT
Y

Rotation
Vector

Software
or
Hardware

Measures the
orientation of a device ROTATION_VECTOR

2.2. Architecture of the Android sensor framework

The Android Sensor Framework architecture is shown in
Figure 2. The main blocks of this architecture are:

• Application framework: Applications that use sensors
use the "Application Framework" to get data from the
devices. Communication begins in "sensor manager class"
and then move to the lower layer by the sensor JNI (Java
Native Interface).

• Sensor libraries: These libraries are intended to create a
sophisticated interface to the upper layer. This is done by
"the sensor class manager", "Service class sensor" and
"sensor HAL".

• Kernel: in this layer we find the Linux device drivers
created using the input subsystem, a generic Linux
framework for all input devices such as mouse, keyboard,
etc.

Fig. 2 Android sensor subsystem [4]

2.3. Development stages under the Android platform

The sensors integrated into the Android system are
managed by the Android Sensor Framework. Unlike the
camera, GPS and Bluetooth, which are protected by an

http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_AMBIENT_TEMPERATURE
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_AMBIENT_TEMPERATURE
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_RELATIVE_HUMIDITY
http://developer.android.com/reference/android/hardware/Sensor.html#TYPE_RELATIVE_HUMIDITY

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

276

Android permission mechanism, embedded sensors can be
directly used by applications without any requirement of
permissions. With the help of Android Sensor Framework,
an application can read the sensor data in the following
steps.

• In the first place, creating the object of Sensor Manager
Class. In this step, an application creates an instance of the
sensor service. This class provides various methods to
access the sensors.

• In the second place, creating the object of Sensor class by
calling the getDefaultSensor() method of the Sensor
Manager class. In this step, an application gets an object of
the Sensor class with a specific type. The type of sensor
can be specified in parameter of the method. In this
example, the constant Sensor.TYPE PRESSURE
describes an atmospheric pressure sensor [4].

If the accelerometer sensor is needed, it can set the
parameter of the method with the constant Sensor.
TYPE_ACCELEROMETER.

• In the third place, instantiate an object of
SensorEventListener interface and override two methods
which are onAccuracyChanged () and onSensorChanged
().These two methods are used to receive sensor events
when the accuracy of the sensor changes or when the
sensor values change. The Android system will call
onSensorChanged () when the data of the sensor switch
automatically, and a sensor event object is placed in the
method parameter.

The sensor event object is created by the system. It
contains the following information: the raw data of the
sensor, the sensor type, the accuracy of data and time
stamp for this event. Codes using sensor values can be
written in this method.

• Finally, register the listener. By invoking the
registerListener () method, the application saves a
SensorEventListener in the system. The registered sensor
is indicated by the second parameter of this method. When
the value of a sensor changes, the system will notify the
application that registered the sensor. The third parameter
of the method is used to define the data delay. The data
delay allows controlling the interval in which sensor
events are sent to the application. In this example, the
default data delay (SENSOR NORMAL DELAY) let this
application receives the raw values of the sensor every 0.2
second.

Figure 3 shows the sample code to use a sensor on the
Android platform.

2.4. Model-driven engineering

The results collected in recent years have shown the benefits
of MDE compared to traditional development approach in
terms of quality and productivity [6]:

• Quality: An overall reduction from 1, 2 to 4 times of the
number of the anomalies and an improvement of the
anomalies of 3 times in phase of maintenance of anomalies.
The overall cost of the quality also fell due to decrease in
time of inspection and test.

Fig. 3 Sample code to use a sensor

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

277

• Productivity: An improvement of the productivity from 2
to 8 times in term of lines of source code.

The MDA approach is proposed by the OMG [7] since 2001.
This is a particular view of the Model Driven Development
(MDD) [8]. The MDA (Model-Driven Architecture)
approach offers significant benefits in controlling the
development of computer applications and including
productivity gains, increased reliability, significantly
improvement of sustainability and greater agility dealing
with changes. In order to clarify the concepts, the OMG has
defined a number of terms around models namely meta-
meta-model, meta-model, model, business model (CIM),
functional model (PIM) which is independent from the
technique and technical model (PSM) illustrated in Figure
4 and Figure 5.

Fig 4 Key models in MDA

Fig. 5 Four-level Meta model Architecture

• A model, or terminal model, (M1) is a representation of a
real object (in M0) conforming to a metamodel (M2),

• A metamodel (M2) is a representation of a set of modeling
elements (in M1) conforming to a meta-metamodel (M3),

• A meta-metamodel (M3) is a set of modeling elements
used to define metamodels (M2 & M1) conforming to
itself.

Transformations between the different models are
performed with tools compatible with the OMG standard
called QVT (Query / View / Transformation) [9].

A model transformation is a process of converting a PIM,
combined with other information, to produce a PSM. The
MDA defines the following types of transformations based
on the types of mappings:

• A transformation for a model type mapping is a process of
converting a PIM to produce a PSM by following the
mapping.

• A transformation for a model instance mapping is a
process of converting a marked PIM to produce a PSM by
following the mapping.

Figure 6 shows the application concepts of how one
generally applies the MDA.

Fig. 6 Transformation concepts of the MDA [8]

A mapping is a determination (or transformation
specification), including rules and other data, for
transforming a PIM to deliver a PSM for a particular
platform.

• A model type mapping indicates a mapping based on the
types of model elements. It indicates mapping rules for
how diverse types of elements in the PIM are converted to
various types of elements in the PSM [10].

• A model instance mapping determines how particular
model elements are to be converted in a specific way using
marks. PIM elements are marked to show how they are to
be changed. A mark from a PSM is applied to a PIM
element to indicate how that element is to be transformed.
A PIM element may likewise be marked several times with
marks from various mappings and is, therefore,
transformed according to each of the mappings. A PIM is
marked to form a marked PIM that is then transformed to
a PSM [10].

3. Related Works

The variety and number of mobile applications has
increased due to the popularity of smartphones and app
stores. Despite this growth, there is still a limited number of

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

278

applications that use embedded sensing devices that are
available on different mobile platforms. The MDA
approach aims are to provide application porting tools to
adapt their code to different platforms. Many proposals of
methods for the generation of native mobile applications
according to the MDA approach have emerged. However,
most of these methods allow the modeling and generation
of graphical user interfaces and certain portions of code [13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24], without providing
a mechanism for exploiting the native capabilities of a
smartphone such as cameras, embedded sensors, etc.

The following table ‘Table 2’ shows a brief comparison of
some cited approaches.

In this paper, we propose a metamodel for modeling
applications that provide access to data from the embedded

sensors and transmit them to various targets such as
embedded databases, files, web services, etc.

This proposal will enhance the work presented previously
by allowing them to also support the development of
applications based on embedded sensors.

4. Android Sensor Code generetor

In this approach, we propose a metamodel for designing a
mobile application based on embedded sensors. Then,
M2M transformations (Model model) and M2T (Model to
Text) are applied to generate the code targeting a specific
platform. To do this, we opted for the Xtext framework [25,
26] to implement the Meta model and Xtend language [26,
27] to perform different transformations. Figure 7 shows the
different stages that characterize our approach.

Table 2: Comparisons between some Approaches for Code Generation in Mobile Platforms

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

279

Fig. 7 Proposed architecture for code generation from a platform
independent model [14]

After generating code using a set of template, the user can
also add code snippets to enhance the application. Thus, the
generator allows substantial savings of time and generates a
code in accordance with the coding standards (see Figure 8
for more details).

Fig. 8 Model to Text transformation (M2T)

5. Mobile Sensor MetaModel

A mobile application can use many sensors, each sensor
sends data in a specific time interval. These data will be
stored in collections, files, data bases or sent to web services
etc. thereafter; they will be used in applications such as
labyrinth, blood pressure, accelerometer analyzer, room
temperature, etc.

The metamodel proposed to model a mobile application
making use of embedded sensors is presented in the figure
11.

An extract from the textual description of metamodel is
shown below (see Figure 9 for more details):

Fig. 9 Extract from the textual description of metamodel

The graph below illustrates a part of the grammar presented
in Figure 9. This graph shows one part of the rules used.

Fig. 10 Extract of graph description of metamodel

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

280

Fig. 11 Mobile phone sensor metamodel

6. Android Sensor Template

In this section, we will discuss the different template used
in code generation, to build a mobile application for
Android, which makes use of embedded sensors.

To do this you must follow three steps:

Step 1: Declare the sensors in the AndroidManifest
configuration file. This allows Google Play filtering
applications compatible with the user's device (Manifest
Template).

Step 2: Collect the values through the SensorEvent
class. All data is stored in an array, whose size depends on
the type of sensor used (Activity Template).

Step 3: Send the recovered data to designated targets,
and this in a separate thread.

In the following sub-sections, we present the different
proposed Template.

6.1. Manifest Template

Each sensor must be specified in a separate tag. A snippet
of the AndroidManifest.xml for the example app is shown
here:

<uses-feature
android:name="android.hardware.sensor.light"
android:required="true" />

Below is the proposed Template for Manifest.xml
configuration file generation to support the use of
embedded sensors (see Figure 12 for more details).

Fig. 12 Manifest file Template

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

281

6.2. Activity Class Template

As stated in Figure 3, in order to implement
SensorEventListener, The Activity class provides concrete
implementations for onAccuracyChanged(), and
onSensorChanged(). Both methods update the display
whenever a sensor reports new data or its accuracy changes.

An extract of Template used to generate the Activity class
is presented below (see Figure 13 for more details):

Fig. 13 Extract of Activity Class

The template proposed for generating the onSensorChanged
method is presented below. The latter allows recovering
data according to the specified sensor and the number of
desired data. The sendData method allows to send the
recovered data towards the target mentionned in Target
Data (see Figure 14 for more details).

Fig. 14 onSensorChanged method template

7. Illustrating Example: Magnetometer Metal
Detector

Magnetometer metal detector is a tool to detect the
electromagnetic field around a smartphone.

This tool allows the metal detection using the integrated
magnetic sensor in the smartphone. The intensity of the
magnetic field in the wild is about 49μT (490mG, 1μT =

10mG). If there is no metal in the zone, the intensity of the
magnetic field must increase. It can be helpful to find pipes
and electrical lines in the walls or the metal in the ground.

7.1.Analysis and model creation

The application's model is presented below (see Figure 15
for more details).

Fig. 15 The application’s model

7.2. The generated code

Code snippet generated for the Activity class (see Figure 16
for more details):

Fig. 16 Code Snippet generated for the Activity Class

The configuration file generated from our model (see
Figure 17 for more details):

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

282

Fig. 17 Manifest.xml configuration file generated

7.3. The graphical interface generated for the Android
platform

The figure below shows a graphical interface generated,
which displays the data retrieved by the embedded sensor
in the text fields. A test code on values is added to the
program in order to detect the magnetic field (see Figure 18
for more details).

Fig. 18 GUI generated for Magnetometer metal detector

8. Conclusion

To conclude, in this paper, we have presented a study on
the embedded sensors in mobile devices, and we have
adopted the MDA approach for modeling and
automatically generate applications that make use of the
data retrieved via these sensors, based on a model consistent
with the metamodel proposed.

This approach will be generalized for all mobile platforms
(e.g. iOS, Windows Mobile, etc.). To implement our
approach, we opted for Xtext language to realize the
metamodel and Xtend for the implementation of the various
transformations and Templates. The proposed matamodel
comes to enhance the work already presented in [15], In
fact, this latter allow to model mobile applications that

make use of embedded sensors with the ability to transmit
collected data to various targets, such as web services,
embedded databases, files, or graphical interfaces.

For future improvements, we will study the possibility to
extend our method to deal with data recovering from
external sensors; we also want to design a software layer to
ensure data’s security access, and the integrity of recovered
data.

References
[1] C. Perera, A. Zaslavsky, P. Christen, A. Salehi, & D.

Georgakopoulos, “Capturing sensor data from mobile phones
using global sensor network middleware”. In 23rd
International Symposium on Personal, Indoor and Mobile
Radio Communications-(PIMRC), 2012, pp. 24-29. IEEE.

[2] S. Kent, “Model driven engineering. Integrated Formal
Methods (IFM)”, 2002 Turku (Finland) Springer, p. 286-298.

[3] J. Bézivin. In : search of a basic principle for model driven
engineering. Novatica Journal, Special Issue, 5, pp. 21-24.
2004.

[4] Android, "Sensors Overview”,
https://developer.android.com/guide/topics/sensors/sensors_
overview.html, 2016-05-29.

[5] Y. Zhi-An, & M. Chun-Miao, “The development and
application of sensor based on android”. In : 8th International
Conference on Information Science and Digital Content
Technology (ICIDT), 2012. IEEE, 2012. p. 231-234.

[6] M. El Hamlaoui, "Mise en correspondance et gestion de la
cohérence de modèles hétérogènes évolutifs". Thèse de
doctorat. Université Toulouse le Mirail-Toulouse II, 2015.

[7] OMG. 1989. Object Management Group [Online]. Available:
http://www.omg.org [Accessed April 2016].

[8] B. Hailpern, & P. Tarr, “Model-driven development: The
good, the bad, and the ugly”, IBM systems journal, 45, p.
451-461. 2006

[9] Object Management Group, “Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification”, Version 1.1,
January 2011, http://www.omg.org/spec/QVT/1.1/..

[10] S. Alkhir, “Understanding the model driven
architecture”. published in Methods & Tools, October 2003.

[11] J. A. Monte-Mor, E. O. Ferreira, H. F. Campos, A. M. da
Cunha, & L. A. V. Dias, “Applying MDA Approach to Create
Graphical User Interfaces”, Eighth International Conference
on Information Technology: New Generations, Las Vegas,
NV, IEEE, 11-13 April 2011, pp. 766-771.

[12] S. Link, T.Schuster, P. Hoyer, & S. Abeck, “Focusing
Graphical User Interfaces in Model-Driven Software
Development", First International Conference on Advances

http://www.omg.org/spec/QVT/1.1/

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

283

in Computer-Human Interaction”, Sainte Luce, 10-15 Feb.
2008, pp. 3-8.

[13] S. Vaupel, G. Taentzer, R. Gerlach, & M. Guckert, “Model-
driven development of mobile applications for Android and
iOS supporting role-based app variability”. Software &
Systems Modeling, 2016, pp. 1-29.

[14] M. Lachgar, & A. Abdali, “Generating Android graphical
user interfaces using an MDA approach”. In: Third IEEE
International Colloquium in Information Science and
Technology (CIST), 2014. IEEE, 2014, pp. 80-85.

[15] M. Lachgar, & A. Abdali, “Modeling and Generating Native
Code for Cross-Platform Mobile Applications Using DSL”,
Intelligent Automation & Soft Computing, 2016, pp. 1-14.

[16] C. Thanaseth, & L. Yachai, “Model Driven Development of
Android Application Prototypes from Windows Navigation
Diagrams”. In : 2016 International Conference on Software
Networking (ICSN). IEEE, 2016, pp. 1-4.

[17] F. Freitas, & P. Maia. “JustModeling: An MDE Approach to
Develop Android Business Applications”. In : Computing
Systems Engineering (SBESC), 2016 VI Brazilian
Symposium on. IEEE, 2016, pp. 48-55.

[18] H. Benouda, M. Azizi, R. Esbai , & M. Moussaoui, “MDA
Approach to Automate Code Generat ion for Mobile
Applications”. In : Mobile and Wireless Technologies 2016.
Springer Singapore, 2016, pp. 241-250.

[19] H. Benouda, M. Azizi, R. Esbai , & M. Moussaoui, “Code
generation approach for mobile application using
acceleo”. International Review on Computers and Software
(IRECOS), 2016, vol. 11, no 2, pp. 160-166.

[20] M. Koji, & M. Saeko, “MDD for Smartphone Application
with Smartphone Feature Specific Model and GUI Builder”.
In: The 9th International Conference on Software
Engineering Advances, 2014, pp. 64-68, ISBN: 978-1-
61208-367-4.

[21] C. K. Diep, Q. N. Tran, & M. T. Tran. “Online model-driven
IDE to design GUIs for cross-platform mobile applications”.
In Proceedings of the Fourth Symposium on Information and
Communication Technology, 2013, pp. 294-300, ACM.

[22] A. Sabraoui, M. El Koutbi, & I. Khriss, “A MDA-Based
Model-Driven Approach to Generate GUI for Mobile
Applications”. International Review on Computers and
Software Journal (IRECOS), 2013, vol. 8, no 3, pp. 845-852.

[23] H. Heitkötter, T. A. Majchrzak, & H. Kuchen, “Cross-
platform model-driven development of mobile applications
with md 2”. In Proceedings of the 28th Annual ACM
Symposium on Applied Computing , 2013, pp. 526-533,
ACM.

[24] K. Minhyuk, S. Yong-Jin, M. Bup-Ki, K. Seunghak, & S. K.
Hyeon, “Extending UML meta-model for android
application”. In 11th International Conference on Computer
and Information Science (ICIS), 2012 IEEE/ACIS, pp. 669-
674. IEEE.

[25] The Eclipse Foundatio. Xtext. Retrieved from
http://www.eclipse.org/Xtext/, 2013.

[26] L. Bettini, “Implementing domain-specific languages with
Xtext and Xtend”. Packt Publishing Ltd, 2016.

[27] The Eclipse Foundation. Xtend. Retrieved from
http://www.eclipse.org/xtend/, 2013.

Lachgar Mohamed received his Diploma
in Computer Engineering from National
School of Computer Science and System
Analysis (ENSIAS), University
Mohammed V Souissi, Rabat, Morocco in
2009. He is currently a PhD student in Cadi
Ayyad University. His research interests are
in the areas of automation tools
development in embedded software,

software modeling & design, metamodel design, model
transformation, and model verification & validation method.

Abdelmounaim Abdali, Ph.D. in Solid
Mechanics and Structures in University of
Amiens in 1996, France, He is a professor
in Computer Science at the University Cadi
Ayyad, Faculty of Sciences and Technics,
Marrakech, Morocco, Member at the
Laboratory of Applied Mathematics and
Computer Science (LAMAI) Marrakech,
Morocco. His Research interests are:
computer science, DTN network, business

intelligence, design and implementation in data warehouse,
ubiquitous systems, modeling & design, metamodel design, model
transformation, and model verification & validation method,
numerical simulation, biomechanics, bone remodeling and
damage.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Seunghak%20Kuk.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.%20Hyeon%20Soo%20Kim.QT.&newsearch=true

