
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017 292

Manuscript received April 5, 2017
Manuscript revised April 20, 2017

Efficient Multicasting Algorithm Using SDN

Alaa M. Allakany1 and Koji Okamura2

1 Graduate school of Information Science and Electrical Engineering, Kyushu University. Japan.
& Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt

2 Research Institute for Information Technology, Kyushu University. Japan.

Abstract
Many group communication applications require multipoint
communication, in order to reduce network traffic rates.
Multicast technology has been used as an efficient and scalable
technology for data distribution. However, in IP network, the
responsibility for management of multicast groups is distributed
among network routers and routing rules calculated based on
local view resulting from sharing neighbor’s routers its
information. Distributed calculation and local view of IP
network causes some limitations, such as delays resulting from
processing group events, and failed for calculating optimum
solutions that required a global view of the network. Software
Defined Networking (SDN) represented by OpenFlow presented
as a solution for many problems, in SDN the control plane and
data plane are separated by shifting the control and management
to a remote centralized controller with a global view of the
network, and the routers are used as a forwarder only. Recently,
several researchers have been proposed multicast routing
algorithms for solving the problem of shortest path tree (SPT)
and Minimum Steiner tree (MST) in SDN. SPT can calculate
multicast tree faster than MST. However, MST can generate
solutions optimum than SPT.
In this paper we take the advantage of OpenFlow to propose and
implement multicasting OpenFlow controller, this centralized
controller is a core part of our multicasting approach. For
constructing the multicast tree, we proposed a new algorithm that
combines both of Dijkstra shortest path algorithm and Tabu
search (TS) algorithm. In the proposed algorithm, Dijkstra
algorithm and TS work respectively for fast start-up multicast
session and optimum solution. Proposed algorithm take the
advantages of both algorithms such as fast convergence time of
Dijkstra algorithm and optimum solution of TS and avoid the
shortages of both algorithms. We validate our approach using
the popular Mininet network emulation environment with Pox
controller. The results prove that our approach can improve start-
up time for initialization multicast session. Also, can minimize
constructed the multicast tree.
Key words:
Software Defined Networks, OpenFlow, Pox controller, Mininet,
Multicast tree, Dijkstra Algorithm, Tabu Search (TS).

1. Introduction

IP multicast is a distribution paradigm that sends IP
packets to multiple receivers in a single transmission, in a
one-to-many or many-to-many fashion. This allows
reducing source server load and increasing network

capacity savings. IP multicast supports a variety of
applications such as IPTV streaming, video conferencing,
multi-location backups or online multi-player gaming [1].
IP multicasting still faces some problems: Firstly,
Traditional multicast routing algorithms require routers to
participate in data forwarding and control management.
Then multicast routers need to maintain each group state,
which arouses a lot of control overhead and add substantial
complexity to routers. Secondly, Routers construct and
update the multicast tree in a distributed manner; each
router has only local or partial information on the network
topology and group membership and there are high number
of communication messages that neighboring routers have
to exchange in order to update their multicast trees at every
time a client joins or leaves a multicast group. These cause
more latency time and difficulty to build an efficient
multicast tree due to the lack of global information.

Recently, SDN is presented as a networking approach that
facilitates the decoupling of the control plane in a network
using a remote controller from the data plane. OpenFlow
protocol [2], defines the communication between
OpenFlow switches and the controller of the network. With
the centralized network, OpenFlow controller has a global
view of the current status of the network and can interact
with its network devices. All the multicast management,
such as multicast tree computing, group management are
handled by this controller, and the controller has complete
knowledge of the topology and the members of each group,
then it can create more efficient multicast trees than the
distributed approach [3].

Various multicast mechanism and algorithm are proposed,
the author in [4] provides a mechanism to compute
multicast trees centrally by flooding group membership
information to all multicast routers. This mechanism
(MOSPF) has a scalability problem that all routers have to
compute a multicast tree per multicast group when the new
multicast group appears or receivers join in or leave from
multicast groups. The Protocol Independent Multicast -
Sparse Mode (PIM-SM) is the most common for IP
multicasting, the routing algorithms of this protocol are not
designed to build optimal routing trees [5]. PIM-SM builds

mailto:%20alaa_83moh@yahoo.com
mailto:%20oka@ec.kyushu-u.ac.jp

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017 293

trees rooted at either the source of the multicast group or at
a pre-determined rendezvous point (RP) for the group.

In [6] the author has suggested high-level primitives (API)
based in Open-Flow to provide a more friendly
development of multicasting networks. These primitives
have a simplified implementation of the OpenFlow
multipoint protocol but does not consider questions such as
changes in multicast groups. In [7] the author proposed a
multicast clean-slate approach logically centralized based
on SDN and anticipated processing for all routes from each
possible source. The author of this paper aiming to reduce
event delays from source to each destination and don’t
consider minimizing the total edges in construction
multicast tree. Finally, in [8] this paper proposed a novel
multicast mechanism based on OpenFlow to separate the
data and control plane by shifting the multicast
management to a remote centralized controller. The
Dijkstra algorithm is used to construct spanning tree in the
network and after that drive the multicast tree from
existing spanning tree. This method can’t construct
optimum multicast tree because MST using Dijkstra
algorithm can construct a tree with shortest path from
source to every destination in the network but it can’t
minimize the multicast tree.

Optimal tree building is equivalent to solving the Steiner
Tree [9] problem, this problem is known to be NP-
complete. Some of the multicasting algorithms that used
for solving this problem required centralized computation.
Heuristic algorithms are efficient for solving this problem
but it assumes centralized computation, so implementing
these algorithms is not efficient in IP multicast network.
OpenFlow enables us to implement these algorithms
because of centralized control and programmability. Tabu
search will be used as one of heuristic algorithms with
Dijkstra algorithm for construction the multicast tree and
maintain a multicast tree in case of join in or leave any
members from multicast group.

The objective of this work is proposing multicasting
OpenFlow controller’s modules. For multicasting rules
required to the multicast session, we proposed a new
algorithm based on two individual algorithms, Dijkstra
algorithm and heuristic Tabu Search algorithm. These two
algorithm work respectively to solve some multicast
routing problems. In our method, the proposed multicast
routing algorithm take the advantage of Shortest Path Tree
algorithms represented by Dijkstra algorithm and
Minimum Sterner Tree algorithms represented by Tabu
Search algorithm and avoid the shortages of both. We
design SDN controller based on POX controller to achieve
the following goals:

1- Implementing multicasting in SDN network with
using the features of OpenFlow protocol.

2- Proposed a module in this controller to constructing
the multicast tree based on our routing algorithm.

3- Reduce latency time required for initialization
multicast tree.

4- Construction near an optimum multicast tree
(minimizing the size of the multicast tree).

The details of design our controller modules will discuss in
following sections. This paper is organized as follows. In
Section 2, we present the design of our multicasting
OpenFlow controller and give details of functions of each
module in this controller. Then in section 3, we present
implementation of our OpenFlow controller modules, we
show how Tabu Search algorithm as a heuristic algorithm
with Dijkstra algorithm can find an efficient solution for
solving multicasting problems. In section 4, we show the
evaluation of our algorithm. Finally, we describe the
conclusion in Section 5.

2. Design of Multicasting Controller

In this section, we present the design of our multicasting
OpenFlow controller. Fig. 1 show the architecture of our
proposed scheme, there are two main components in this
architecture, controller and OpenFlow switches
(forwarder). The functions of the controller are to manage
the multicast group state, construct the multicast tree and
handle the host requests sent from the forwarders, then set
up flow entries that are required to deliver multicast
packets into the switches. While forwarders only need to
receive instructions from the controller and forward data.
Our controller consists of four modules to implement our
proposed algorithm, the details and the function of each
module in this controller as follow.

 Topology discover module: this module uses Link
Layer Discovery Protocol (LLDP) to discover network
topology. By using the information resulting from this
module we can build up the network topology graph
G(V, E), where the node set V corresponds to the
switches and the edge set E corresponds to the links.
Then, we send the data relative to the topology graph
G to tree construction module to build up the tree.

 Multicast groups management module: This module
is responsible for maintain multicast group state by
storing sender information including locations of
devices and watching IGMP packets from devices and
stores the receivers’ locations. Then provide this
information for others openflow controller modules to
construct multicast tree and management multicast

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

294

group events (join in or leave any member form
current multicast group).

 Tree construction module: When controller received
new request to initialize a multicasting session, firstly
multicast group management module process these
messages to obtain sender and receiver information,
then notify this module for construction the multicast
tree. In this module, we use Dijkstra shortest path
algorithm for constructing initial multicast tree from
source to receivers as described in section 3.1. The
advantage of using this algorithm it can construct the
multicast tree in short time comparing with heuristic
algorithms that required a long time, moreover, we
will build only the tree to the current receiver and will
not build MST that required more time and is can’t
present an optimum solution to this problem.

 Group events Management module: Whenever
controller receives join in or leave message from
current multicast sessions this module is used for
updating multicast tree and install new rule to the
forwarders. In this module, we use Tabu Search
algorithm to update the current multicast tree by
generating neighbor’s solutions of the current tree with
the new receiver and choice the best solution for
updating the multicast tree. We use the feature of SDN
controller to calculate K-shortest path from source to
every destination on offline mode and then using the
pre-cached backup paths by TS algorithm to update
multicast tree in short time so we can reduce the
latency time required to join new members and find
more optimum solution using this heuristic algorithm
compared to Shortest Multicast tree. The details of
this module are described in section 3.2.

Fig. 1 Proposed Architecture

3. The Purposed Algorithms

In these subsections, we will describe in details the
implementations of algorithms proposed in tree
construction module and group events Management
module. In our proposed scheme we will use three different
algorithms 1- Dijkstra algorithm to construct shortest path
tree. 2- Tabu Search algorithm to update multicast tree. 3-
K-shortest paths algorithm [10] to find a K of paths
between the source and each receiver in the network and
caching these calculated paths in our controller so we can
use it for fast update multicast tree based on Tabu Search
algorithm, by this way we reduce the time required by TS
to update multicast tree.

3.1 Multicast tree construction module

The main function of this module is to construct multicast
tree when the controller needs to start a new multicast
session. We use Dijkstra shortest path algorithm to
construct the multicast tree. This algorithm used only one
time to the initialize multicast tree and don’t use for
updating the multicast tree for the following reasons: 1-
when the controller start to initialize multicast tree the
number of the receivers almost small, so this algorithm can
construct the tree in short time. 2- This algorithm construct
shortest path tree that has the least cost from source to
every receiver but it can’t minimize the total number of
links on the tree, so use it only in the first stage of
multicasting (initialization). By this way, we take the
advantage of this algorithm (i.e., fast constructing multicast
tree) and avoid the shortage of this algorithm (i.e., can’t
minimize multicast tree). The details of this algorithm are
shown in Fig. 2.

Dijkstra’s Algorithm
Input: G = (V,E), Source and multicast group M
Output: a tree cover all receivers in this group
1: T={S};d[S]←0; d[u]←∞ and pred[i]←nil for each

u≠S, u€V
2: insert u with key d[u] into the priority queue Q, for

each u€V
while (Q ≠ ᴓ)

3: j ← Extract-Min(Q)
4: for every node i, i €T and i is adjacent to j

alt = d[j] + ew(j, i) // ew: is edge weight =1for all links
if alt < d[i] then
d[i] ← alt
pred[i] ← j // set i as a child node of j
if node (i) not inclue in T, add the node into T
if all nodes in M join to T stop.

5: return T.

Fig. 2 Dijkstra for multicast tree

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

295

The main function of this module is to update multicast
tree with the near optimum tree by minimizing the total
number of links in the tree. We used tabu search algorithm
[11] and K-shortest path algorithm with the global
information available by the centralized controller (i.e.,
network information) to update multicast tree with near
optimum solutions.

TS is a higher level heuristic procedure for solving the
optimization problem, designed to guide other methods or
their component processes to escape the trap of local
optimality. TS has obtained optimal and near optimal
solutions to a wide variety of classical and practical
problems in applications ranging from scheduling to
telecommunications and from character recognition to
neural networks. It uses flexible structures memory (to
permit search information to be exploited more thoroughly
than by rigid memory systems or memory less systems),
conditions for strategically constraining and freeing the
search process embodied in tabu restrictions and aspiration
criteria. Fig. 3 show TS algorithm flowchart for the
optimization problem and Fig. 4 show our proposed
procedure to update multicast tree the description of this
algorithm as follow.

The algorithm first encourages the move to worth solution
if there is no any improvement in the current solution.
The tabu list introduced to discourage the search from
coming back to previously-visited solutions and sure scape
from local solution to global solutions. We used the
following fitness function to evaluate each solution to
select the best one for next iteration and final can find the
near optimum solution.

(1)

Here CT is the summation of the total link cost in the
multicast tree and Cij represents the cost of each link and it
is a predefined value by the network administrator. In next
section, we will give an example show how TS find near
optimum multicast tree when we update multicast tree for
any new join request.

First, the algorithm uses the current multicast tree as an
initial solution. Then the algorithm used pre-cached
backup list shown in table 1 to great more than one
neighbor to the current multicast tree and select the best
solution for next iteration. After joining the new
destination to current tree. In each iteration, the TS
randomly selected path from source to any destination and
replaced this path by another backup path. If there is no
farther improvement on the best solution then this solution
will be used for updating multicast tree. Fig. 5. an

example shows how this module works for updating
multicast tree.

In this figure, TS algorithm generates three neighbor
solutions to the current solution and the best one will be
selected to join the new member to the current multicast
session. The neighbors solution generated based on pre-
defined backup paths. Then, for more optimization the
algorithm will repeat a specified number of iterations in
each iteration it randomly selects one destination and
repeats the same method to generate neighbor solution
using backup paths and select the best solution for next
generation. In the case of leave member from the current
multicast group, only the algorithm will burn it path from
the tree.

Fig. 3 Tabu Search flowchart

Fig. 4 Steps of Tabu Search for updating multicast tree

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

296

Fig. 5 Generating neighbor solutions from the current tree

4. Experimental Results

In this section, we test our method by comparing it with
Dijkstra shortest path tree algorithm in [8]. Our method is
implemented as OpenFlow controller modules, we use
POX controller [9] and Mininet (12) to emulate the
network. We used random connected topology generated
using the Waxman generator provided by BRITE.

 We assume that all link in the network have link capacity
20Mb/s. We use 720p video in a variable bit-rate MPEG4
format for the multicast session using (VLC application).
A machine with core i3 processor and 8G of Ram are used
for this emulation.

In Fig. [6] We tested the delay time required by the
controller to construct the multicast tree at initialization of
the multicast secession. We use different topology size of
20 nodes to 80 nodes. We use one host to be a source for
video streaming (h0), and the number of receivers (i.e.,
group size) start by four receivers with the network of size
20 nodes and increased each time by 2 receivers with
increasing the network size.

Fig. [6], shows that our methods can minimize the delay
time required by the controller to start the multicast session
compared to the other method. This because our method
uses Dijkstra shortest path algorithm to construct the
multicast tree from source to receivers only and then use
Tabu Search algorithm to update the multicast tree when
any new receiver want to join the multicast session. But in
the other method purposed in [8], it constructs Minimum
Spanning Tree that covers all switches in the network and

then installs only the flows that represent the active
receivers from the MST, so, it required more delay to
construct MST.

Fig. 6 Delay time for initializing multicast tree.

Table 2. Shows the installed flows in OpenFlow switches
to forward the multicast data based on the constructed
multicast tree. A large number of flows means the
constructed multicast tree can’t minimize the total hops in
the tree.

In this emulation we start all multicast session with one
source and 3 receivers, then 2 other receivers will request
the controller to join the multicast session. In this case, the
controller will update multicast tree to cover the new 2
receivers. Our method uses the backup paths to each
destination and using TS algorithm will find the more
optimum path to update each receiver. But, in the other
method will use the back-up paths in the constructed MST
to update the multicast tree.

We see from results in Table 2 that our method can reduce
the total number of flows required to update multicast tree
compared to another method. This means that our method
is able to minimize the multicast tree with any update in
the tree to join new receiver to multicast session.

The reason that make our algorithm able to minimize
multicast tree is that, Tabu search is kind of heuristic
algorithm that calculate Minimize Steiner Tree, and it is
known that MST can minimize the total number of hops in
the multicast tree, but it take a long time to construct
multicast tree, so we use it to just update multicast tree
based on pre-calculated back-up paths and used Dijkstra
algorithm to initialize multicast tree because it take short
time. But the other method use Dijkstra shortest path
algorithm for both initialize and update multicast tree and
it know that this algorithm can find the least cost of each
path but can’t minimize to total links in the multicast tree.

Table 2: Total number of flows installed per each method

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.4, April 2017

297

 Group 1 Group 2 Group 3

Dijkstra 9 flows 10 flows 10 flows

Dijkstra TS 7 flows 6 flows 7 flows

Conclusion

In this paper, we present an efficient multicasting approach
in SDN. For constructing multicast tree we purposed a new
algorithm as a function in the controller, this algorithm
takes advantage of Shortest Path Tree algorithms
represented by Dijkstra algorithm and Minimum Sterner
Tree algorithms represented by Tabu Search algorithm and
avoid the shortages of both. Dijkstra algorithm can
construct the multicast tree with short time but can’t
minimize the resulting multicast tree, in the other hand TS
can minimize the resulting tree but it take a long time. By
using Dijkstra to construct multicast tree at initialization of
session and using TS to update multicast tree in case of
joining any new receivers we get better performance
compared to using the only shortest path tree algorithm. In
this method, we use the good feature on SDN by using the
centralized controller to construct the back-up paths for TS
algorithm for fast update the multicast tree.

We evaluate our approach using Mininet network
emulation with POX controller. Our evaluation indicates
that our proposed multicasting mechanism is effective in
delay time required to construct the multicast tree and it
can optimize the tree with any update in multicast session.

References
[1] H. Holbrook, B. Cain, and B. Haberman. Aug. 2006 “Using

Internet Group Management Protocol Version 3 (IGMPv3)
and Multicast Listener Discovery Protocol Version 2
(MLDv2) for Source-Specific Multicast”, RFC 4604.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow,
2008 “enabling innovation in campus networks”. ACM
SIGCOMM Computer Communication Review, 38(2):69–
74.

[3] C. Marcondes, T. Santos, A. Godoy, C. Viel, and C.
Teixeira , Jul. 2012 "CastFlow: Clean-slate Multicast
Approach using In-advance Path Processing in
Programmable Networks", IEEE Symposium on Computers
and Communications (ISCC).

[4] J. Moy, Mar. 1994 “Multicast Extensions to OSPF,” RFC
1584 (Historic), Internet Engineering Task Force. [Online].
Available: http://www.ietf.org/rfc/rfc1584.txt.

[5] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M.
Handley, V. Jacobson, C. Liu, P. Sharma, and L. Wei, Jun.
1997 “Protocol Independent Multicast-Sparse Mode (PIM-
SM): Protocol Specification,” RFC 2117 (Experimental),
Internet Engineering Task Force, obsoleted by RFC 2362.
[Online]. Available: http://www.ietf.org/rfc/rfc2117.txt.

[6] K.-K YAP; T.-Y. HUANG; DODSON, B.; LAM, M.S.;
MCKEOWN, N. 2010. Towards Software-Friendly
Networks. In: ACM ASIA-PACIFIC WORKSHOP ON
SYSTEMS, 1, New York, 2010. Proceedings… New York,
p. 49-54.

[7] A. C. Cesar Teixeira, 2012 "CastFlow: Clean-slate multicast
approach using in-advance path processing in
programmable networks", ISCC, 2012, 2013 IEEE
Symposium on Computers and Communications (ISCC),
2013 IEEE Symposium on Computers and Communications
(ISCC) 2012, pp. 000094-000101,
doi:10.1109/ISCC.6249274.

[8] J. -Ruey Jiang1, W. Yahya1,2, and M. Tri Ananta, 2011,
“Load Balancing and Multicasting Using the Extended
Dijkstra’s Algorithm in Software Defined Networking” , ©
Springer-Verlag Berlin Heidelberg.

[9] M. Imase and B. M. Waxman, 1991, "Dynamic Steiner tree
problem," SIAM lournal on Discrete Mathematics, vol. 4,
no. 3, pp. 369-3S4.

[10] D. Eppstein. 1994. Finding the k shortest paths. 35th IEEE
Symp. Foundations of Comp. Sci., Santa Fe, 1994, pp. 154-
165. Tech. Rep. 94-26, ICS, UCI, 1994.

[11] F. Glover. 1989. "Tabu Search - PART 1". ORSA Journal
on COMPUTING 1 (2): 190–206. doi:10.1287/ijoc.1.3.190.

[12] http://mininet.org/

Alaa Allakany received M.S. Degree
in Computer Science Department, Faculty
of Science from South Valley University,
Egypt. And received B.S. in Faculty of
science form South Valley University,
Egypt. He is a Second year Ph.D. student
and belongs to the department of Advanced
Information Technology, Graduate school
of Information Science and Electrical
Engineering, Kyushu University, Japan.

Koji Okamura is a professor at
Department of Advanced Information
Technology and also at Computer Center,
Kyushu University, Japan. He received
B.S. and M.S. Degree in Computer
Science and Communication Engineering
and Ph.D. in Graduate School of
Information Science and Electrical
Engineering from Kyushu University,
Japan in 1988, 1990, and 1998,

respectively. He has been a researcher of MITSUBISHI
Electronics Corporation, Japan for several years and has been a
Research Associate at the Graduate School of Information
Science, Nara institute of Science and Technology, Japan and
Computer Center, Kobe University, Japan. He is Interested in
Internet and Next Generation Internet, Multimedia
Communication and Processing, Multicast/IPv6/Qos, Human
Communication over Inherent and active Networks. He is a
member of WIDE, ITRC, GENKAI, HIJK projects and Key
person of Core University Program on Next Generation Internet
between Japan and Korea sponsored by JSPS/KOSEF.

http://www.ietf.org/rfc/rfc2117.txt
http://mininet.org/

	Group 3
	Group 2
	Group 1

