
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.5, May 2017

77

Manuscript received May 5, 2017
Manuscript revised May 20, 2017

PDF Forensic Analysis System using YARA

Suleiman J. Khitan1, Ali Hadi1 and Jalal Atoum2
1Computer Science Dept., Princess Sumaya University for Technology, Amman, Jordan

2Mathematics & Computer Science, Southern Arkansas University, Texas, USA

Summary
This this paper presents an important enhanced method to detect
suspicious PDF files by applying two scanning methods
(structure scan and YARA scan), which depend on extracting and
pointing out malicious objects that are often used for attacks.
This enhanced method will be a great assistant to forensic
analysts in analyzing PDF files and detecting malicious content
in them. Testing both scanning methods was carried out through
conducting several experiments on a real dataset. The results
show an improvement for detecting malicious PDF files when
applying both methods. The structure scan achieved an accuracy
of 99.91% and the YARA scan achieved an accuracy of 98.05%.
Keywords:
Malware Analysis, PDF Documents, Malicious PDF, Suspicious
PDF, Structure Scan, YARA Rules, Learning Machines.

1. Introduction

Recent developments in network technology have become
better at showing the importance and expansion of data
exchange; that is, data such as video files, images and
documents rapidly sent from one machine to another. The
widespread importance of the information security has
raised awareness about anonymous execution files, and
has made hackers to think twice before they propagate
their malicious code using most common file types.
Many users have a wrong understanding that document
files, like Microsoft documents and PDF files, are the
most protected and trusted compared to execution files. In
fact, hackers can embed their malicious codes within these
document files – and by fooling users to open these files,
they are turned into easy targets.
The Portable Document Format (PDF), developed by
Adobe Systems in 1993, has become the file format for
the distribution of printable documents these days and was
released as an open standard by the International
Organization for Standardization in 2008 as ISO 32000-1
[1].
In contrast to other document files like Microsoft Office,
PDF files are considered the most widespread application,
enabling individuals to easily transfer electronic
documents in trusted ways without depending on a
specific platform. In addition to these reasons, the PDF
format supports Application Programming Interfaces
(APIs) in filling fields in forms for survey questions, and
provides rich elements to the users. The rich elements

explained in the PDF structure contain static and dynamic
contents. Table 1 displays a brief list of these contents.

Table 1 PDF Content

The API features supported by PDFs may be exploited for
cyberattacks [2] [3]. In addition, the dynamic content may
lead to several security issues that can be used to hold
malicious elements to install malware and steal data.
These features may contain codes written in JavaScript
and will allow the developer to insert advanced features,
such as multimedia files, to connect with outside sites.
Unfortunately, the attacker can use the features provided
by JavaScript to exploit vulnerabilities in the PDF viewer
application itself.
By using JavaScript, the attacker is capable of doing two
things: triggering the vulnerable code and then pointing
the execution to an arbitrary code of their choice to gain
user privileges to run or stop the application; or denying
service to the legitimate user through heap-spraying [4] or
other memory manipulation techniques.
In addition to the vulnerabilities of the PDF viewer,
attackers have also taken advantage of advanced PDF
features such as the /Launch option, which executes an
embedded script automatically, or the /URI and /GoTo
options, which can open external resources from the same
computer [5].
Vulnerabilities in PDFs are grouped into two classes [6]:
JavaScript-based and non-JavaScript-based. A JavaScript-
based exploit is achieved in the PDF because the PDF
standards support the JavaScript language, which enables
attackers to embed it into an object inside the document.
Here, the goal is to exploit the bugs in the implementation
of PDF JavaScript API and to use a technique like heap
spraying to fill the PDF reader memory with a shell-code
which also gives the attacker the opportunity to execute
this shell-code. This may involve downloading malware
from the internet or extracting it from the PDF files
themselves, writing it to the file and executing it [7].
A non-JavaScript-based exploit, which is utilized by the
attackers using some PDF features, is rarely encountered

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.5, May 2017 78

compared to the JavaScript-based exploit; CVE-2011-
0611-Flash, for example, is a weakness in Flash Player
that causes a denial of service [8]. Another example of a
non-JavaScript exploit is using the /Launch action, which
may be used to run a malicious code automatically as
described in CVE-2010-1240 [8].
Analyzing PDF files depends mainly on three forms of
technique: static, dynamic and a combination of the two.
The static technique [9] depends on inspecting the PDF
documents thoroughly and searching for features and
content which are important for labeling PDF documents
as clean or not. The drawback to this solution is that it is
restricted to finding obfuscations that hide malicious code,
which leads to a high false positive rate. The dynamic
technique [10] [11] depends on running the files in a
monitored virtual machine and analyzing them for any
vulnerable behavior. The limitations of this technique are
the need for a longer analysis time and more expense to
create the monitored system. The third technique
combines static and dynamic analysis in order to analyze
and detect malicious files [12] [13] [14]. The advantage of
this over the two other techniques is that it does not need
much time for analysis – unlike the dynamic technique –
and, in addition, it can provide a high positive rate
compared to the static technique.
In this paper, a method for detecting and classifying
suspicious PDF files is presented based on a structure scan
[15] and a YARA scan, which inspect the PDF documents
thoroughly and search for features that are important in
labeling PDF documents as suspicious. In addition, the
dataset of clean and malicious PDF files was analyzed, to
discover the variations between them using machine
learning techniques, in order to check the detection
accuracy of the method.

2. Background

The PDF format was developed by Adobe with the first
version (1.0) in 1993 [16] [17]. Each new version is
compatible with earlier versions, so any application
viewer that can renders PDF 1.7 can open files from
previous versions. Adobe added more features to the PDF
format in every new feature, such as compression,
encryption or forms.
PDF formats mainly consist of four parts [16] [18]:

- The header. A single line consists of %PDF- and
the version number, which specifies the version
of the PDF programming language: “%PDF-1.7”
means the PDF files are version 1.7.

- The body. This consists of PDF objects which
build most of the PDF formats. The basic format
of PDF is made up of objects as a type of data.
There exist eight different types of object:

Boolean values, Numeric objects, Strings, Names,
Arrays, Dictionaries, Streams and Null.

- Cross-reference table (xref table). This table lists
all the indirect objects in the PDF formats and
their locations, and is updated whenever the user
updates the file.

- Trailer. This locates the cross-reference table, the
end of the file through the mark “%%EOF” and
certain objects, like root objects.

YARA [19] [20] is a free tool that helps in identifying and
categorizing malicious files. Like any antivirus system, it
scans the files based on signatures which are in YARA
text or binary strings that specify a malware.
Using simple rules, YARA scans the malicious files
looking for strings that exist in the rules; if they are found
in the file, the rules are applied.
YARA’s rule starts with the key word rule followed by an
identifier. These identifiers should follow the same
identifier rules in C language and should not exceed 128
letters.
Rules are composed of two parts. The first is the string
section. Each string needs an identifier that starts with
$ followed by a sequence of letters; this identifier will be
part of the condition section that points to the specified
string. Strings are defined as both text strings, which are
put between double quotes, and hexadecimal strings,
which are put between curly brackets.
The condition section acts as the logic of the rule. It
contains identifiers that refer to the strings in the string
section. The identifiers are Boolean variables that are true
if the strings are found in a file or process, or false if not.
In addition to the string and condition sections, a YARA
rule may contain further information regarding any rule,
which is called metadata and which is recognized in the
metadata part as (meta). The metadata section includes
identifiers and values separated by the equals sign. These
values can be represented in three forms: integers, strings
or Boolean values. Here is a simple example which shows
the structure and the main components of any YARA rule:
rule any_Rule
{
 Meta:
 Any_Text_1 = “It is an example”
 Any_Text_2 = 13
 Any_Text_3 = False
 strings:
 $text_string = “ASDFGHJKL"
 $hex_string = {41 53 44 46 47 48 4a 4b
4c}
 condition:
 $text_string or $hex_string
}
YARA can be called from a code written in Python
through using the yara-python extension, which allows
Python users to use the YARA functionality.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.5, May 2017 79

3. Related Work

Corona et al. [21] presented a system to detect malicious
JavaScript embedded inside PDF files called “Lux 0n
discriminant References” (Lux0R). Their approach
depends on the lexical properties of the JavaScript code
using the references of its API, which are functions,
constants, objects, methods and keywords, as well as
attributes. They utilized machine learning techniques to
obtain a subset of API references which define malicious
code.
Laskov and Šrndić [22] proposed a model for detecting
malicious PDF files with JavaScript-related malware.
They presented a tool, PJScan, which is capable of
detecting malicious PDF documents.
The architecture of PJScan consists of the extraction of
the JavaScript from the malicious files to obtain the
script’s lexical properties via the tokenizer. The output,
which is the token sequence, is fed as an input to the
machine learning algorithm. The learning algorithm will
be acquainted with the known malicious PDF files in
order to produce a model used for classification of
unknown malicious files. In the second phase, every
unknown malicious PDF file passes through the same
stages, from the extraction of JavaScript, its tokenization
and the application of the token sequence to the learning
algorithm, in which the detector compares this output with
a learned model to measure the deflection from a
predefined threshold. So, values that are close to a learned
model are considered as malicious; otherwise, they are
benign.
Wepawet is a web-based service that implements a static
and dynamic analysis of malware in PDF documents; it
depends on JavaScript contained within it [23] [24] and
utilizes JSAND to detect malicious JavaScript code based
on lexical analysis.
Uploading PDF files for analysis gives a report, which
contains details about the files that are flagged as
malicious, such as the MD5 of the file, and provides
information on whether the file is malicious, suspicious or
benign and on malwares and shellcodes.
The detection results are identified based on the usage of
well-known vulnerabilities to classify a file as a malicious
PDF file, while suspicious files are identified based on the
existence of shellcode and obfuscated JavaScript.
In 2012, Smutz and Stavrou [25] presented a framework
for detecting malicious files by using machine learning.
The framework depends on selecting features, in order to
distinguish between benign and malicious files, with the
use of a classifier which chooses features randomly for
each individual classification tree to give a high detection
rate.

4. System Architecture

The system architecture is shown in Figure 1. There are
two scanning methods: structure scan, which depends on
predefined keywords to be scanned that are available
within the keywords file; and YARA scan, which requires
rules to scan the PDF files with and which is available
through the YARA rules file. With regard to the scanning
method, the PDF files and the analysis files are read to
calculate their hash values.
The system checks the hash value of every PDF file if it is
available in the hash value database. If not, the system
adds the hash value to this database, then performs the
specified scan to add the output to the output database
folder and finally displays the output to the analyst. If the
hash value of the PDF file is included in database, the
system checks if the PDF file has been previously
analyzed with the analysis files. If it has, the system
displays the output. If not, the system performs the scan
using these analysis files, adds the output to the output
database and then displays this to the analyst.

4.1 Structure Scan
According to Khitan et al. [15], the objective of this phase
is to scan the PDF documents searching for features which
are important for labeling PDF documents as suspicious,
to give a brief idea about the structure of the document
(like number of pages) and to list possibly suspicious
objects in it. PDF files contain data represented in ASCII
and binary formats, therefore the PDF documents are read
as a byte sequence to easily parse these.
The authors added more suspicious keywords in addition
to Didier Steven’s work [26], which are important features
when scanning malicious PDF files. The further set of
keywords used in this phase are [15]:
- /FlateDecode
- /LZWDecode
- /RunLengthDecode
- /JBIG2Decode
- /ASCII85Decode
- /ASCIIHexDecode

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.5, May 2017 80

Figure 1 System Architecture

- /CCITTFaxDecode
- /DCTDecode
- /URI
- /GoTo

4.2 YARA scan

The second method for scanning PDF documents uses
YARA rules to search for byte sequences and strings in
order to spot malware in PDF files. The yara-python
module was used to integrate YARA capabilities with the
proposed system, in addition to the use of YARA editor,
to create the YARA rules for the system.
These rules are used to search and identify PDF
characteristics and can accordingly classify these files as
suspicious or benign. Each rule consists of a set of strings
and a Boolean that identifies its logic and a description for
this rule.
Table 2 shows a list of YARA rules that are currently
applied with the system. Analysts have the ability to craft

their own rules to be used for further or future PDF
analysis.

4.3 Calculating hash value

The goal of this phase is to check if the PDF documents
have been analyzed already by calculating their hash value
in addition to the hash value of the analysis files. As such,
this step is considered worthwhile, as it can save the
analyst’s time if the document has been analyzed before.

4.4 Reporting

In this phase, the result of the scan is displayed to the
analyst. There are two ways to view the output; either
displayed on the console or copied into a text file carrying
the same name of the scanned PDF.
The report contains related information about the analyzed
PDF file. If the report is generated from the structure scan,
the related information will include the objects defined in
the keywords file, with their quantities found in the
document and the result of the scan. If it is suspicious,
there will be an explanation why it has been marked as
suspicious.
If the report is created through the YARA scan, the
information will include the YARA rules matched through
the scanning process, which includes the problem, the
strings to search for and conditions.

5. Experiments

The experiment was implemented using Windows 8 in a
Hyper-V virtual machine. The virtual machine was
configured to use one virtual processor of 1GB RAM with
varied programs like Python 2.7.8, yara-python 3.0 and
Microsoft Visual C++ 2010 x86 Redistributable to
integrate the YARA rules The experiment was
implemented using Windows 8 in a Hyper-V virtual
machine. The virtual machine was configured to use one
virtual processor of 1GB RAM with varied programs like
Python 2.7.8, yara-python 3.0 and Microsoft Visual C++
2010 x86 Redistributable to integrate the YARA rules
within the proposed system. The Hyper-V virtual machine
has been used for static analysis of PDF documents and to
keep the host operating system safe from malicious
datasets.
Malicious and benign PDF files were used to evaluate the
proposed system; two experiments were performed using
the same dataset. Both were tested with a dataset
consisting of 19,593 benign and malicious PDF
documents with a total size of 918 MB, downloaded from
the site Contagiodump [27], a website containing up-to-
date malware samples, threats and tests. Table 3 shows the
properties of the dataset used in the experiment.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.5, May 2017 81

Table 2 YARA Rules Used
Rule Name Description

Bad_Header : PDF Header not within the first 1024 of
the file

No_Startxref : PDF PDF document doesn’t have
startxref label

Embedded_JavaScript :
PDF

The PDF document contains
JavaScript code

Suspicious_OpenAction :
PDF

The PDF document contains Action
performed automatically when a
document is opened

Suspicious_OpenAction :
PDF

The PDF document contains an
action to be performed when the
document or page is viewed

Embedded_File : PDF The PDF document contains
embedded files

The correctness of the collected dataset was checked, as
the presence of malicious files in benign samples, or
contrariwise, will produce negative results on the studied
experiments. For that reason, a copy of all documents in
the malicious as well as in the benign dataset were
scanned using Kaspersky Endpoint Security 10 antivirus
in a separate Hyper-V virtual machine, which confirmed
that the files were classified correctly (Table 3).

5.1 Structure Scan: Experiment 1

In accordance with Khitan et al. [15], the experiment was
performed to search for suspicious features and to
compute their frequencies in both the malicious and
benign datasets. The results are shown in Table 4, which
represents the 30 features with the number of files that
contain each feature in the analyzed PDF files.
Percentages were calculated by dividing the number of
files with a certain feature over the total number of the
samples.

Table 3 PDF Documents collected for the experiment
Category # of files Size of files

Benign Files 8800 761 MB
Malicious
Files 10793 157 MB

Total 19593 918 MB

Table 4 Structure Scan Results – Experiment 1
Features Mali-cious Clean %Mali-

cious
%Clea
n

JavaScript 2766 298 14.12% 1.52%
JS 2758 290 14.08% 1.48%
mismatched objects 58 0 0.30% 0.00%
mismatched streams 29 7 0.15% 0.04%
PDFs with no Cross
reference table 647 1560 3.30% 7.96%

PDFs with no Startxref 284 0 1.45% 0.00%
FlateDecode 3067 8597 15.65% 43.88%
LZWDecode 58 359 0.30% 1.83%
ASCII85Decode 205 57 1.05% 0.29%
ASCIIHexDecode 402 408 2.05% 2.08%
RunLengthDecode 53 0 0.27% 0.00%
JBIG2Decode 3 143 0.02% 0.73%
DCTDecode 96 1672 0.49% 8.53%
Encrypt 5 58 0.03% 0.30%
CCITTFaxDecode 1 471 0.01% 2.40%
OpenAction 1762 610 8.99% 3.11%
Launch 68 12 0.35% 0.06%

AA 89 352 0.45% 1.80%
Acroform 1714 2658 8.75% 13.57%
URI 1 1241 0.01% 6.33%
RichMedia 2 0 0.01% 0.00
ObjStm 34 2924 0.17% 14.92%
EmbeddedFile 908 979 4.63% 5.00%
Page = 1 3144 3406 16.05% 17.38%
%EOF missing 6394 0 32.63% 0.00%
Bad Header 718 0 3.66% 0.00%
XFA 906 2 4.62% 0.01%
GoTo 8 485 0.04% 2.48%

 Total Dataset = 19593

5.2 YARA Scan: Experiment 2
In this experiment, the PDF files were scanned using
RegEx as a feature of YARA to search and identify the
presence of suspicious features.
The results of the experiment on benign and malicious
files are shown in Table 5, which shows the number of
files that contain each feature from the analyzed PDF files.

Table 5 YARA Scan Results – Experiment 2

Features Malici-
ous Clean %Malici

-ous %Clean

JavaScript 2797 298 14.29% 1.52%
JS 2795 290 14.28% 1.48%
mismatched
objects 92 10 0.47% 0.05%

mismatched
streams 6 6 0.03% 0.03%

PDFs with no
Cross reference
table

285 0 1.46% 0.00%

PDFs with no
Startxref 286 0 1.46% 0.00%

FlateDecode 3075 8597 15.71% 43.91%
LZWDecode 9 359 0.05% 1.83%
ASCII85Decode 126 57 0.64% 0.29%
ASCIIHexDecode 336 408 1.72% 2.08%
RunLengthDecode 5 0 0.03% 0.00%
JBIG2Decode 1 143 0.01% 0.73%
DCTDecode 96 1672 0.49% 8.54%
Encrypt 5 58 0.03% 0.30%
CCITTFaxDecode 1 471 0.01% 2.41%
OpenAction 1790 610 9.14% 3.12%
Launch 68 12 0.35% 0.06%
AA 77 101 0.39% 0.52%
Acroform 1721 2658 8.79% 13.58%
URI 1 1204 0.01% 6.15%
RichMedia 2 0 0.01% 0.00%
ObjStm 35 2924 0.18% 14.93%
EmbeddedFile 906 785 4.63% 4.01%
Page = 1 3192 3130 16.30% 15.99%
%EOF missing 6392 0 32.65% 0.00%
Bad Header 661 0 3.38% 0.00%
XFA 902 2 4.61% 0.01%
GoTo 8 485 0.04% 2.48%

Total Dataset = 19593
As can be seen from Tables 4 and 5, there are differences in
certain keywords between the two scans and in the number of
files that contain them. This is because the structure scan detects
by matching the featured characters, compared to the YARA
scan, which depends on binary strings that uniquely match the
keywords.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.5, May 2017 82

6. Results

In the two experiments and as shown in the analysis of the
results presented in Tables 4 and 5, six features were selected:
Bad Header, %%EOF missing, JavaScript, JS, OpenAction and
XFA. These features have the most different values between
clean and malicious files and, as such, are important features to
be used as indicators for suspicion.
To calculate the number of files according to the proposed
hypothesis above, it must be determined how these features are
presented in the files, as each PDF file may contain more than
one feature. So, the relationship between these features was
calculated and the PDF files were required to be rescanned.

6.1 Structure Scan Results
The relationship between the specified features in the hypothesis
and how they are positioned in the dataset can be seen in Table 6
[15]. Each feature has a symbol to simplify its representation.
According to the results presented in Table 6, the predicted
number of suspicious files can be calculated as:

Predicted no. of suspicious files (P.Fs) = H + E + L + R + Y + Z
+ V + J + O + X (1)

By applying equation (1) to the results of the malicious files
listed in Table 6, the predicted number of suspicious files in the
malicious dataset is:

P.Fs = 10783
By applying equation (1) to the results of the clean files listed in
Table 6, the predicted number of suspicious files in the clean
dataset is:
P.Fs = 932

Table 6 Features Presence in the files – Structure Scan
Features Symbol Frequency

in Malicious
Frequency in

 Clean
Bad Header H 718 0
%%EOF missing E 6394 0
JavaScript 2766 298
JS 2758 290
OpenAction 1762 610
XFA 906 2
(JavaScript ∩ JS ∩
OpenAction) – XFA R 1754 7

JavaScript – (JS ∪
OpenAction ∪ XFA) Y 8 39

JS – (JavaScript ∪
OpenAction ∪ XFA) Z 0 31

OpenAction –
(JavaScript ∪ JS ∪
XFA)

V 5 603

JavaScript ∩ JS ∩
OpenAction ∩ XFA J 3 0

(JavaScript ∩ JS ∩
XFA) – OpenAction O 3 2

XFA – (JavaScript ∪
JS ∪ OpenAction) X 900 0

6.2 YARA scan results

In order to find the relationship between the specified features in
the hypothesis and how they are positioned in the dataset, the
YARA scan was performed again in order to find the frequencies

of each feature and the intersections between these features
(Table 7). Each feature has a symbol to simplify its
representation.
According to the results presented in Table 7, the predicted
number of suspicious files can be calculated using equation (1)
on the results of the malicious files listed. The predicted number
of suspicious files in the malicious dataset is thus:

P.Fs = 10759
By applying equation (1) to the results of clean files listed in
Table 7 the predicted number of suspicious files in the clean
dataset is:

P.Fs = 932

Table 7 Features Presence in the files – YARA Scan

Features Symbol Frequency
in Malicious

Frequency
in

 Clean
Bad Header H 661 0
%%EOF missing E 6392 0
JavaScript 2797 298
JS 2795 290
OpenAction 1790 610
XFA 902 2
(JavaScript ∩ JS) –
(OpenAction ∪ XFA) L 1002 250

(JavaScript ∩ JS ∩
OpenAction) – XFA R 1782 7

JavaScript – (JS ∪
OpenAction ∪ XFA) Y 8 39

JS – (JavaScript ∪
OpenAction ∪ XFA) Z 6 31

OpenAction –
(JavaScript ∪ JS ∪
XFA)

V 6 603

JavaScript ∩ JS ∩
OpenAction ∩ XFA J 2 0

(JavaScript ∩ JS ∩
XFA) – OpenAction O 3 2

XFA – (JavaScript ∪
JS ∪ OpenAction) X 897 0

7. Detection Accuracy

Before explaining the detection rates that emerged through
the experiments, the following terms are presented [28]:

- True Positive (TP). The number of files detected
as malicious from malicious samples.

- True Negative (TN). The number of files
detected as benign from benign samples.

- False Positive (FP). The number of files detected
as malicious from benign samples.

- False Negative (FN). The number of files
classified as benign from malicious samples.

In the experiment the performance of the proposed system
was assessed with regard to FP and TP rates:

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 𝑅𝑅𝑅𝑅𝑃𝑃𝑇𝑇 (𝑇𝑇𝑃𝑃𝑅𝑅) =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
∗ 100 (2)

𝐹𝐹𝑅𝑅𝐹𝐹𝑃𝑃𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇 𝑅𝑅𝑅𝑅𝑃𝑃𝑇𝑇 (𝐹𝐹𝑃𝑃𝑅𝑅)

=
𝐹𝐹𝑃𝑃

𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑃𝑃
∗ 100 (3)

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.5, May 2017 83

The FP and TP rates of the proposed system were
evaluated in terms of the presence of the six features
selected in Section 6: JavaScript, JS, OpenAction, XFA
keywords and the absence of both the %%EOF keyword
and PDF header within the first 1,024 bytes of the file, as
shown in Tables 8 and 9.

Table 8 Detection Results for Structure Scan
 Known Samples

Benign Malicious

Detected
Samples

Benign TN = 7868 FN = 10
Suspicious FP = 932 TP = 10783

Table 9 Detection Results for YARA Scan
Known Samples

Benign Malicious
Detected
Samples

Benign TN = 7868 FN = 214
Suspicious FP = 932 TP = 10759

Using the results from Tables 8 and 9, a comparison in
detection accuracy was made between the presented
system and two public classifiers: Naïve Bayes and
Decision Tree-J48.
The two classifiers were executed on the dataset to detect
suspicious PDF files using the features (EOF not present,
obj does not equal endobj, ObjStm, JBIG2Decode,
DCTDecode, FlateDecode, XFA and URI) which were
determined using GeneticSearch algorithm in the WEKA
platform. For each system, the TP, FP and accuracy rates
are shown in Table 10.

Table 10 Comparison between the presented system and machine
learning classifiers

System TP (%) FP (%) Accuracy

Presented
System

Structure
Scan 99.91% 10.59% 95.19%

YARA
Scan 98.05% 10.59% 94.02%

Naïve Bayes 99.4% 3.8% 97.99 %
Decision Tree-J48 99.8% 0.2% 99.81 %

Table 10 outlines the results of the comparison between
the proposed system and the machine learning classifiers,
where the proposed system in both methods (structure and
YARA scans) displayed the highest FP rate, and presented
a less accurate detection than the two classifiers. This
means that both classifiers have greater classification
capabilities compared to our system, which indicates a
better features selection.
From the results above, and according to the features
selection, our hypothesis – which selected two significant
features (i.e. %%EOF missing and XFA) and four
irrelevant features compared to the machine learning’s
features selection – gives a higher detection accuracy.

8. Performance Evaluation

To evaluate the system and how it can detect suspicious
PDF files, it was compared with another tool, Wepawet,
which analyzes PDF files by using an interpreter to run
JavaScript [12] [13].
The comparison was conducted on 5,000 PDF files
deemed as FN, which meant the dataset was known to be
malicious. To carry out the comparison, the experiment
was performed using the keywords which were used in the
proposed hypothesis. The relationships between the
keywords are shown in Tables 11 and 12; the results of the
comparisons are shown in Table 13.

Table 11 Keywords relationship - Structure Scan

Features Frequency in
Malicious

Frequency
in

 Clean
Bad Header 347 204
%%EOF missing 3010 1811
JavaScript 1236 748
JS 1232 746
OpenAction 755 449
XFA 404 235
(JavaScript ∩ JS) – (OpenAction ∪
XFA) 478 295

JavaScript ∩ JS ∩ OpenAction ∩
XFA 2 0

(JavaScript ∩ JS ∩ OpenAction) –
XFA 749 448

(JavaScript ∩ JS ∩ XFA) –
OpenAction 3 3

JavaScript – (JS ∪ OpenAction ∪
XFA) 4 2

JS – (JavaScript ∪ OpenAction ∪
XFA) 0 0

OpenAction – (JavaScript ∪ JS ∪
XFA) 4 1

XFA – (JavaScript ∪ JS ∪
OpenAction) 399 232

Table 12 Keywords relationship - YARA Scan

Features Frequency in
Malicious

Frequency in
 Clean

Bad Header 312 182
%%EOF missing 3009 1810
JavaScript 1260 764
JS 1258 763
OpenAction 778 463
XFA 402 235
(JavaScript ∩ JS) – (OpenAction ∪
XFA) 481 297

JavaScript ∩ JS ∩ OpenAction ∩
XFA 1 0

(JavaScript ∩ JS ∩ OpenAction) –
XFA 771 462

(JavaScript ∩ JS ∩ XFA) –
OpenAction 3 3

JavaScript – (JS ∪ OpenAction ∪
XFA) 4 2

JS – (JavaScript ∪ OpenAction ∪
XFA) 2 1

OpenAction – (JavaScript ∪ JS ∪ 4 1

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.5, May 2017 84

XFA)
XFA – (JavaScript ∪ JS ∪
OpenAction) 398 232

Table 13 Comparison with Wepawet

Detected
Suspicious

Detected
Benign

False
Negative

(FN)
Wetawet 4859 4693 166 3.41%

Structure Scan –
Proposed method 5000 4996 4 0.08%

YARA Scan –
Proposed system 5000 4985 15 0. 3%

The three scanning methods (Wepawet, YARA and
structure scans) were each performed on the 5,000
malicious files. When Wepawet was used, the analysis
was successful for 4,859 files (Table 13).
An analysis of the results shows that Wepawet did not
have the ability to evaluate all the samples. Specifically, it
missed 3.41% of the known malicious PDF files. It is
believed there were some analysis problems which
influenced the system, since it did not completely execute
all the specifications of the PDF files and was only
implemented on JavaScripts and executables. It can be
observed from Table 13 that the proposed system
outperformed Wepawet in terms of the FN rate, which was
0.3% using the YARA scan and 0.08% using the structure
scan.
From the method evaluation of Wepawet, it can be seen
that the results support the proposed hypothesis of
selecting six features from 30 to be used as significant
features in detecting suspicious PDF files; these have a
positive result on the performance of the classification
system.

9. Conclusion

While PDF documents are used by many users as a stable
and reliable document exchange technique format, it is
also highly used by hackers to run harmful code on
computers. This is because the PDF structure provides the
ability to embed codes like JavaScript and to communicate
with outside sites.
In this paper, the structural format of the PDF has been
studied. The research also dealt with the techniques used
by hackers to keep their harmful codes hidden from
security specialists and security software like antiviruses.
The system that implements static detection has been
presented to detect suspicious PDF documents based on
the presence of the most significant features that are
commonly found in malicious files. As an additional step,
an experiment was conducted in order to classify the PDF
documents based on these keywords, as they are found in
most of the malicious PDF files.

It can be noticed from the results that features selection
according to the presented system gave a high rate for
detecting suspicious PDF files.
Applying WEKA to check the detection accuracy of the
presented system for extracting features, by running two
algorithms to detect suspicious PDF files, gave a higher
detection rate than the presented system and has two
mutual features: XFA and missing %%EOF.

10. Future Work

Future work will focus on utilizing other data mining
algorithms and testing them, in addition to combining
static and dynamic analysis to extract JavaScript and to
detect malicious PDF files whose exploitation techniques
do not rely on features embedded within them.

11. Limitations

A limitation of the system presented in this paper is that it
is unable to differentiate between malicious and benign
PDFs because it detects suspicious PDF files according to
the existence of certain features. Therefore, our method
cannot detect any malicious PDF files that do not use
these features as an attack vector.

References
[1] Adobe, "PDF Reference and Adobe Extensions to the PDF

Specification," 2008. [Online]. Available:
www.adobe.com/devnet/pdf/pdf_reference.html. [Accessed
23 January 2015].

[2] Sood and R. Enbody, "Targeted Cyberattacks: A Superset
of Advanced Persistent Threats," Security & Privacy, IEEE,
vol. 11, no. 1, pp. 54 - 61, 2012. doi: 10.1109/MSP.2012.90.

[3] Beuhring and K. Salous, "Beyond Blacklisting:
Cyberdefense in the Era of Advanced Persistent Threats,"
Security & Privacy, IEEE, vol. 12, no. 5, pp. 90 - 93 , 2014.
doi: 10.1109/MSP.2014.86.

[4] M. Egele, P. Wurzinger, C. Kruegel and E. Kirda,
"Defending browsers against drive-by
downloads:Mitigating Heap-Spraying Code Injection
Attacks," Springer, pp. 88-106, 2009. doi: 10.1007/978-3-
642-02918-9_6.

[5] Blonce, E. Filiol and L. Frayssignes, "Portable Document
Format (PDF) Security Analysis and Malware Threats,"
Proceedings of the 10th European Conference on
Information Warfare and Security: ECIW, 2011.

[6] F. Gutierrez and K. Selvaraj, "The Rise of PDF Malware,"
Symantec, 2010.

[7] D. Stevens, "Anatomy of Malicious PDF Documents,"
IEEE, 2010.

[8] NIST, "National Vulnerability Database," 2011. [Online].
Available:
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-
2011-0611. [Accessed 23 January 2015].

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.5, May 2017 85

[9] D. Maiorca, G. Giacinto and I. Corona, "A Pattern
Recognition System for Malicious PDF Files Detection,"
Springer, vol. 7376 , pp. 510-524, 2012. doi: 10.1007/978-
3-642-31537-4_40.

[10] M. Polychronakis, K. Anagnostakis and E. Markatos,
"Comprehensive shellcode detection using runtime
heuristics," ACM, pp. 287-296, 2010. doi:
10.1145/1920261.1920305.
Bazzi and Y. Onozato, "IDS for detecting malicious non-
executable files using dynamic analysis," IEEE, pp. 1 - 3 ,
2013.

[11] F. Schmitt, J. Gassen and E. Gerhards-Padilla, "PDF
Scrutinizer: Detecting JavaScript-based attacks in PDF
documents," IEEE, pp. 104-111, 2012. Doi:
10.1109/PST.2012.6297926.

[12] T. Dube, R. Raines, M. Grimaila, K. Bauer and S. Rogers,
"Malware Target Recognition of Unknown Threats,"
Systems Journal, IEEE, vol. 7, no. 3, pp. 467 - 477 , 2012.
Doi: 10.1109/JSYST.2012.2221913,

[13] Han, B. Chul, H. Geun and K. Sohn, "Toward extracting
malware features for classification using static and dynamic
analysis," IEEE, pp. 126 - 129 , 2012.

[14] S. Khitan, A. Hadi and J. Atoum, "Enhanced Analysis
Method for Suspicious PDF Files," IJCSNS International
Journal of Computer Science and Network Security, vol. 15,
no. 5, pp. 32-38, 2015.

[15] Adobe, "Portable document format reference manual,"
Addison-Wesley, 1993.

[16] L. Leurs, "The history of PDF," 9 August 2013. [Online].
Available: http://www.prepressure.com/pdf/basics/history.
[Accessed 23 January 2016].

[17] "PDF file structure," [Online]. Available:
http://www.simpopdf.com/resource/pdf-file-structure. html..

[18] V. Álvarez, "YARA User's Manual," 2014.
[19] "YARA in a nutshell," [Online]. Available:

https://plusvic.github.io/yara/. [Accessed 24 January 2016].
[20] Corona, D. Maiorca, D. Ariu and G. Giacinto, "Lux0R:

Detection of Malicious PDF-embedded JavaScript code
through Discriminant Analysis of API References," in
AISec'14: Proceedings of the 2014 ACM Workshop on
Artificial Intelligence and Security, co-located with CCS '14
- See more at:
https://pralab.diee.unica.it/en/node/1116#sthash.JBkKevvW
.dpuf, 2014.

[21] P. Laskov and N. Šrndić, "Static Detection of Malicious
JavaScript-Bearing PDF Documents," in In Annual
Computer Security Applications Conference, 2011. doi:
10.1145/2076732.2076785.

[22] M. Cova, C. Kruegel and G. Vigna, "Detection and analysis
of drive-by-download attacks and malicious javascript
code," in In Proceedings of the 19th international
conference on World wide web, 2010. doi:
10.1145/1772690.1772720.

[23] S. Ford, M. Cova, C. Kruegel and a. G. Vigna, "Wepawet,"
2008. [Online]. Available: http://wepawet.cs.ucsb.edu.
[Accessed 21 Januray 2016].

[24] Smutz and A. Stavrou, "Malicious PDF Detection using
Metadata and Structural Features," ACM, pp. 239-248,
2012. doi: 10.1145/2420950.2420987.

[25] Stevens, "Didier Stevens," 2010. [Online]. Available:
http://blog.didierstevens.com/2010/03/29/escape-from-pdf.
[Accessed 21 January 2016].

[26] Mila, "CVE-2013-0640 samples listing," 24 April 2013.
[Online]. Available: http://contagiodump.blogspot.com.
[Accessed 21 January 2016].

[27] S. Salem, R. Darwish and S. Sayed, "A Real-Time
Approach for Detecting Malicious Executables," Springer,
pp. 355-364, 2014. doi: 10.1007/978-3-319-01857-7_34.

