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Summary 
This paper proposes the Agent-based Internet of Things (AIoT) 
architecture and AIoT middleware to realize autonomic and 
resilient service provisioning in IoT systems. As a massive 
number of devices are becoming part of the Internet, it is highly 
difficult to organize IoT devices as a system to provide 
appropriate services in our lives. It is difficult because the IoT 
devices are heterogeneous, and the situation often changes 
overtime which requires complicated reconfigurations of IoT 
systems. Our AIoT middleware provides IoT devices with the 
functionality of autonomic and resilient service provisioning in 
IoT systems. In this paper, we propose AIoT architecture of IoT 
application, AIoT organization and re-organization scheme to 
compose and operate IoT application according to user 
requirement and environmental condition. As the evaluation, we 
have implemented an autonomous logistics application with 
simplified logistics robots using proposed AIoT middleware, and 
conducted logistics experiments and scalability measurement 
simulation, to evaluate the effect of introducing AIoT 
architecture and AIoT middleware. We have also performed an 
architectural flexibility analysis on our architecture to examine 
further feasibility of proposals. The results of evaluations show 
the evidence of the realized capability of autonomic and resilient 
service provisioning, as well as the architectural flexibility of our 
middleware. 
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1. Introduction 

Our daily lives involve a number of various computational 
devices connected to the Internet, e.g. smart phones, 
personal computers, home information appliances, 
building components, and even the system components of 
power grid. As such devices gain the functionality to 
connect to the Internet based on their controlling software, 
there are diverse services that attempts to utilize them to 
benefit our lives. This paradigm is called the “Internet of 
Things (IoT),” in which heterogeneous devices are utilized 
by series of software through the networks. The challenge 
that the number of IoT related studies share, is the 
effective utilization of several and diverse computational 

entities that operate in a physical space to realize diverse 
services for people. 

As the number of IoT devices and its services grows, it 
becomes a tremendous burden for users and developers to 
organize individual IoT devices based on the requirements 
of services. In order to mitigate the burden on realizing 
and operating IoT system, there are number of 
investigations on automatic, autonomous and flexible 
operation of IoT devices [1][2]. The area of the 
investigations is diverse, e.g. home automation, health care, 
building security services, transportation, market 
administration, energy distribution, logistics, 
manufacturing, and so on. 

In the common sense among the prior studies, IoT device 
is a networked computational device which has sensing 
and/or actuation function(s) in physical space. IoT system 
is a particular set of IoT devices which control each 
device’s action to provide services to fulfill the 
requirement of people, in which service is a series of 
actions taken by the IoT devices that collectively realize 
particular output to people, such as provisioning of desired 
data (e.g. queried data from sensor network, collected data 
from participatory sensing), and real-world operation by 
physical actuation (e.g. appliance control in home 
automation, manufacturing actions in factory automation). 

Although there are investigations on smart functionality of 
IoT devices, it is still managed manually to compose IoT 
systems by selecting and configuring series of IoT devices 
based on the demand of people who introduces the desired 
IoT system. As the diversity of IoT devices and the 
provisioning services grow, the burden on realizing IoT 
system increases exponentially. Therefore, we focus on 
the autonomic composition of IoT system based on user 
requirements to reduce the burden of humans on realizing 
IoT systems. 

In addition, since IoT system operates in physical 
environment, adjustment and reconfiguration of the 
system are often required, which also complicate the IoT 
system operation. It is even greater burden for users to re-
configure the IoT systems, which is also performed 
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manually in the existing investigations. Therefore it is 
expected for IoT system to be resilient to sustain the 
services against various changes in environment, system 
and user situation. 

To address the problem, we focus on autonomic and 
resilient service provisioning in IoT systems, and propose 
the Agent-based Internet of Things (AIoT) architecture 
that realizes autonomic organization of IoT systems, as 
well as resilient operation of the organized IoT system by 
taking advantage of agents. We also propose the AIoT 
middleware that provides common runtime platform and 
agent template for IoT systems to organize and operate in 
such manner. 

By realizing the autonomic and resilient service 
provisioning, IoT system becomes able to autonomously 
compose IoT application to provide desired services, (e.g., 
combining multiple robots to perform housework in 
ambient assisted living environment [3]). IoT system also 
becomes able to resiliently replace and tune the IoT 
devices, e.g. replacing the housework robot in case of 
failure, or to change the parameter to perform task faster, 
etc. 

The rest of this paper is organized as follows: Section 2 
describes the related work and the problems on composing 
and operating services in IoT systems. Section 3 explains 
the proposed AIoT architecture and AIoT middleware to 
resolve the problems. Section 4 shows the implementation 
and experiments to show the realized autonomic and 
resilient service provisioning capability, as well as the 
architectural analysis on the proposed architecture. We 
conclude this paper in Section 5. 

2. Related Work 

In order to examine the underlying problem in the attempt 
of realizing and operating IoT systems for service 
provisioning, this section looks into the existing works, to 
derive the remaining and underlying problem of the 
existing works on service provisioning. 

2.1 Service Provisioning based on Automatic Mash-
up and Enabling Architecture of IoT devices 

To utilize heterogeneous IoT devices together, Device 
Ensemble System [4] investigates a method to enable 
sensors and smart home appliances to work together by 
connecting them into a centralized webserver, and control 
these devices based on the requests sent from a 
smartphone of a user. There is also a study on organizing 
IoT devices registered in REST based web servers, called 
the Web of Things (WoT) [5][6][7]. WoT approach offers 
an abstraction of IoT device and enables heterogeneous 

IoT devices to be utilized by web services. The abstraction 
makes it easier for a user to manually construct a service 
by interconnecting the abstracted functions of IoT devices. 

2.2 Agent-based Approach for Autonomous Service 
Provisioning in IoT systems 

The conventional approaches require constant re-
configurations whenever a system faces change of user 
requirement, partial failure, change of situation, etc. 
Therefore the prior survey [2][8] points out that the 
characteristics of intelligent agents are well suited for the 
utilization of IoT devices. In order to sustain the services, 
there are investigations on introducing agent technologies 
to develop IoT devices into Smart Objects (SO) [9]. Smart 
object provides context-awareness, and adaptability to 
perform and adjust device’s action as an individual, using 
the given knowledge to the agent. By introducing the 
agent technology, and knowledge on the context of user 
and situated environment, SO provides a capability to 
sustain service by adjusting its actions based on contents. 

As the application of SO, there is a centralized approach 
for device discovery and orchestration in home and 
building automation [10][11]. They utilize a single 
knowledge base shared among SOs. The cooperation 
among devices is organized manually by a user through 
the web page of user interface. The agents in the system 
monitor the state of each appliance, and execute actions 
based on the user requirements. 

Agent-based decentralized approach of IoT devices is 
proposed as various middleware in the existing works. 
UBIWARE [12], UBIROAD [13] and S-APL [14] provide 
semantic knowledge representation and reasoning 
capability to the utilize functions of IoT devices in situated 
environment. Impala [15], Smart Messages [16], ActorNet 
[17], Agilla [18] are introducing intelligent and mobile 
agents to manage sensor network to sustain sensing 
service by adapting the system towards the partial failure 
or the status change of the system component. These 
investigations of middleware demonstrate the IoT device’s 
capability to adapt toward other component’s failure, and 
situational changes in the IoT systems. Although these 
studies on middleware only deals with particular type of 
IoT application, i.e. sensor networks, not including various 
actuators. 

2.3 Underlying Problem and Our Approach 

The existing studies mentioned above are: 

• Making individual IoT devices unified component for 
users to manually and easily select and configure IoT 
system 
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• Making individual IoT devices smarter by introducing 
intelligent agents to sustain service provisioning as an 
individual device or as a particular application with 
homogeneous application 

These two points above are separately solved, because it is 
difficult for users to manually compose IoT system if the 
IoT devices are autonomous and dynamical. On the other 
hand, it is difficult to compose IoT system using 
autonomous IoT devices because of the heterogeneity and 
dynamical nature of the introduced agents. 

Therefore, despite of the number of investigations 
explained above, it is still a remaining problem to 
effectively organize the functions of IoT devices to 
compose service as IoT system, as well as to re-configure 
the organization of heterogeneous IoT devices towards 
partial failure and situational change. Therefore, the 
composition of IoT system is performed manually.The 
remaining problem of the existing works can be set as 
follows: 

• Problem 1: Autonomic organization of IoT system by 
taking into account the user’s requirement and diverse 
IoT device functionalities 

• Problem 2: Resilient tuning and replacement of 
system components to deal with users, systematical, 
and environmental change 

In order to deal with these problems mentioned above, we 
propose AIoT architecture and AIoT middleware to 
systematically help users to build IoT system based on the 
proposals. 

3. Autonomic and Resilient Service 
Provisioning based on Agent-based 
Internet of Things Architecture 

We propose Agent-based IoT (AIoT) architecture, and 
AIoT middleware to realize autonomic and resilient 
service provisioning in IoT systems. Following 
subsections describe the details of proposal. 

3.1 Requirements for solving problems in existing 
works 

In the paradigm of IoT, there are pervasive and 
heterogeneous devices. It is difficult (time consuming, 
requiring highly cognitive processing) to monitor the 
condition and function of each IoT device, as well as to 
select and configure the devices’ functions to compose the 
desired IoT application. Since it is necessary to consider 

the operational status of each IoT device. It is even more 
complicated to re-configure, replace, and upgrade these 
IoT devices to deal with the change in the user 
requirement and system's operational environment. 

Based on the problem and these characteristics of IoT 
devices, we have derived the requirement of the IoT 
system to address the problems mentioned previously. 
Following paragraphs are the explanation of the 
functionality requirements. 

• Requirement 1. Transparent control of IoT devices: 
Transparent control is crucial for the IoT system in 
service provisioning, because the IoT devices are 
heterogeneous, and it is difficult to monitor the 
heterogeneous devices in IoT systems. Generally, the 
APIs, functionality, physical constraints, and the 
setting procedures of the IoT devices vary from one 
another. Given the current diversity of IoT devices 
(e.g. static small sensors, home automation actuators, 
autonomous robots, etc.), autonomic organization of 
IoT systems cannot be realized without transparent 
control scheme through homogeneous interfaces to 
IoT devices. 

• Requirement 2. Autonomous selection and control of 
IoT devices according to diverse user requirements: 
Diversity of user requirement is one of the troubling 
characteristics of IoT system service provisioning, 
because IoT devices provide multiple functions, and 
the sharing devices for multiple purpose generally 
result in conflicting controls. User requirement is a set 
of IoT system services that users desire from the 
system. Since the diversity of IoT device is high, the 
requirement also varies, e.g. “lower the temperature of 
this room,” “I want to carry this package there,” “I 
want to assemble this furniture,” etc. In the 
environment where IoT devices are pervasive, it is 
impractical for IoT system to manually configure each 
function for each requirement from different users. 
Given the characteristics of IoT systems, in order to 
realize the autonomic organization of IoT systems, it 
is necessary that individual IoT devices are capable to 
select, and execute the actions according to the user 
requirement and their operational conditions. The user 
requirement needs to be satisfiable by the set of 
available services. 

• Requirement 3. Sustainable service provisioning 
against changes: Since IoT devices are running in 
physical space, it is exposed to various changes: 
environmental condition change, device condition 
change, as well as user situational change. In order to 
sustain the service provisioning, IoT system often 
requires re-configuration. Given the complexity of 
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IoT system, it is required to resiliently tune and re-
configure the IoT system in autonomous manner. For 
example, replacing networked information home 
appliance (e.g. smart lights, thermostat sensor, etc.) in 
case of breakdown. Other than replacement, tuning of 
IoT device performance is also a re-configuration, 
such as adjusting air conditioner’s temperature setting 
in response to power consumption saving demand. 

In the next subsection, we propose the detail of AIoT 
approach to fulfill the requirement to solve the underlying 
problem in the IoT paradigm. 

3.2 AIoT Architecture: Multiagent-based Autonomic 
and Resilient Service Provisioning Architecture for 
the Internet of Things 

i) Essence of Proposed Solutions 

In order to satisfy the requirement 1, 2, and 3, we have 
proposed 3 solutions as follows: 

• S1. AIoT architecture of application and 
Agentification of IoT device: In order to realize 
transparent control of IoT devices, Req.1, we propose 
AIoT architecture of IoT applications, which is 
composed of AIoT devices. The AIoT device is 
realized through the design and implementation 
process called agentification. With the commonly 
agentified IoT device, heterogeneous IoT devices can 
be controlled in homogeneous manner. We introduce 
the AIoT device, and the manager agent of these 
devices which realize the desired application by users. 
Individual AIoT devices provide problem solving 
capabilities. 

• S2. AIoT Organization Scheme for Autonomic AIoT 
Application Composition According to User 
Requirement: Since IoT devices are controlled by 
intelligent agents by S1, it is able to embed 
knowledge to autonomously select and execute IoT 
device. By taking advantage of AIoT devices’ 
capability, which are controlled by intelligent agents, 
we propose a novel concept of AIoT organization to 
realize IoT-oriented device organization. We propose 
AIoT agent organization scheme to compose AIoT 
application, by systematic interactions among agents 
to select and configure AIoT devices, to fulfill Req. 2. 

• S3. AIoT Re-organization scheme for Resilient AIoT 
Application Operation: In order to resiliently operate  

 

• Fig. 1 Overview of AIoT architecture of IoT 
applications. 

• AIoT application against various changes to fulfill 
Req. 3, we propose AIoT re-organization scheme to 
tune and replace the AIoT devices as the extension of 
S2. The instance of re-organization is replacement, re-
configuration, addition and removal of devices, etc. 

Next sub-subsection explains the overview of S1, S2 and 
S3. 

ii) Overview of Proposed AIoT Architecture  

We envision the agent-based approach to resolve the 
existing works’ problems. Given the characteristics of IoT 
systems, intelligent agent equips the desirable 
characteristics to deal with the existing difficulties, such as 
autonomy, flexibility, and sociality. By taking advantage 
of intelligent agents, we envision the AIoT architecture of 
IoT applications, which is realized by series of agents that 
manage and operate IoT devices based on user 
requirement, and its environment. First, we explain the 
overall view of AIoT architecture and its components, and 
then describe the autonomic AIoT application composition 
and resilient operation scheme. 

Fig. 1 illustrates the overview of AIoT architecture and 
applications. The agents that control IoT devices are 
Middleware Agents (Mid-Ag), and the device controlled 
by Mid-Ag is called AIoT device. The AIoT devices are 
organized by Application agents (AP-Ag), which have 
task descriptions to realize services. These agents compose 
AIoT application. There are 2 layers of agents, namely, 
application (AP) layer, and middleware (Mid) layer. 

AP layer provides the services as AIoT applications to the 
users, via AP-Ags in the layer. AP-Ags provides service 
parts of applications which realize the applications. AP-Ag 
works alone, or with the other AP-Ags and/or Mid-Ags to 
provide services. In case of working with Mid-Ags, an 
AP-Ag works as a manager to control, organize, and re- 
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Fig. 2 Overview of AIoT middleware hosting Mid-Ag and AP-Ag to 
compose AIoT architecture of IoT systems. 

organize the Mid-Ags. Service requirement is acquired by 
user agents, and the user agents select AP-Ags which 
satisfies the requirement, to start AIoT application 
construction and service provisioning. 

To realize desired AIoT applications, Mid layer inter-
connects the IoT devices (e.g. various sensors and robots) 
and the AP layer’s agents. Mid-Ag is realized by the 
agentification process to introduce intelligent agent 
functionality to target IoT device. Mid-Ag works alone, or 
with the other Mid-Ags as an organization to control and 
monitor the IoT devices. 

In order to control IoT devices in response to user 
requirement and operational condition, AP-Ag controls 
Mid-Ags as a manager, or Mid-Ag controls an IoT device 
based on its sensing activity. Both Mid-Ag and AP-Ag are 
called AIoT agent. The architecture of AIoT agent, as well 
as the agentification process to acquire Mid-Ag is 
explained in Section 3.3. 

In the AIoT architecture, building organization of agents is 
a process to select and configure AIoT agents to solve 
problems in distributed manner, based on the 
environmental condition and task description reflecting 
user requirement. The agent organization process is 
performed through AIoT organization scheme, which is 
explained in Section 3.4. Re-organization of agent is a 
process to re-configure and/or replace AIoT agents in 
response to the changes in various requirements. The re-
organization is realized by AIoT re-organization scheme, 
which is explained in Section 3.5. 

Both of AIoT organization scheme, and AIoT re-
organization scheme are conducted based on the AP-Ag 
and Mid-Ag’s knowledge on cooperation, which is 
commonly embedded among AIoT agents by using the 
agent templates provided by the AIoT middleware AIoT 
middleware. 

The architecture of AIoT middleware is shown in Fig. 2. 
Since the AIoT architecture offers services by Mid-Ag and 
AP-Ag, AIoT middleware offers agent workplace that 
hosts AIoT agents and mediate messages among the 
agents. Agent workplace also provides functionality to 

interconnect workplaces through TCP/IP network, which 
provides agents with messaging capability through 
networks. AIoT middleware provides the template of 
agent and IoT device control module, common rule sets 
and vocabulary to realize AIoT agents, as described later 
in section 3.3. 

AIoT application is composed by AP-Ag using its AIoT 
organization scheme to organize AIoT agents placed by 
developers or users, and operated by the AP-Ag based on 
its knowledge including AIoT re-organization scheme. 
When the task is finished, agent organization is dissolved 
and the member agents’ operations are terminated. 
Following subsections explains the following contents: 

• AIoT agent architecture and agentification process in 
Section 3.3 

• AIoT organization scheme in Section 3.4 

• AIoT re-organization scheme in Section 3.5 

3.3 AIoT Agent Architecture and Agentification 
Process 

IoT devices gain the functionality to execute task and 
cooperate with other devices through the design and 
implementation process called agentification. This 
subsection describes the proposed AIoT agent’s 
architecture, as well as the process of agentification to 
realize the AIoT agent.  

i) Architecture of AIoT agent 

In order to develop heterogeneous IoT devices into 
homogeneous entities, as well as to introduce autonomous 
functionality into IoT device control, we propose the 
architecture and development process of AIoT agent. Fig. 
3 shows the architecture of software agent which controls 
an IoT device. AIoT agent is combination of knowledge-
based agent and the control module of particular API and 
runtime framework. 

The AP-Ag and Mid-Ag are designed and implemented as 
AIoT agent. The difference between these 2 agents is that 
middleware agents have IoT device’s control program as 
the control module, while application agents have the task 
processing programs as the control module. 

IoT devices generally offer API for programming its 
control logic, and it is necessary to program dedicated 
control module to invoke the API to realize desired action 
of the target IoT device. In AIoT agent’s architecture, the 
Dedicated Control Module (DCM) for agent invokes the 
API to perform device actions, as well as to receive 
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responses to the agent. Through the control module, agent 
performs actions to solve problems. 

In the agent part, there are 3 kinds of knowledge, namely, 
Problem Solving Knowledge (PSK), Embodiment 
Knowledge (EK), and Cooperation Knowledge (CK). The 
knowledge in AIoT agent is represented as a set of if-then 
rules, and ontologies which define the primitive 
vocabulary used in the rules. The knowledge is processed 
by rule-based inference engine.  

PSK is a rule set and primitive vocabulary which define 
the following items: 

• Actions to solve problems using the IoT device  

• Conditions to recognize particular events 

For example, if certain event is detected in control module 
part, and the event data is raised from the control module 
to the agent part, also if there is a rule which has the 
received event as the condition, then the rule is fired and 
the designated action is executed by sending command to 
the control module. Control module sends back the 
response of the executed command, and the response 
possibly fires other rules, and so forth. 

In order to properly process task by avoiding conflicts in 
IoT device control, EK represents the following items as a 
set of rules and the self-embodiment ontology which 
defines the primitive vocabulary and records current IoT 
device’s state: 

• Physical characteristics on resource constraints of 
controlling IoT device 

• Partial procedural knowledge on control module 
about the effect of each device action 

Unlike ordinary software processes, there are number of 
constrained resources in physical IoT device, and 
individual actions are effected by one another even in a 
single IoT device. For example, it is impossible to perform 
sensing task of a specific point of place, while moving to 
another location to process another task. AIoT agent needs 
to be aware of the condition and occupation of resources, 
by taking into account the composite structure and 
characteristics of the IoT device. EK is defined to provide 
such awareness for agents. In case of AP-Ag, the EK is 
about the task processing programs and its constrained 
property to avoid conflicts of actions in runtime. 

CK is a rule set and primitive vocabulary to cooperate 
with other agents to solve problems together, which 
defines the following: 

 

 

Fig. 3 Architecture of AIoT agent (Mid-Ag or AP-Ag) that composes 
AIoT application. 

• AIoT organization scheme to construct AIoT 
application 

• AIoT re-organization scheme to adapt the AIoT 
application system towards requirement changes 

As mentioned earlier, in AIoT architecture, agents are 
organized in task-oriented manner, and adaptively re-
organized in response to the various changes. By this 
means, AIoT agent’s knowledge is designed and described 
based on the characteristics of IoT device, and 
application’s requirement for the devices. The default 
items are provided as knowledge template by AIoT 
middleware. 

In addition to autonomous capability of AIoT agents, since 
the control module, AP-Ag, and Mid-Ag are 
architecturally separated, it requires less effort to modify 
each part of the AIoT devices against fundamental 
changes compared to the existing architecture [5] which 
targets construction of IoT applications. 

ii) Agentification process of IoT device 

The design and implementation process of Mid-Ag is the 
“agentification” process to develop AIoT device. 
Agentification is a process to realize the agent-based 
control of IoT device based on the agent’s knowledge, as 
well as to cooperate with the other agents. Agentification 
provides IoT devices with the software agent’s capability. 
The heterogeneity is resolved by agentification process to 
develop heterogeneous (function, communication 
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protocol) IoT devices into homogeneous AIoT devices 
controlled by AIoT agents. Following steps are the process  

 

Fig. 4 Contract conclusion process of AIoT organization scheme between 
manager and contractor. (in this case, manager = AP-Ag, contractor=Mid-

Ag). 

of agentification. Developer of AIoT agent needs to 
implement the hatching part of the architecture in Fig. 3. 
The agentification involves the design and implementation 
of blue, hatched part of the AIoT agent. 

Agentification Steps of IoT Device 

Step 1. Analysis of target IoT device, and design of the 
device action for problem solving: The first step of 
agentification is to determine and list the actions of 
IoT device, by analyzing the physical characteristics 
and provided API of the IoT device. The determined 
behavior becomes a primitive set of Mid-Ag’s 
actions in solving problem. 

Step 2. Design and implementation of DCM (Dedicated 
Control Module) to handle events and actions: This 
step is to design and implement the DCM for 
handling command and response, as well as the 
event recognition. DCM for agent is designed based 
on the designed action of IoT device. To realize the 
targeted action, the DCM invokes physical actuator 
or sensor through APIs. The response is sent back to 
the agent as required by the command (result of 
actuation, sensed value from sensor, etc.). DCM also 
handles event detection, i.e. certain pattern of sensed 
value, detected error, etc. The event needs to be 
recognized and handled by the agent by referring to 
its knowledge. 

Step 3. Design and implementation of PSK and EK: This 
step is to design and implement the knowledge as 
rule sets and ontology to handle the raised event and 
to control IoT device to solve problems. PSK rule 
sets determine the way to solve problems by 
actuating IoT device. The actuation is performed by 
referring to the EK of IoT device which represents 
the structure and characteristics of the device itself. 
In this step, common template for writing PSK and 
EK is given by AIoT middleware as agent templates, 
and CK is commonly given as common rule sets. 

3.4 AIoT Organization Scheme for autonomous IoT 
system composition 

AIoT organization scheme is a cooperation process of 
AIoT agents to compose AIoT application for executing 
assigned tasks by users. It is designed by extending 
Contract Net Protocol [19] especially for IoT device 
characteristics. The rest of this subsection explains the 
details of this scheme. 

i) Cooperation flow of AIoT organization scheme 

The sequence of cooperation flow is shown in Fig. 4. Fig. 
4 is an interaction flow of task assigned manager (e.g. AP-
Ag) to conclude a contract with a contractor (e.g. Mid-Ag) 
that executes the task. In this case, AP-Ag is the manager, 
and Mid-Ag is the contractor. However, the knowledge to 
realize this cooperation protocol is embedded in all the 
AIoT agent, thus both of AP-Ag and Mid-Ag can become 
manager to organize agents as described in Section 3.2. 

• Task announcement phase 

At the beginning of contract conclusion process, 
manager sends call for proposals message to the 
prospective contractors. If applicable, manager divide 
a task into multiple subtasks, and announces one of 
the subtasks. This phase is called task announcement. 
The message includes the task name, task abstract, 
eligibility to become a contractor, and the expiration 
time of the announced task. Manager can choose the 
scope of task announcement, such as point to point, 
multicast, and broadcast. 

• Bidding phase 

The contractor makes decision whether or not to bid 
on the announced task, based on the knowledge. This 
phase is called bidding. The contractor sends propose 
message to bid on the task, or sends refuse message 
not to bid on the task. 
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Fig. 5 Example of task knowledge description used in task announcement. 

 

In our proposal, the refuse message in bidding phase 
is introduced as an extension to conventional CNP, in 
order for manager agents to recognize the other 
agents’ conditions, such as number of prospective 
agents in agent workplace, which helps the manager 
agents in various ways. 

When Mid-Ag is a contractor, it is necessary to 
systematically examine the function and condition of 
the AIoT device by referring to the self-knowledge. 
We propose embodied self-recognition method, and 
extended self-recognition method to systematically 
evaluate the condition of AIoT device. The checking 
method of self-eligibility is explained later in this 
subsection. 

• Awarding phase 

It is possible for the manager to receive multiple 
proposals on announced task. After the expiration 
time written in the task announcement message, the 
manager chooses one of the contractors by examining 
the contents of the proposal messages sent from the 
prospective contractors. This phase is called awarding. 
The manager sends accept-proposal message to 
award the task to the contractor, and refuse-proposal 
message to the rest of the contractors which sent the 
propose messages. When the accept-proposal 
message is received by the contractor, contract is 
properly concluded between the manager and 
contractor. 

In our proposal, the reject-proposal message is 
introduced as an extension to the conventional CNP, 
in order for contractors to recognize the situation 
faster to move onto the other tasks. 

• Task execution phase 

The task awarded contractor executes the assigned 
task, and sends a report to the manager. This phase is 
called task execution. When the report is sent to the 
manager, the contract between manager and 
contractor is dissolved. 

The manager derives the result of the task based on the 
report. In case that the manager divides tasks into subtasks, 
the manager concludes contracts and receives the report of 
each task. The manager integrates the reports of subtasks, 
to derive the result of the task. 

By the contract conclusion scheme mentioned above, in 
AP layer, AP-Ag is able to organize agent organization 
which corresponds to service requirement. In Mid layer, 
Mid-Ag is able to organize Mid-Ags to deal with more 
versatile tasks. 

ii) Knowledge on task and its announcement 

The knowledge representation scheme and task description 
example is shown in Fig. 5. Full task knowledge 
representation scheme is shown in Fig. 26 of the appendix. 
AIoT architecture and middleware employs Object-
Attribute-Value (OAV) format to represent knowledge. 
The example of the filled out form of task knowledge 
description is remote sensing task which is trying to 
recruit an agentified autonomous unmanned aerial vehicle 
(UAV). The UAV is expected to have functions to fly to 
specified point, as well as to capture image using camera. 

addressee clause represents the agents to send task 
announcement message. Options are: point to point 
(AgentID), multicast (AgGroupID, SubNetworkID), or 
broadcast (*). The example employs broadcast for its task 
announcement scope. 

eligibilitySpecification represents the required eligibility of 
contractors. There are :and and :or attribute that represents 
the condition of eligibility. The value part (ObjectID and 
OAVElement) is a list of keywords and OAV clause which 
represent the function and condition. These values are 
matched with the description of contractor’s eligibility 
knowledge in bidding phase. In the example, :and 
attribute is employed for a set of cunctional eligibilities, 
which are flyTo, hover, captureImage functions are all 
required for the task. 

taskAbstraction clause represents the abstracted 
description of a task. The :id attribute and TaskID 
represents the ID of the task. The TaskAbstDescription 
represents the content of the task. It is expected to include 
some of the action primitives for contractor to examine the 
task content. The :action-flow attribute and action-flow 
object ID represents the user-defined description of the 
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task. In the contractor side, this description needs to be 
interpretable. Manager can send more information about 
abstracted task, e.g. the attributes associated with the 
action-flow object. 

bidSpecification represents the requirement of content 
expected in bidding message. The attribute and values 
need to be specified in this clause. In the example, the 
image quality is set as the bidding information. This 
information is used by manager to compare and decide the 
contractors to assign the task. This description also need to 
be interpretable by the contractors to include proper 
information in bidding message. Manager can also send 
more information about bid specification, e.g. attributes 
about image quality such as image size, frame rate, etc. 

expirationTime clause represents the time of expiration for 
contractors to bid on the task. We mainly employ Unix 
time to represent this time. 

iii) Embodied Self-Recognition Method 

As mentioned earlier, bidding phase is extended to 
systematically examine the function and condition of Mid-
Ag’s AIoT device. It is necessary to develop systematical 
method to validate the function and condition of IoT 
device, because of the following reasons: 

• To mitigate development complexity and burden: 
Heterogeneity of IoT device makes it complicated to 
develop validation procedures individually for each 
function of each device 

• To avoid runtime conflict: Since IoT device operates 
in dynamical physical environment, it is insufficient 
to refer to the static description about the IoT device  

Fig. 6 shows the overview of embodied self-recognition 
process in Mid-Ag. In order to evaluate the feasibility of 
announced task, it is necessary to monitor the conditions 
of resources based on the physical architecture and 
constraints. The embodied self-recognition process is as 
follows: 

Steps of Embodied Self-recognition Process 

Step 1. Matching: After receiving task announcement 
and requirement in the eligibility specification 
clause, Mid-Ag matches its own eligibility and lists 
the actions required to realize the eligibility. 

Step 2. Sensing: If the listed actions require physical 
actuation and/or sensing, the Mid-Ag refers to the 
conditions associated with the physical components 
which provide the listed actions. 

 

Fig. 6 AIoT Device’s Embodied Self-Recognition Method. 

 

Fig. 7 Top-level Class Definition of Self-Embodiment Knowledge 
Ontology for IoT Devices. 

Step 3. Validation: If the required physical parts are 
unavailable (e.g. occupied with other process, 
lacking resource, etc.), the Mid-Ag removes the 
unavailable action from the list. If the action 
availability still satisfies the required eligibility, 
Mid-Ag is able to bid on the announced task. 

In order to realize the embodied self-recognition of IoT 
device, we introduced self-embodiment ontology in EK 
(embodiment knowledge). The ontology defines the 
relationship among the IoT device’s eligibilities, actions, 
physical resources and the condition of the resources. The 
ontology systematically supports the matching, sensing 
and validation steps mentioned above. 

Fig. 7 shows the class definition of the embodiment 
ontology. There are 5 classes in the ontology, namely, 
Self-Embodiment, Self-Eligibility, Self-Action, Self-State, 
and Self-Composition. Top level class is the Self-
Embodiment, and other 4 classes are the subclasses. 

Self-Eligibility class has the keywords of eligibility as 
instances, which match the eligibility specification as 
shown in the example of Fig. 5. Self-Action class has the 
keywords of actions as instances which match the control 
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procedure name which is executed in the IoT device’s 
DCM (dedicated control module). Self-Composition class 
has the keywords of the IoT device’s composing parts, 
which physically realize the action instances under the 
Self-Action class, e.g. motors, battery, sensors, etc. Self-
State class has the keywords of conditions as instances, 
which are associated with actual variables in the DCM. 

The properties are representing the relationships among 
the classes, and these properties are utilized to derive the 
feasibility of the announced task. Fig. 8 is a description 
example of one of the rules to validate the eligibility 
instances. It functions as: “If, for a self-eligibility 
instance ?se, self-action instance(s) ?sa realizes self-
eligibility instance ?se, and self-state instance(s) ?ss does 
not disable self-action instance(s) ?sa, and self-action 
instance(s) ?sa uses self-composition instance(s) ?sc, and 
self-action instance(s) ?sa does not occupy self-
composition instance(s) ?sc, then set current feasibility of 
the self-eligibility instance ?se as true.” 

The disables property and occupies property are inserted 
and removed according to the sensing in the IoT device by 
Mid-Ag. The proposed ontology helps developers, 
administrators and agents to recognize self-recognition to 
properly bid on the task. 

In proposed AIoT architecture and middleware, the 
ontology and rules are represented in OAV description. 
Fig. 9 shows the self-embodiment knowledge 
representation scheme, and Fig. 10 shows the task 
description example. Full description of representation 
scheme is shown in Fig. 27.  

The description example is also about the agentified UAV 
with camera, matching with the target IoT device in the 
example of task description. The self-eligibility clause has 
the list of keywords representing the eligibilities, which 
matches the eligibilitySpecification in Fig. 5. The self-
action clause has the list of keywords representing the 
actions that realize the eligibilities. Individual clause of 
self-action has attributes of the actions as objects, and 
concrete values are associated with the objects IDs. 

The self-state clause has the keywords representing the 
state of physical component. In the example, it has battery 
status, and currentPlace. These are object IDs, and  

 

Fig. 9 Part of Self-Embodiment Knowledge Description Scheme that 
Represents the Self-Embodiment Ontology. 

 

Fig. 10 Example of Filled-out Form of Self-Embodiment Knowledge 
Description which Represents an agentified UAV Capable of Performing 

Remote Sensing Task (as in Fig.5). 

concrete values acquired from the IoT device through 
DCM, are associate with the IDs. 

The self-composition clause has the composing parts of the 
IoT device. In the example, the sensors and flight body are 
represented as the keywords. For example, flyTo action 
occupies the flightBody, but sense3AxisGeomagnetics  

 

 
Fig. 8 Description Example of Self-Eligibility Validation Rule, by Taking 

into Account the States of Corresponding Actions for the Eligibility. 
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Fig. 11 Overview of Extended Self-Recognition Method. 

 

Fig. 12 Re-organization process among a manager (Ag-AP),  
failed contractor (Mid-Ag), and prospective contractor(s) (Mid-Ag). 

action does not occupy the 3AxisGeomagneticsSensor, 
hence and it is not possible for multiple tasks to fly the 
UAV simultaneously, but possible for sensors because 
sensor value is sharable in parallel manner. 

iv) Extended Self-Recognition Method 

In addition to the embodied self-recognition method, we 
propose extended self-recognition method in order to 
systematically examine the conditions of conjugated 
agents of task. 

It is frequent for Mid-Ag to perform an action by using the 
other agent’s resources. It is necessary to develop 
systematical method to validate the function and condition 
of conjugated IoT devices, because of the following 
reasons: 

• To avoid runtime conflict in cooperation: 

When a Mid-Ag is fully available, it usually considers 
that it is available for task processing. However, if 
cooperating agent is occupied with other task, task 
execution fails because of the cooperating agents. 

• To avoid agent messaging overload:  

Without systematical support to examine conjugated 
agent’s condition, it is difficult to code the message 
flow for each action with the other agents. It induces 
agent message overload among agents, because 
without systematical method, there is no clear end to 
exchanging messages to monitor other agent’s 
condition. 

Fig. 11 shows the overview of extended self-recognition 
process in Mid-Ag. Extended self-recognition method is 
an extension of proposed embodied self-recognition 
method. In the embodied self-recognition method, when a 
Mid-Ag receives a task announcement, it lists the 
matching eligibilities and the realizing actions of the 
eligibilities. If an action utilizes other agent’s action, the 
Mid-Ag sends information-request message, and receives 
information-reply message to check the availability. The 
request and reply message are triggered when there are 
agent IDs with the referred agent’s object ID in the 
following clauses: 

• Self-Eligibility: Mid-Ag sends the referred agent the 
referred eligibility ID, and the asked agent replies a 
binary value representing the availability of the asked 
eligibility 

• Self-Action: Mid-Ag sends the referred agent the 
referred action ID, and the asked agent replies a 
binary value representing the availability of the asked 
action 

• Self-State: Mid-Ag sends the referred agent the 
referred state ID, and the asked agent replies the 
associated values to the asked state ID. 

• Self-Composition: Mid-Ag sends the referred agent 
the referred parts ID, and the asked agent replies the 
associated values to the asked parts ID. 

The relationship among AIoT agents which have the other 
agent’s ID in the embodiment knowledge with each other, 
is called conjugate relation. The agents in conjugate 
relation works tightly together to solve problems, and 
frequently share information with each other. Concrete 
example of the knowledge description on extended self-
recognition is given in Section 4.1 with the implemented 
AIoT device. 

3.5 Resilient Service Re-organization Scheme for IoT 
Applications 

The condition of task processing organization changes 
(lowering task processing speed, suspension of action, 
etc.) due to the fluctuation in the individual agents and IoT 
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devices’ conditions (CPU load, physical failure, etc.), as 
well as the condition of environment (change of weather, 
appearance of unexpected object, etc.). 

In order to deal with the changes to sustain the task as an 
organization, we propose the real-time replacement and 
tuning of agents in organization in AIoT re-organization 
scheme. To realize the re-organization of agent, manager 
needs to have CK (cooperation knowledge) to interpret the 
events and requests that arise in the agent organization, 
and to tune and replace the agents based on the 
interpretation. 

A manager needs to have various knowledge to control the 
contractors, concretely, the knowledge on error report 
interpretation, task description modification, agent 
selection, agent activation, agent termination, etc. 
Common CK on these actions are embedded into each 
AIoT agent participating the organization by AIoT 
middleware. 

Fig. 12 shows the proposed AIoT re-organization 
scheme’s flow which extends the AIoT agent organization 
scheme. In case that a contractor (e.g. Mid-Ag) fails at the 
assigned task, the agent sends the report to the manager 
(e.g. AP-Ag). The report includes the task ID, detected 
event and device conditions, etc. 

After receiving the report, the manager interprets the 
report, then starts AIoT organization of the reported failed 
task (subtask). If necessary, the task description is 
modified by the manager before starting the AIoT 
organization. 

If there is an alternative proposal among the propose 
messages which can handle the failed task, the manager 
terminates the failed Mid-Ag, and simultaneously award a 
task to the matched agent. If the manager cannot find the 
alternative agent, the organization is no longer able to 
continue the task. 

AIoT re-organization is not only about replacing agent, 
but also tuning of participating agents in organization, thus, 
the report is not necessarily a failure report, it can be the 
processing time report of task. If the processing time is 
considered insufficient, manager can either replace the 
agent with others, or change the parameters of the task. 

The re-organization protocol can be used both in AP-Ag 
and Mid-Ag, to organize agents in both in AP layer and  

 

Fig. 13 Agent and device configuration of logistics robot (UGV1) 
controlled by Mid-Ags. 

Mid layer. Concrete example of the re-organization and 
task modification is given in Section 4.3. 

4. Implementation and Experiment of AIoT 
Logistics Application for AIoT 
Architecture Evaluation 

In order to confirm the effectiveness of proposed AIoT 
architecture and AIoT middleware, we have implemented 
an autonomous logistics [20] application using simplified 
small robots with attached sensors. 

In this section, we confirm the effect of AIoT device 
agentification, AIoT organization and re-organization 
scheme to realize autonomic and resilient service 
provisioning in IoT system. The simplified logistics 
system is organized by agentified robots of logistics and 
an application agent. We also performed architecture-level 
analysis on the organized AIoT logistics system, based on 
the comparison with the conventional architecture-based 
implementation [5] of the equivalent logistics application. 

4.1 Configuration of Implemented Experimental 
System using AIoT Devices 

We have implemented the autonomous logistics 
application using repository-based multi-agent framework, 
ADIPS [21][22]. The AIoT agents are implemented as 
software agents of the ADIPS framework. Each ADIPS 
agent has a built-in inference engine, and runs as an  
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Fig. 14 EK of UGV1 in OAV form. 

independent computing process. The control knowledge is 
described in rules and embedded in the agents, so are the 
proposed 3 kinds of knowledge, PSK, EK and CK. The 
ADIPS agent has an interface function that interacts with a 
procedural program, and the function is used to realize 
agentification of IoT device. The rest of this subsection 
describes the implementation of AIoT agents and IoT 
devices in autonomous logistics application using ADIPS 
framework. 

Fig. 13 shows the configuration of logistics robot and its 
controlling agent. This robot consists of two IoT devices, 
which are SunSPOT (multiple functional sensor) [23] and 
LEGO Mindstorms NXT intelligent kit [24]. These two 
devices are controlled individually via different APIs. 
Logistics robot has several sensors and actuators, such as 
LED light, touch sensor, servomotors, etc. The control 
logic of each part of NXT is programmed in the agent’s 
knowledge as EK in if-then rule sets. SunSPOT also 
equips multiple functions, and the control logic is likewise 
programmed in the agent’s knowledge. The Mid-Ags 
controlling Lego Mindstorms NXT and SunSPOT have 
PSK to perform primitive actions to solve problem using 
control logic in EK, and CK for agent organization and re-
organization. 

Fig. 14 shows the partial EK description on UGV1 agent. 
As described in Section 3, as a Mid-Ag, UGV1 has self-
eligibility, self-action, self-state, and self-composition 
knowledge in part of EK. These attributes are referred by 
rule sets in CK, PSK, and EK. For example, as shown in 
self-eligibility clause in Fig. 14, UGV1 is able to detect  

 

Fig. 15 Information Request and Reply Message Format of Agent Status 
Information based on Proposed Knowledge Representation. 

obstacle, carry things from point to point, and show 
carrying status of UGV itself. Also, conjugated agents, 
such as NXT1 agent and SunSPOT1 agent, are referred in 
self-action, self-state, and self-composition clauses, 
because UGV1 physically consists of NXT1 and 
SunSPOT1. The composite property of UGV1 is 
represented by these references. 

Although the UGV1 physically does not have 
functionality to physically carry package from point to 
point, the agent emulates the package handover among 
UGVs in order to demonstrate autonomous logistics based 
on AIoT agents. Only the information of package is 
exchanged among agents. The UGV carrying a package 
lights the LED built in a SunSPOT, therefore it is possible 
to visually confirm the handover of a package in 
experiment. 

As shown in Fig. 15, using the agent ID and property ID, 
agents are able to exchange information request and reply 
message to monitor individual state as a UGV. Likewise, 
SunSPOT1 agent and NXT1 agent has self-embodiment 
knowledge representing the functions and states. The 
handover of package is realized by an information 
exchange among two logistics robots when two robots are 
physically near to each other. 

As shown in Fig. 15, using the agent name and property 
name, agents are able to exchange information request and 
reply message to monitor individual state as a UGV. 
Likewise, SunSPOT1 agent and NXT1 agent has self-
embodiment knowledge representing the functions and 
states. Since UGV1, NXT1 and SunSPOT1 agents are 
physically coupled together, NXT1 and SunSPOT1 agents 
are designed not to respond to task announcement message, 
because UGV1 agent represents these agent’s and controls 
them. 
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Fig. 16 Overview of autonomous logistics task for AIoT agents. 

 

 

Fig. 17 Description example of PSK representing logistics action of UGV, 
to carry a package to Place B from Place A after picking up a package 

from the source. 

 

Fig. 18 Description example of PSK representing logistics action of UGV 
to go back to the source of package after handing over a package at Place 

B. 

We have also introduced an UAV, Parrot AR. Drone [25] 
as a logistics robot, which is implemented as AIoT device 
through the proposed agentification. The agent of the 
UAV, UAV agent also has the knowledge on logistics 
application similar to the UGV agent. The difference 
between UGV and UAV agent is that UAV can fly to a 
specified point with carrying a package, so that UAV can 
carry package over an obstacle, unlike UGV. 

In the next section, we explain an autonomous logistics 
application using multiple AIoT devices, which are the 
UGV, and UAV mentioned above. 

4.2 Experiment 1: AIoT Organization of 
Autonomous Logistics Application among 
Heterogeneous Devices 

Using the AIoT agent and device implemented as in last 
subsection, experiment 1 examines the effect of following 
proposals: 

• S1) Agentification of IoT device to AIoT device 

• S2) AIoT Organization Scheme for Autonomic AIoT 
Application Composition 

We evaluate these proposals by a case study of 
autonomous logistics using unmanned vehicles. Following 
sub-subsections explains the given task to AG-Ag, the 
organization process of autonomous logistics application, 
the result of logistics experiments, and scalability analysis 
of the organization. 

i) Given Autonomous Logistics Task and AIoT 
Agents 

The task is to carry packages from the source to the 
destination. Fig. 16 shows the overview of autonomous 
logistics task for AIoT agents. Place A is a source of 
packages, where construction is ongoing and packages of 
timbers are continuously generated, with the package ID 
corresponding to the order of shipping packages. Place D 
is a destination of the packages. The distance between 
Place A-B, Place B-C, Place C-D are 180km, 60km, and 
180km, respectively. The distances are determined based 
on the typical physical constraints and characteristics of 
autonomous logistics vehicles [20]. 

The logistics task is divided into 3 tasks, i.e. task to carry 
package from Place A to Place B is task 1, Place B to 
Place C is task 2, and Place C to Place D is task 3. In each 
area, autonomous logistics robot handles the logistics of 
packages. The tasks are divided, because of the basic 
limitation of vehicles, such as fuel. In each area, at least 
one autonomous vehicle is required, hence three vehicles 
are required to accomplish the whole task. 

We introduce three UGVs which have function to carry 1 
package at a time from place to place. The UGVs are 
agentified and controlled by Mid-Ags. In addition to 
primitive control logic of UGV’s physical parts, as PSK, 
the following actions of UGVs are introduced: 

• Pickup a package 

• Go to specified point 

• Handover a package to the other logistics capable 
entity 

The start and ending of the task is commanded by an AP-
Ag of this autonomous logistics task, which is logistics 
agent. In each area, UGV picks up a package, goes to 
another point, and handover package to the other UGV. 
Each UGV repeats this flow of actions repeatedly. 

At Place A, UGV picks up a package from the source, 
hence it does not receive package from other agent. At 
Place D, UGV handover package to the destination, hence 
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it also does not need to handover package to the other 
UGV. The handover of package is taken place in the relay 
points of Place B and Place C. 

Description example of problem solving knowledge is 
shown in Fig. 17 and Fig. 18. The rule of Fig. 17 is to 
carry a package from place A to place B. In line 2, 
carry_AtoB is a rule name, and the clause before “-->” is 
IF part, and clauses after the symbol is the THEN part. 
The rule reads as follows: 

• IF my device (Mid-Ag’s device) is in Place A, not 
carrying object, and the area in charge is between 
Place A-B (line 3), 

• THEN send the command of carryAtoB(“PB”) to 
move the device to Place B through NXT1 agent and 
its DCM (line 5). 

The rule of Fig. 18 is to go back to Place A after handing 
over a package to other agent. The rule reads as follows: 

• IF “received” message is received from ?device (line 
3), and my device is at place B, not carrying object, 
and the area in charge is Place A-B (line4), 

• THEN send “lightoff” to SunSPOT1 agent to stop 
lighting LED, and then modify my status of carrying 
package to no, and send goTo(“PA”) command to 
NXT1 agent to go to Place A. 

PSK, as well as the other knowledge’s rule description is 
written in this OAV form based rule language provided by 
ADIPS framework. The explained PSK on logistics is also 
embedded in UAV agent. 

The knowledge description of task1 is shown in Fig. 19. 
The eligibilitySpecificaiton clause has the list of keywords 
representing the object carrying eligibilities, and the 
physical area in charge as “Place A-B” which means a 
logistics robot is in Place A-B and authorized to carry 
packages in the area. The taskAbstraction clause has a 
reference to logistics action flow, which is in lgs-action-
flow clause from line 10. The lgs-action-flow clause is also 
sent to the prospective contractors. The bidSpecification 
clause has the required information from prospective 
contractors in bidding message, which are loadWeight and 
fuelConsumption. ADIPS agents can use this form of task 
description in the agent program file, and refer to these 
object IDs and values in the rules. The organization of 
autonomous logistics application is demonstrated and 
evaluated in the next sub-subsection. 

 

Fig. 19 Knowledge description of autonomous logistics task (task1) in 
Logistics agent (AP-Ag), a part. 

 

Fig. 20 Agent and device configuration of autonomous logistics 
application and contract conclusion result of task1, 2 and 3. 

 

ii) Autonomic Organization of AIoT Logistics 
Application and Configuration of AIoT devices 

In order to evaluate the feasibility of AIoT organization 
scheme, we performed the autonmic organization of AIoT 
logistics application logistics task explainer, and executed 
the autonomous logistics task among AIoT devices. The 
experiment configuration and contract conclusion result 
are shown in Fig. 20. We placed UGV1 in Place A-B, 
UGV2 and UAV in Place B-C, and UGV3 in Place C-D. 
The Mid-Ags of logistics robots are able to communicate 
through network via messages. UGV and UAV both have 
the ability to carry packages, and UAV has the advantage 
to carry things above obstacles. Logistics agent is an 
application agent that manages the task of carrying 
packages from Place A to D periodically. 
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Fig. 21 Measured message flow and processing time measurement point 
of AIoT organization process to organize AIoT logistics application. 

 
With these agents mentioned above, we started logistics 
experiment by the AIoT organization initiated by Logistics 
agent. We have measured the message flow among agents 
in AIoT organization, and measured the flow and 
processing time measured point as in Fig. 21. Logistics 
agent performs AIoT organization scheme three times, for 
task1, task2 and task3. 

In the organization of task1, UGV1 is selected as a 
contractor. As soon as the task is awarded to UGV1, it 
starts carrying a package from Place A. Logistics agent 
makes the logistics start in Place A-B, because there is low 
possibility that UGV1 arrives at Place B before the 
selection of logistics entity in Place B-C. The other 
logistics robot also starts the logistics task right after the 
task assignment. 

In the organization of task2, UGV2 is selected by 
Logistics agent. The selection among bidding proposal is 
dependent on the knowledge embedded in an Logistics 
agent. In this case, Logistics agent chooses UGV2 because 
it consumes less fuel for transportation. UGV3 is also 
selected like UGV1. 

Fig. 22 shows the measured result of organized AIoT 
logistics application, with fifty contractors. Horizontal axis 
represents package IDs, which corresponds to the order of 
shipment from Place A. Vertical axis represents the order  

 

 

Fig. 22 The result of autonomous logistics, the order of package arrival. 

of arrival at Place D. Therefore, ideal result without error 
is that all of the package IDs match the number of the 
order of arrival. As the result of logistics experiment using 
AIoT devices mentioned above, the degree of irregularity 
(DoI) was 0, as calculated below: 

 

where N = 100 which is the number of packages, OA is 
the order of arrivals, and OS is the order of shipment, i is 
the package ID. OAi and OSi are the order of arrival of 
package i, and the order of shipment of package i, 
respectively. 

From this experimental result, we have confirmed the 
AIoT architecture based control’s feasibility of AIoT 
logistics in terms of the adequacy and accuracy. This is an 
effect of introduced PSK, as well as the agentification of 
IoT devices. 

It is also confirmed that our proposal cleared the problem 
of the autonomic organization of AIoT application based 
on various requirements. Because of the agentification of 
logistics robots (Mid-Ag), as well as introducing Logistics 
agents (AP-Ag) that organizes the logistics application, 
heterogeneous AIoT devices are capable to cooperate 
together by organizing themselves based on AIoT 
organization scheme to accomplish a task in autonomic 
manner. 
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Fig. 23 Time Length of AIoT Application Organization (average of 1000-

times trial runs.) 

iii) Processing Time of AIoT Organization with 
increasing number of AIoT devices 

We have measured the processing time of AIoT 
organization, by increasing the number of contractor in 
emulation. In this measurement, we have used the logistics 
robots in emulation, in which AIoT agents are not 
physically connected to IoT devices, but the command and 
response from IoT device are emulated. In the experiments, 
the agent workplace and the agents are running on a single 
computer (CPU: Intel Core-i7 4GHz, Memory: 16GB, OS: 
macOS Sierra). The result of the simulation is shown in 
Fig. 23. Starting with four contractors (the same number 
of contractor in the logistics experiment above), we 
increased the number of contractors up to fifty. In each 
number of contractors, we have executed the AIoT 
organization one thousand times, and calculated the 
average time of organization process, which is the average 
time of organization process (ATOP). 

In Fig. 23, horizontal axis represents the number of 
contractors participating in the AIoT organization, and 
vertical axis represents the average processing time of 
organization process as calculated below: 

 

where N = 1000 which is the number of trials, tfi is the 
ending time of the organization as in Fig. 21, and tsi is the 
starting time of the organization. 

From this experimental result, we have confirmed that 
even there are dozens of prospective contractors, the  

 

Fig. 24 Experimental result of AIoT re-organization scheme to sustain 
logistics application among UGVs and a UAV controlled by Mid-Ags. 

processing time of AIoT organization is in the order of a 
few seconds. It is fast enough for logistics application, 
because it is far less than the load time of carrying 
package in each area, hence the processing lag of AIoT 
organization does not disturb any interactions in the 
logistics application. Likewise, since the organization, 
service composition process are conventionally performed 
manually by an administrator, the order of seconds are 
considerably short. 

4.3 Experiment 2: Resilient Adaptation in 
Autonomous Logistics Application 

Experiment 2 examines the resilient adaptation capability 
of AIoT agent organization toward environmental change. 
In this experiment, among the proposed knowledge of 
AIoT agent, we focus on CK (cooperation knowledge) 
which is commonly introduced by proposed middleware. 
Therefore, the evaluated proposals is: 

• S3) AIoT Re-organization scheme for Resilient AIoT 
Application Operation 

In order to sustain the given task to AIoT agent 
organization, the organization needs to re-organize 
(replace agent(s), re-configure agent(s)) the member agent 
to address the problem caused by situational changes. 

The task of this experiment is the same as experiment 1. It 
is to carry packages from Place A to Place D, and the path 
is divided into three areas (Place A-B, Place B-C, Place C-
D), and there are logistics robots in each area. 

As shown in Fig. 24, the difference between experiment 1 
and 2 is the appeared obstacle in Place B-C. UGV2 
receives a package at Place B and tries to go to Place C, 
however an obstacle appears between Place B and C to 
block UGV2. As described in Section 4.1, UGV2 has 
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function to detect obstacle using its sensor. Fig. 24 also 
shows the experimental result of AIoT re-organization 
against the environmental change. As the result, through 
the AIoT re-organization scheme, task2 is awarded to 
UAV1 agent instead of UGV2 agent. 

The measured message flow of the AIoT re-organization is 
shown in Fig. 25. After detecting an obstacle by the 
sensing result, UGV2 makes decision that it is no longer 
able to carry packages in the area Place B-C. Following 
the proposed AIoT re-organization scheme, UGV2 agent 
generates and sends a report to Logistics agent (manager). 
The report includes the abstracted task information, and 
UGV2’s information about its self-state, as well as the 
detected event that there is a blocking obstacle in Place B-
C. 

After the report arrives the Logistics agent (manger), the 
Logistics agent starts re-organization process. First 
process is the modification of logistics task eligibility 
requirement to carry package over the detected blocking 
obstacle. The modification is to add “flyTo” attribute in 
eligibility requirement clause. Based on the proposal, 
Logistics agent and other agents are exchanging messages 
(task announcement, bidding, and awarding) to decide 
next agent to handle logistics task in Place B-C area. 

UAV1 agent in Place B-C has matching eligibility to 
handle modified task, and the task is awarded to UAV1 
agent instead of the failed UGV2 agent. The task is 
awarded to UAV1 agent, and as the awarding decision is 
finalized in Logistics agent, the task termination message 
is sent to UGV2 agent. We have confirmed that UAV1 
agent starts working on the logistics task to pick up, 
handover package with one another to participate the 
autonomous logistics task. 

It is confirmed that the organized AIoT logistics 
application detected, interpreted and dealt with the 
environmental change to resiliently sustain the assigned 
logistics task. From the result of this experiment, it is 
confirmed that the AIoT devices are able to re-organize 
themselves by the proposed AIoT re-organization scheme 
in order to resiliently sustain services based on arising 
events. Therefore, it is confirmed that our proposal 
realized the resilience in IoT system service provisioning, 
and cleared the problem of tuning and replacing 
components in IoT system based on various requirements. 

4.4 Evaluation of architecture-level flexibility of 
AIoT architecture 

Since IoT system deals with heterogeneous multiple 
devices as well as multiple users, it generally faces various  

 

Fig. 25 Measured Message Flow of AIoT Re-organization Scheme to 
Sustain AIoT Logistics Application towards the Appearance of Obstacle 

in Task2. 

 
changes, such as user requirement change, system 
condition change, and environmental condition change. 

The proposed AIoT organization and re-organization 
capability provides autonomous construction and 
sustainable adaptation. These capabilities mitigate the 
administrative burden of IoT system, because in the 
conventional method, organization and re-organization 
performed manually. Furthermore, the AIoT architecture 
effectively separates the individually modifiable 
components as AIoT devices. It helps the modification of 
individual device’s function in case that re-organization is 
not sufficient. 

In order to examine the reduction of administrative cost, 
we have performed the architecture-level modifiability 
analysis (ALMA) [26]. We view the organized AIoT 
autonomous logistics application as an IoT system, and 
compare it with conventional architecture-based logistics 
application using the existing development middleware [7], 
using Node.js, REST, and HTTP technologies. The 
conventional system’s description of components, and the 
system configuration are shown in Fig. 28 and Fig. 29. 
The component description of AIoT autonomous logistics 
application is shown in Fig. 30. 

Since the task-oriented organization is originally proposed 
and provided in AIoT architecture and middleware, the 
conventional architecture based logistics application does 
not support device organization nor re-organization. Each 
process controlling UGV has problem solving procedures 
in the Node.js codes. 
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Table 1: Evaluation Results of Administrative Effort and Ease of Modification based on Architecture-level Comparison between AIoT Architecture based 
and Conventional Architecture based Autonomous Logistics Application 

System Requirement 
Change Scenario ID Scenario Description 

Conventional Architecture 
based Logistics Application 

AIoT Architecture based 
Logistics Application 

Component 
Modification 

Ratio 

LoC to 
modify 

Component 
Modification 

Ratio 

LoC to 
modify 

Scenario 1 
Replacement of single logistics robot in an area with the 
same logistics robot, in order to deal with the partial 
failure in a hardware or software.  

0 out of 54 =  
0 % 

0 out of 
5786 LoC 

0 out of 17 = 
 0 % 

0 out of 
4341 LoC 

Scenario 2 

Replacement of single logistics robot in an area with the 
heterogeneous logistics robot (e.g. replacing UGV with 
UAV), in order to deal with the environmental change in 
an area. 

9 out of 54 =  
16 %  

202 out of 
5786 LoC 

0 out of 17 = 
 0 % 

0 out of 
4341 LoC 

Scenario 3 
Addition of heterogeneous logistics robot in each area, in 
order to accelerate the speed of logistics. 
 

15 out of 54 =  
27 %  

1012 out 
of 5786 

LoC 

0 out of 17 =  
0 % 

0 out of 
4341 LoC 

Scenario 4 
Modification of logistics strategy to allow the 
accumulation of package in certain storage. 
 

27 out of 54 = 
 50 %  

1707 out 
of 5786 

LoC 

1 out of 17 =  
6 % 

508 out of 
4341 LoC 

Scenario 5 
Hardware upgrade of all logistics robot to increase the 
speed and torque of locomotion. 
 

15 out of 54 =  
27 %  

645 out of 
5786 LoC 

6 out of 17 =  
35 % 

302 out of 
4341 LoC 

Scenario 6 
Hardware upgrade of all logistics robots to increase load 
and carry multiple packages at one time. 
 

27 out of 54 =  
50 %  

2184 out 
of 5786 

LoC 

6 out of 17 =  
35 % 

990 out of 
4341 LoC 

 
 
Based on the ALMA method, we performed following 
five steps to compare AIoT architecture and conventional 
architecture.  

Architecture-level Modifiability Analysis Steps 

Step 1. Determine evaluation goal: We set the goal of 
this comparison as the evaluation of the ease of 
modification in case of design requirement changes. 

Step 2. Describe software architecture: If the 
modification of component is necessary in IoT 
system, the difficulty of modification is quantifiably 
measured by examining the number of modified 
components, and the lines of codes (LoC) to be 
modified. We described component configuration 
diagram to observe the effect of system modification.  

Step 3. Elicit scenarios: Based on the instruction in 
ALMA method, multiple scenarios are elicited in the 
logistics scenario that may require re-configuration, 
replacement, or modification of system components. 

Step 4. Evaluate architecture using scenarios: In each 
scenario, modified (LoC) and number of 
components (NoC) are measured. 

Step 5. Interpret results: To achieve the goal of 
comparison, the comprehensive consideration of 
measured results is performed. 

Table 1 shows the result of the evaluation result based on 
the comparison between AIoT architecture-based and 
conventional architecture-based logistics system. We have 
elicited six of requirement change scenarios based on the 
policy of ALMA method. 

In scenario 1, both systems do not need any modification 
since it is simply a replacement of the same component. In 
scenario 2, in case of AIoT architecture based system, as 
long as newly introduced robot is properly agentified and 
share PSK and CK, there is no need for the existing robots 
to be modified. Unlike the AIoT case, conventional 
architecture based system require changes in 
communicator parts of the existing robots to adjust the 
communication with the replaced robot. 

Scenario 3 requires conventional system to change the 
communicator part, as well as the other communication 
related modules that manage package information. AIoT 
based system does not need any modification as long as 
the newly added device is properly agentified and share 
the cooperation knowledge as provided by the AIoT 
middleware. 
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Scenario 4 illustrates the effect of introducing AIoT 
architecture. This scenario finally requires modification in 
AIoT based system, however the modification is within 
Logistics agent (AP-Ag) to command agents in 
organization because AIoT architecture separates the 
control logic in EK and PSK in Mid-Ag. On the other 
hand, conventional system requires number of components 
to be modified. 

Scenario 5 and 6 also illustrates the effect of introducing 
AIoT architecture. In AIoT architecture, there is no need 
for Logistics agent (AP-Ag) to be modified, but UGV 
agents and NXT agents because of AIoT architecture’s 
layered structure of AP layer and Mid layer. In real world, 
UGV agent can be considered as driver agent, where NXT 
agent is a vehicle controlling agent. Conventional 
architecture requires the comprehensive modification 
because of ripple effect stem from the unseparated 
architecture. 

AIoT architecture has an advantage in all of the modified 
LoC in each scenario. This is an effect of separating 
functionality of autonomous logistics application into AP-
Ag and Mid-Ag which avoid the ripple effect in 
modification. Likewise, AIoT architecture has advantage 
in NoC change rate to be modified as well, except scenario 
5. Scenario 5 requires 2 components’ modification in each 
UGV, which is a relatively large number of modified 
components, and the conventional architecture did not 
cause ripple effect. Because the scenario did not require 
modification in components that manage packages, which 
results in narrower focus of modification. However, in 
terms of LoC, AIoT architecture has advantage in scenario 
5 as well. 

The results of the architecture-level comparison between 
AIoT architecture based logistics application, and the 
conventional architecture based logistics application 
reveals the architectural flexibility and resilience of AIoT 
application. It is confirmed that, in terms of design and 
implementation as well, AIoT architecture mitigates the 
administrative burden on organizing and re-organizing IoT 
systems, because of the effectively structured architecture 
of AIoT architecture. 

5. Conclusion  

In this paper, we proposed agent-based IoT architecture to 
and its middleware to realize autonomic and resilient 
service provisioning in IoT systems. The target problems 
are autonomic composition of IoT systems by taking into 
account the user’s requirement and diverse IoT device 
functions, because composing IoT system involves great 
burden on managing heterogeneous IoT devices that 

require different control logics. Since IoT systems are 
running in physical, real world, the change of environment 
happens frequently. Therefore, we also targeted the tuning 
and replacement of IoT system components to deal with 
systematical, and environmental change. 

To address these problems, we proposed AIoT (Agent-
based IoT) architecture of application, and agentification 
of IoT devices, as well as the autonomic AIoT 
organization, and re-organization scheme to autonomously 
compose and operate application using the agentified IoT 
devices. 

We have evaluated the effect of these proposals, in two of 
autonomous logistics experiments, as well as the 
architecture-level modifiability analysis. The results show 
that our proposed AIoT architecture and middleware 
address the target problems, and help developers and users 
realize autonomic and resilient service provisioning in the 
Internet of Things paradigm. 

Our future work is to apply the AIoT architecture to 
diverse fields of application, such as home automation, 
energy management, smart agriculture, etc. We also plan 
to extend the functionality of AIoT middleware to 
comprehensively support AIoT application development, 
such as semi-automatic knowledge description generation 
of AIoT devices. 
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Appendix 1 Knowledge Description Scheme of Task 
Knowledge and Embodiment Knowledge 

Fig. 26 shows the description scheme of task knowledge 
for task manager in AIoT organization. The description is 
in OAV (Object-Attribute-Value) format. Fig. 26 is a full 
description of the task description in Fig. 5. 
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Fig. 26 Description scheme of task knowledge for task manager in AIoT 
organization. 

Fig. 27 shows the description scheme of embodiment 
knowledge for Mid-Ags in AIoT organization scheme. 
The description is in OAV (Object-Attribute-Value) 
format. Fig. 27  is a full description of the task description 
in Fig. 9. 

 

Fig. 27 Description scheme of embodiment knowledge in Mid-Ag for 
systematical change of its AIoT device status. 

Appendix 2 Component Descriptions of AIoT 
Architecture-based Autonomous Logistics 
Application and Conventional Architecture-based 
Logistics Application 

 

Fig. 28. Component description of conventional (Web of Things) 
architecture-based process to control a UGV evaluated in Section 4.4. 
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Fig. 29.  System configuration of conventional architecture-based 
logistics application. 

In autonomous logistics experiment in Section 4, we have 
performed a comparison between proposed AIoT 
architecture based logistics application, and conventional 
architecture based logistics application. Fig. 28 shows the 
component description of WoT (Web of Things) process 
controlling a UGV in logistics application. Each rectangle 
represents individual component and corresponding file 
names. The lines represent the references among 
components in code. The system configuration of 
conventional architecture based logistics application is 
shown in Fig. 29. On each UGV, WoT process in Fig. 28 
is running. These processes communicate via TCP/IP 
network using web-based protocols. 

 

Fig. 30.  Component description of AIoT architecture based autonomous 
logistics application evaluated in Section 4.4. 

Fig. 30 shows the component description of AIoT 
architecture based autonomous logistics application. The 
files with the name ending with .dash are control 
knowledge description of ADIPS agents. The 
commonKR.rset file has sets of common rules and 
vocabularies among the agents. The files with the name 
ending with .java are control module processes. 
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