
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

36

Manuscript received June 5, 2017
Manuscript revised June 20, 2017

Multiagent-based Autonomic and Resilient Service Provisioning
Architecture for the Internet of Things

Takumi Kato†, ††, Hideyuki Takahashi†, ††, Tetsuo Kinoshita†, ††

†Graduate School of Information Sciences (GSIS), Tohoku University, Sendai, Japan
††Research Institute of Electrical Communication (RIEC), Tohoku University, Sendai, Japan

Summary
This paper proposes the Agent-based Internet of Things (AIoT)
architecture and AIoT middleware to realize autonomic and
resilient service provisioning in IoT systems. As a massive
number of devices are becoming part of the Internet, it is highly
difficult to organize IoT devices as a system to provide
appropriate services in our lives. It is difficult because the IoT
devices are heterogeneous, and the situation often changes
overtime which requires complicated reconfigurations of IoT
systems. Our AIoT middleware provides IoT devices with the
functionality of autonomic and resilient service provisioning in
IoT systems. In this paper, we propose AIoT architecture of IoT
application, AIoT organization and re-organization scheme to
compose and operate IoT application according to user
requirement and environmental condition. As the evaluation, we
have implemented an autonomous logistics application with
simplified logistics robots using proposed AIoT middleware, and
conducted logistics experiments and scalability measurement
simulation, to evaluate the effect of introducing AIoT
architecture and AIoT middleware. We have also performed an
architectural flexibility analysis on our architecture to examine
further feasibility of proposals. The results of evaluations show
the evidence of the realized capability of autonomic and resilient
service provisioning, as well as the architectural flexibility of our
middleware.

Key words:
Multiagent System, Agent-based Internet of Things (AIoT),
Distributed System, Architecture, Autonomic System,
Autonomous System Construction, Reorganization.

1. Introduction

Our daily lives involve a number of various computational
devices connected to the Internet, e.g. smart phones,
personal computers, home information appliances,
building components, and even the system components of
power grid. As such devices gain the functionality to
connect to the Internet based on their controlling software,
there are diverse services that attempts to utilize them to
benefit our lives. This paradigm is called the “Internet of
Things (IoT),” in which heterogeneous devices are utilized
by series of software through the networks. The challenge
that the number of IoT related studies share, is the
effective utilization of several and diverse computational

entities that operate in a physical space to realize diverse
services for people.

As the number of IoT devices and its services grows, it
becomes a tremendous burden for users and developers to
organize individual IoT devices based on the requirements
of services. In order to mitigate the burden on realizing
and operating IoT system, there are number of
investigations on automatic, autonomous and flexible
operation of IoT devices [1][2]. The area of the
investigations is diverse, e.g. home automation, health care,
building security services, transportation, market
administration, energy distribution, logistics,
manufacturing, and so on.

In the common sense among the prior studies, IoT device
is a networked computational device which has sensing
and/or actuation function(s) in physical space. IoT system
is a particular set of IoT devices which control each
device’s action to provide services to fulfill the
requirement of people, in which service is a series of
actions taken by the IoT devices that collectively realize
particular output to people, such as provisioning of desired
data (e.g. queried data from sensor network, collected data
from participatory sensing), and real-world operation by
physical actuation (e.g. appliance control in home
automation, manufacturing actions in factory automation).

Although there are investigations on smart functionality of
IoT devices, it is still managed manually to compose IoT
systems by selecting and configuring series of IoT devices
based on the demand of people who introduces the desired
IoT system. As the diversity of IoT devices and the
provisioning services grow, the burden on realizing IoT
system increases exponentially. Therefore, we focus on
the autonomic composition of IoT system based on user
requirements to reduce the burden of humans on realizing
IoT systems.

In addition, since IoT system operates in physical
environment, adjustment and reconfiguration of the
system are often required, which also complicate the IoT
system operation. It is even greater burden for users to re-
configure the IoT systems, which is also performed

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

37

manually in the existing investigations. Therefore it is
expected for IoT system to be resilient to sustain the
services against various changes in environment, system
and user situation.

To address the problem, we focus on autonomic and
resilient service provisioning in IoT systems, and propose
the Agent-based Internet of Things (AIoT) architecture
that realizes autonomic organization of IoT systems, as
well as resilient operation of the organized IoT system by
taking advantage of agents. We also propose the AIoT
middleware that provides common runtime platform and
agent template for IoT systems to organize and operate in
such manner.

By realizing the autonomic and resilient service
provisioning, IoT system becomes able to autonomously
compose IoT application to provide desired services, (e.g.,
combining multiple robots to perform housework in
ambient assisted living environment [3]). IoT system also
becomes able to resiliently replace and tune the IoT
devices, e.g. replacing the housework robot in case of
failure, or to change the parameter to perform task faster,
etc.

The rest of this paper is organized as follows: Section 2
describes the related work and the problems on composing
and operating services in IoT systems. Section 3 explains
the proposed AIoT architecture and AIoT middleware to
resolve the problems. Section 4 shows the implementation
and experiments to show the realized autonomic and
resilient service provisioning capability, as well as the
architectural analysis on the proposed architecture. We
conclude this paper in Section 5.

2. Related Work

In order to examine the underlying problem in the attempt
of realizing and operating IoT systems for service
provisioning, this section looks into the existing works, to
derive the remaining and underlying problem of the
existing works on service provisioning.

2.1 Service Provisioning based on Automatic Mash-
up and Enabling Architecture of IoT devices

To utilize heterogeneous IoT devices together, Device
Ensemble System [4] investigates a method to enable
sensors and smart home appliances to work together by
connecting them into a centralized webserver, and control
these devices based on the requests sent from a
smartphone of a user. There is also a study on organizing
IoT devices registered in REST based web servers, called
the Web of Things (WoT) [5][6][7]. WoT approach offers
an abstraction of IoT device and enables heterogeneous

IoT devices to be utilized by web services. The abstraction
makes it easier for a user to manually construct a service
by interconnecting the abstracted functions of IoT devices.

2.2 Agent-based Approach for Autonomous Service
Provisioning in IoT systems

The conventional approaches require constant re-
configurations whenever a system faces change of user
requirement, partial failure, change of situation, etc.
Therefore the prior survey [2][8] points out that the
characteristics of intelligent agents are well suited for the
utilization of IoT devices. In order to sustain the services,
there are investigations on introducing agent technologies
to develop IoT devices into Smart Objects (SO) [9]. Smart
object provides context-awareness, and adaptability to
perform and adjust device’s action as an individual, using
the given knowledge to the agent. By introducing the
agent technology, and knowledge on the context of user
and situated environment, SO provides a capability to
sustain service by adjusting its actions based on contents.

As the application of SO, there is a centralized approach
for device discovery and orchestration in home and
building automation [10][11]. They utilize a single
knowledge base shared among SOs. The cooperation
among devices is organized manually by a user through
the web page of user interface. The agents in the system
monitor the state of each appliance, and execute actions
based on the user requirements.

Agent-based decentralized approach of IoT devices is
proposed as various middleware in the existing works.
UBIWARE [12], UBIROAD [13] and S-APL [14] provide
semantic knowledge representation and reasoning
capability to the utilize functions of IoT devices in situated
environment. Impala [15], Smart Messages [16], ActorNet
[17], Agilla [18] are introducing intelligent and mobile
agents to manage sensor network to sustain sensing
service by adapting the system towards the partial failure
or the status change of the system component. These
investigations of middleware demonstrate the IoT device’s
capability to adapt toward other component’s failure, and
situational changes in the IoT systems. Although these
studies on middleware only deals with particular type of
IoT application, i.e. sensor networks, not including various
actuators.

2.3 Underlying Problem and Our Approach

The existing studies mentioned above are:

• Making individual IoT devices unified component for
users to manually and easily select and configure IoT
system

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

38

• Making individual IoT devices smarter by introducing
intelligent agents to sustain service provisioning as an
individual device or as a particular application with
homogeneous application

These two points above are separately solved, because it is
difficult for users to manually compose IoT system if the
IoT devices are autonomous and dynamical. On the other
hand, it is difficult to compose IoT system using
autonomous IoT devices because of the heterogeneity and
dynamical nature of the introduced agents.

Therefore, despite of the number of investigations
explained above, it is still a remaining problem to
effectively organize the functions of IoT devices to
compose service as IoT system, as well as to re-configure
the organization of heterogeneous IoT devices towards
partial failure and situational change. Therefore, the
composition of IoT system is performed manually.The
remaining problem of the existing works can be set as
follows:

• Problem 1: Autonomic organization of IoT system by
taking into account the user’s requirement and diverse
IoT device functionalities

• Problem 2: Resilient tuning and replacement of
system components to deal with users, systematical,
and environmental change

In order to deal with these problems mentioned above, we
propose AIoT architecture and AIoT middleware to
systematically help users to build IoT system based on the
proposals.

3. Autonomic and Resilient Service
Provisioning based on Agent-based
Internet of Things Architecture

We propose Agent-based IoT (AIoT) architecture, and
AIoT middleware to realize autonomic and resilient
service provisioning in IoT systems. Following
subsections describe the details of proposal.

3.1 Requirements for solving problems in existing
works

In the paradigm of IoT, there are pervasive and
heterogeneous devices. It is difficult (time consuming,
requiring highly cognitive processing) to monitor the
condition and function of each IoT device, as well as to
select and configure the devices’ functions to compose the
desired IoT application. Since it is necessary to consider

the operational status of each IoT device. It is even more
complicated to re-configure, replace, and upgrade these
IoT devices to deal with the change in the user
requirement and system's operational environment.

Based on the problem and these characteristics of IoT
devices, we have derived the requirement of the IoT
system to address the problems mentioned previously.
Following paragraphs are the explanation of the
functionality requirements.

• Requirement 1. Transparent control of IoT devices:
Transparent control is crucial for the IoT system in
service provisioning, because the IoT devices are
heterogeneous, and it is difficult to monitor the
heterogeneous devices in IoT systems. Generally, the
APIs, functionality, physical constraints, and the
setting procedures of the IoT devices vary from one
another. Given the current diversity of IoT devices
(e.g. static small sensors, home automation actuators,
autonomous robots, etc.), autonomic organization of
IoT systems cannot be realized without transparent
control scheme through homogeneous interfaces to
IoT devices.

• Requirement 2. Autonomous selection and control of
IoT devices according to diverse user requirements:
Diversity of user requirement is one of the troubling
characteristics of IoT system service provisioning,
because IoT devices provide multiple functions, and
the sharing devices for multiple purpose generally
result in conflicting controls. User requirement is a set
of IoT system services that users desire from the
system. Since the diversity of IoT device is high, the
requirement also varies, e.g. “lower the temperature of
this room,” “I want to carry this package there,” “I
want to assemble this furniture,” etc. In the
environment where IoT devices are pervasive, it is
impractical for IoT system to manually configure each
function for each requirement from different users.
Given the characteristics of IoT systems, in order to
realize the autonomic organization of IoT systems, it
is necessary that individual IoT devices are capable to
select, and execute the actions according to the user
requirement and their operational conditions. The user
requirement needs to be satisfiable by the set of
available services.

• Requirement 3. Sustainable service provisioning
against changes: Since IoT devices are running in
physical space, it is exposed to various changes:
environmental condition change, device condition
change, as well as user situational change. In order to
sustain the service provisioning, IoT system often
requires re-configuration. Given the complexity of

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

39

IoT system, it is required to resiliently tune and re-
configure the IoT system in autonomous manner. For
example, replacing networked information home
appliance (e.g. smart lights, thermostat sensor, etc.) in
case of breakdown. Other than replacement, tuning of
IoT device performance is also a re-configuration,
such as adjusting air conditioner’s temperature setting
in response to power consumption saving demand.

In the next subsection, we propose the detail of AIoT
approach to fulfill the requirement to solve the underlying
problem in the IoT paradigm.

3.2 AIoT Architecture: Multiagent-based Autonomic
and Resilient Service Provisioning Architecture for
the Internet of Things

i) Essence of Proposed Solutions

In order to satisfy the requirement 1, 2, and 3, we have
proposed 3 solutions as follows:

• S1. AIoT architecture of application and
Agentification of IoT device: In order to realize
transparent control of IoT devices, Req.1, we propose
AIoT architecture of IoT applications, which is
composed of AIoT devices. The AIoT device is
realized through the design and implementation
process called agentification. With the commonly
agentified IoT device, heterogeneous IoT devices can
be controlled in homogeneous manner. We introduce
the AIoT device, and the manager agent of these
devices which realize the desired application by users.
Individual AIoT devices provide problem solving
capabilities.

• S2. AIoT Organization Scheme for Autonomic AIoT
Application Composition According to User
Requirement: Since IoT devices are controlled by
intelligent agents by S1, it is able to embed
knowledge to autonomously select and execute IoT
device. By taking advantage of AIoT devices’
capability, which are controlled by intelligent agents,
we propose a novel concept of AIoT organization to
realize IoT-oriented device organization. We propose
AIoT agent organization scheme to compose AIoT
application, by systematic interactions among agents
to select and configure AIoT devices, to fulfill Req. 2.

• S3. AIoT Re-organization scheme for Resilient AIoT
Application Operation: In order to resiliently operate

• Fig. 1 Overview of AIoT architecture of IoT
applications.

• AIoT application against various changes to fulfill
Req. 3, we propose AIoT re-organization scheme to
tune and replace the AIoT devices as the extension of
S2. The instance of re-organization is replacement, re-
configuration, addition and removal of devices, etc.

Next sub-subsection explains the overview of S1, S2 and
S3.

ii) Overview of Proposed AIoT Architecture

We envision the agent-based approach to resolve the
existing works’ problems. Given the characteristics of IoT
systems, intelligent agent equips the desirable
characteristics to deal with the existing difficulties, such as
autonomy, flexibility, and sociality. By taking advantage
of intelligent agents, we envision the AIoT architecture of
IoT applications, which is realized by series of agents that
manage and operate IoT devices based on user
requirement, and its environment. First, we explain the
overall view of AIoT architecture and its components, and
then describe the autonomic AIoT application composition
and resilient operation scheme.

Fig. 1 illustrates the overview of AIoT architecture and
applications. The agents that control IoT devices are
Middleware Agents (Mid-Ag), and the device controlled
by Mid-Ag is called AIoT device. The AIoT devices are
organized by Application agents (AP-Ag), which have
task descriptions to realize services. These agents compose
AIoT application. There are 2 layers of agents, namely,
application (AP) layer, and middleware (Mid) layer.

AP layer provides the services as AIoT applications to the
users, via AP-Ags in the layer. AP-Ags provides service
parts of applications which realize the applications. AP-Ag
works alone, or with the other AP-Ags and/or Mid-Ags to
provide services. In case of working with Mid-Ags, an
AP-Ag works as a manager to control, organize, and re-

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

40

Fig. 2 Overview of AIoT middleware hosting Mid-Ag and AP-Ag to
compose AIoT architecture of IoT systems.

organize the Mid-Ags. Service requirement is acquired by
user agents, and the user agents select AP-Ags which
satisfies the requirement, to start AIoT application
construction and service provisioning.

To realize desired AIoT applications, Mid layer inter-
connects the IoT devices (e.g. various sensors and robots)
and the AP layer’s agents. Mid-Ag is realized by the
agentification process to introduce intelligent agent
functionality to target IoT device. Mid-Ag works alone, or
with the other Mid-Ags as an organization to control and
monitor the IoT devices.

In order to control IoT devices in response to user
requirement and operational condition, AP-Ag controls
Mid-Ags as a manager, or Mid-Ag controls an IoT device
based on its sensing activity. Both Mid-Ag and AP-Ag are
called AIoT agent. The architecture of AIoT agent, as well
as the agentification process to acquire Mid-Ag is
explained in Section 3.3.

In the AIoT architecture, building organization of agents is
a process to select and configure AIoT agents to solve
problems in distributed manner, based on the
environmental condition and task description reflecting
user requirement. The agent organization process is
performed through AIoT organization scheme, which is
explained in Section 3.4. Re-organization of agent is a
process to re-configure and/or replace AIoT agents in
response to the changes in various requirements. The re-
organization is realized by AIoT re-organization scheme,
which is explained in Section 3.5.

Both of AIoT organization scheme, and AIoT re-
organization scheme are conducted based on the AP-Ag
and Mid-Ag’s knowledge on cooperation, which is
commonly embedded among AIoT agents by using the
agent templates provided by the AIoT middleware AIoT
middleware.

The architecture of AIoT middleware is shown in Fig. 2.
Since the AIoT architecture offers services by Mid-Ag and
AP-Ag, AIoT middleware offers agent workplace that
hosts AIoT agents and mediate messages among the
agents. Agent workplace also provides functionality to

interconnect workplaces through TCP/IP network, which
provides agents with messaging capability through
networks. AIoT middleware provides the template of
agent and IoT device control module, common rule sets
and vocabulary to realize AIoT agents, as described later
in section 3.3.

AIoT application is composed by AP-Ag using its AIoT
organization scheme to organize AIoT agents placed by
developers or users, and operated by the AP-Ag based on
its knowledge including AIoT re-organization scheme.
When the task is finished, agent organization is dissolved
and the member agents’ operations are terminated.
Following subsections explains the following contents:

• AIoT agent architecture and agentification process in
Section 3.3

• AIoT organization scheme in Section 3.4

• AIoT re-organization scheme in Section 3.5

3.3 AIoT Agent Architecture and Agentification
Process

IoT devices gain the functionality to execute task and
cooperate with other devices through the design and
implementation process called agentification. This
subsection describes the proposed AIoT agent’s
architecture, as well as the process of agentification to
realize the AIoT agent.

i) Architecture of AIoT agent

In order to develop heterogeneous IoT devices into
homogeneous entities, as well as to introduce autonomous
functionality into IoT device control, we propose the
architecture and development process of AIoT agent. Fig.
3 shows the architecture of software agent which controls
an IoT device. AIoT agent is combination of knowledge-
based agent and the control module of particular API and
runtime framework.

The AP-Ag and Mid-Ag are designed and implemented as
AIoT agent. The difference between these 2 agents is that
middleware agents have IoT device’s control program as
the control module, while application agents have the task
processing programs as the control module.

IoT devices generally offer API for programming its
control logic, and it is necessary to program dedicated
control module to invoke the API to realize desired action
of the target IoT device. In AIoT agent’s architecture, the
Dedicated Control Module (DCM) for agent invokes the
API to perform device actions, as well as to receive

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

41

responses to the agent. Through the control module, agent
performs actions to solve problems.

In the agent part, there are 3 kinds of knowledge, namely,
Problem Solving Knowledge (PSK), Embodiment
Knowledge (EK), and Cooperation Knowledge (CK). The
knowledge in AIoT agent is represented as a set of if-then
rules, and ontologies which define the primitive
vocabulary used in the rules. The knowledge is processed
by rule-based inference engine.

PSK is a rule set and primitive vocabulary which define
the following items:

• Actions to solve problems using the IoT device

• Conditions to recognize particular events

For example, if certain event is detected in control module
part, and the event data is raised from the control module
to the agent part, also if there is a rule which has the
received event as the condition, then the rule is fired and
the designated action is executed by sending command to
the control module. Control module sends back the
response of the executed command, and the response
possibly fires other rules, and so forth.

In order to properly process task by avoiding conflicts in
IoT device control, EK represents the following items as a
set of rules and the self-embodiment ontology which
defines the primitive vocabulary and records current IoT
device’s state:

• Physical characteristics on resource constraints of
controlling IoT device

• Partial procedural knowledge on control module
about the effect of each device action

Unlike ordinary software processes, there are number of
constrained resources in physical IoT device, and
individual actions are effected by one another even in a
single IoT device. For example, it is impossible to perform
sensing task of a specific point of place, while moving to
another location to process another task. AIoT agent needs
to be aware of the condition and occupation of resources,
by taking into account the composite structure and
characteristics of the IoT device. EK is defined to provide
such awareness for agents. In case of AP-Ag, the EK is
about the task processing programs and its constrained
property to avoid conflicts of actions in runtime.

CK is a rule set and primitive vocabulary to cooperate
with other agents to solve problems together, which
defines the following:

Fig. 3 Architecture of AIoT agent (Mid-Ag or AP-Ag) that composes
AIoT application.

• AIoT organization scheme to construct AIoT
application

• AIoT re-organization scheme to adapt the AIoT
application system towards requirement changes

As mentioned earlier, in AIoT architecture, agents are
organized in task-oriented manner, and adaptively re-
organized in response to the various changes. By this
means, AIoT agent’s knowledge is designed and described
based on the characteristics of IoT device, and
application’s requirement for the devices. The default
items are provided as knowledge template by AIoT
middleware.

In addition to autonomous capability of AIoT agents, since
the control module, AP-Ag, and Mid-Ag are
architecturally separated, it requires less effort to modify
each part of the AIoT devices against fundamental
changes compared to the existing architecture [5] which
targets construction of IoT applications.

ii) Agentification process of IoT device

The design and implementation process of Mid-Ag is the
“agentification” process to develop AIoT device.
Agentification is a process to realize the agent-based
control of IoT device based on the agent’s knowledge, as
well as to cooperate with the other agents. Agentification
provides IoT devices with the software agent’s capability.
The heterogeneity is resolved by agentification process to
develop heterogeneous (function, communication

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

42

protocol) IoT devices into homogeneous AIoT devices
controlled by AIoT agents. Following steps are the process

Fig. 4 Contract conclusion process of AIoT organization scheme between
manager and contractor. (in this case, manager = AP-Ag, contractor=Mid-

Ag).

of agentification. Developer of AIoT agent needs to
implement the hatching part of the architecture in Fig. 3.
The agentification involves the design and implementation
of blue, hatched part of the AIoT agent.

Agentification Steps of IoT Device

Step 1. Analysis of target IoT device, and design of the
device action for problem solving: The first step of
agentification is to determine and list the actions of
IoT device, by analyzing the physical characteristics
and provided API of the IoT device. The determined
behavior becomes a primitive set of Mid-Ag’s
actions in solving problem.

Step 2. Design and implementation of DCM (Dedicated
Control Module) to handle events and actions: This
step is to design and implement the DCM for
handling command and response, as well as the
event recognition. DCM for agent is designed based
on the designed action of IoT device. To realize the
targeted action, the DCM invokes physical actuator
or sensor through APIs. The response is sent back to
the agent as required by the command (result of
actuation, sensed value from sensor, etc.). DCM also
handles event detection, i.e. certain pattern of sensed
value, detected error, etc. The event needs to be
recognized and handled by the agent by referring to
its knowledge.

Step 3. Design and implementation of PSK and EK: This
step is to design and implement the knowledge as
rule sets and ontology to handle the raised event and
to control IoT device to solve problems. PSK rule
sets determine the way to solve problems by
actuating IoT device. The actuation is performed by
referring to the EK of IoT device which represents
the structure and characteristics of the device itself.
In this step, common template for writing PSK and
EK is given by AIoT middleware as agent templates,
and CK is commonly given as common rule sets.

3.4 AIoT Organization Scheme for autonomous IoT
system composition

AIoT organization scheme is a cooperation process of
AIoT agents to compose AIoT application for executing
assigned tasks by users. It is designed by extending
Contract Net Protocol [19] especially for IoT device
characteristics. The rest of this subsection explains the
details of this scheme.

i) Cooperation flow of AIoT organization scheme

The sequence of cooperation flow is shown in Fig. 4. Fig.
4 is an interaction flow of task assigned manager (e.g. AP-
Ag) to conclude a contract with a contractor (e.g. Mid-Ag)
that executes the task. In this case, AP-Ag is the manager,
and Mid-Ag is the contractor. However, the knowledge to
realize this cooperation protocol is embedded in all the
AIoT agent, thus both of AP-Ag and Mid-Ag can become
manager to organize agents as described in Section 3.2.

• Task announcement phase

At the beginning of contract conclusion process,
manager sends call for proposals message to the
prospective contractors. If applicable, manager divide
a task into multiple subtasks, and announces one of
the subtasks. This phase is called task announcement.
The message includes the task name, task abstract,
eligibility to become a contractor, and the expiration
time of the announced task. Manager can choose the
scope of task announcement, such as point to point,
multicast, and broadcast.

• Bidding phase

The contractor makes decision whether or not to bid
on the announced task, based on the knowledge. This
phase is called bidding. The contractor sends propose
message to bid on the task, or sends refuse message
not to bid on the task.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

43

Fig. 5 Example of task knowledge description used in task announcement.

In our proposal, the refuse message in bidding phase
is introduced as an extension to conventional CNP, in
order for manager agents to recognize the other
agents’ conditions, such as number of prospective
agents in agent workplace, which helps the manager
agents in various ways.

When Mid-Ag is a contractor, it is necessary to
systematically examine the function and condition of
the AIoT device by referring to the self-knowledge.
We propose embodied self-recognition method, and
extended self-recognition method to systematically
evaluate the condition of AIoT device. The checking
method of self-eligibility is explained later in this
subsection.

• Awarding phase

It is possible for the manager to receive multiple
proposals on announced task. After the expiration
time written in the task announcement message, the
manager chooses one of the contractors by examining
the contents of the proposal messages sent from the
prospective contractors. This phase is called awarding.
The manager sends accept-proposal message to
award the task to the contractor, and refuse-proposal
message to the rest of the contractors which sent the
propose messages. When the accept-proposal
message is received by the contractor, contract is
properly concluded between the manager and
contractor.

In our proposal, the reject-proposal message is
introduced as an extension to the conventional CNP,
in order for contractors to recognize the situation
faster to move onto the other tasks.

• Task execution phase

The task awarded contractor executes the assigned
task, and sends a report to the manager. This phase is
called task execution. When the report is sent to the
manager, the contract between manager and
contractor is dissolved.

The manager derives the result of the task based on the
report. In case that the manager divides tasks into subtasks,
the manager concludes contracts and receives the report of
each task. The manager integrates the reports of subtasks,
to derive the result of the task.

By the contract conclusion scheme mentioned above, in
AP layer, AP-Ag is able to organize agent organization
which corresponds to service requirement. In Mid layer,
Mid-Ag is able to organize Mid-Ags to deal with more
versatile tasks.

ii) Knowledge on task and its announcement

The knowledge representation scheme and task description
example is shown in Fig. 5. Full task knowledge
representation scheme is shown in Fig. 26 of the appendix.
AIoT architecture and middleware employs Object-
Attribute-Value (OAV) format to represent knowledge.
The example of the filled out form of task knowledge
description is remote sensing task which is trying to
recruit an agentified autonomous unmanned aerial vehicle
(UAV). The UAV is expected to have functions to fly to
specified point, as well as to capture image using camera.

addressee clause represents the agents to send task
announcement message. Options are: point to point
(AgentID), multicast (AgGroupID, SubNetworkID), or
broadcast (*). The example employs broadcast for its task
announcement scope.

eligibilitySpecification represents the required eligibility of
contractors. There are :and and :or attribute that represents
the condition of eligibility. The value part (ObjectID and
OAVElement) is a list of keywords and OAV clause which
represent the function and condition. These values are
matched with the description of contractor’s eligibility
knowledge in bidding phase. In the example, :and
attribute is employed for a set of cunctional eligibilities,
which are flyTo, hover, captureImage functions are all
required for the task.

taskAbstraction clause represents the abstracted
description of a task. The :id attribute and TaskID
represents the ID of the task. The TaskAbstDescription
represents the content of the task. It is expected to include
some of the action primitives for contractor to examine the
task content. The :action-flow attribute and action-flow
object ID represents the user-defined description of the

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

44

task. In the contractor side, this description needs to be
interpretable. Manager can send more information about
abstracted task, e.g. the attributes associated with the
action-flow object.

bidSpecification represents the requirement of content
expected in bidding message. The attribute and values
need to be specified in this clause. In the example, the
image quality is set as the bidding information. This
information is used by manager to compare and decide the
contractors to assign the task. This description also need to
be interpretable by the contractors to include proper
information in bidding message. Manager can also send
more information about bid specification, e.g. attributes
about image quality such as image size, frame rate, etc.

expirationTime clause represents the time of expiration for
contractors to bid on the task. We mainly employ Unix
time to represent this time.

iii) Embodied Self-Recognition Method

As mentioned earlier, bidding phase is extended to
systematically examine the function and condition of Mid-
Ag’s AIoT device. It is necessary to develop systematical
method to validate the function and condition of IoT
device, because of the following reasons:

• To mitigate development complexity and burden:
Heterogeneity of IoT device makes it complicated to
develop validation procedures individually for each
function of each device

• To avoid runtime conflict: Since IoT device operates
in dynamical physical environment, it is insufficient
to refer to the static description about the IoT device

Fig. 6 shows the overview of embodied self-recognition
process in Mid-Ag. In order to evaluate the feasibility of
announced task, it is necessary to monitor the conditions
of resources based on the physical architecture and
constraints. The embodied self-recognition process is as
follows:

Steps of Embodied Self-recognition Process

Step 1. Matching: After receiving task announcement
and requirement in the eligibility specification
clause, Mid-Ag matches its own eligibility and lists
the actions required to realize the eligibility.

Step 2. Sensing: If the listed actions require physical
actuation and/or sensing, the Mid-Ag refers to the
conditions associated with the physical components
which provide the listed actions.

Fig. 6 AIoT Device’s Embodied Self-Recognition Method.

Fig. 7 Top-level Class Definition of Self-Embodiment Knowledge
Ontology for IoT Devices.

Step 3. Validation: If the required physical parts are
unavailable (e.g. occupied with other process,
lacking resource, etc.), the Mid-Ag removes the
unavailable action from the list. If the action
availability still satisfies the required eligibility,
Mid-Ag is able to bid on the announced task.

In order to realize the embodied self-recognition of IoT
device, we introduced self-embodiment ontology in EK
(embodiment knowledge). The ontology defines the
relationship among the IoT device’s eligibilities, actions,
physical resources and the condition of the resources. The
ontology systematically supports the matching, sensing
and validation steps mentioned above.

Fig. 7 shows the class definition of the embodiment
ontology. There are 5 classes in the ontology, namely,
Self-Embodiment, Self-Eligibility, Self-Action, Self-State,
and Self-Composition. Top level class is the Self-
Embodiment, and other 4 classes are the subclasses.

Self-Eligibility class has the keywords of eligibility as
instances, which match the eligibility specification as
shown in the example of Fig. 5. Self-Action class has the
keywords of actions as instances which match the control

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

45

procedure name which is executed in the IoT device’s
DCM (dedicated control module). Self-Composition class
has the keywords of the IoT device’s composing parts,
which physically realize the action instances under the
Self-Action class, e.g. motors, battery, sensors, etc. Self-
State class has the keywords of conditions as instances,
which are associated with actual variables in the DCM.

The properties are representing the relationships among
the classes, and these properties are utilized to derive the
feasibility of the announced task. Fig. 8 is a description
example of one of the rules to validate the eligibility
instances. It functions as: “If, for a self-eligibility
instance ?se, self-action instance(s) ?sa realizes self-
eligibility instance ?se, and self-state instance(s) ?ss does
not disable self-action instance(s) ?sa, and self-action
instance(s) ?sa uses self-composition instance(s) ?sc, and
self-action instance(s) ?sa does not occupy self-
composition instance(s) ?sc, then set current feasibility of
the self-eligibility instance ?se as true.”

The disables property and occupies property are inserted
and removed according to the sensing in the IoT device by
Mid-Ag. The proposed ontology helps developers,
administrators and agents to recognize self-recognition to
properly bid on the task.

In proposed AIoT architecture and middleware, the
ontology and rules are represented in OAV description.
Fig. 9 shows the self-embodiment knowledge
representation scheme, and Fig. 10 shows the task
description example. Full description of representation
scheme is shown in Fig. 27.

The description example is also about the agentified UAV
with camera, matching with the target IoT device in the
example of task description. The self-eligibility clause has
the list of keywords representing the eligibilities, which
matches the eligibilitySpecification in Fig. 5. The self-
action clause has the list of keywords representing the
actions that realize the eligibilities. Individual clause of
self-action has attributes of the actions as objects, and
concrete values are associated with the objects IDs.

The self-state clause has the keywords representing the
state of physical component. In the example, it has battery
status, and currentPlace. These are object IDs, and

Fig. 9 Part of Self-Embodiment Knowledge Description Scheme that
Represents the Self-Embodiment Ontology.

Fig. 10 Example of Filled-out Form of Self-Embodiment Knowledge
Description which Represents an agentified UAV Capable of Performing

Remote Sensing Task (as in Fig.5).

concrete values acquired from the IoT device through
DCM, are associate with the IDs.

The self-composition clause has the composing parts of the
IoT device. In the example, the sensors and flight body are
represented as the keywords. For example, flyTo action
occupies the flightBody, but sense3AxisGeomagnetics

Fig. 8 Description Example of Self-Eligibility Validation Rule, by Taking

into Account the States of Corresponding Actions for the Eligibility.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

46

Fig. 11 Overview of Extended Self-Recognition Method.

Fig. 12 Re-organization process among a manager (Ag-AP),
failed contractor (Mid-Ag), and prospective contractor(s) (Mid-Ag).

action does not occupy the 3AxisGeomagneticsSensor,
hence and it is not possible for multiple tasks to fly the
UAV simultaneously, but possible for sensors because
sensor value is sharable in parallel manner.

iv) Extended Self-Recognition Method

In addition to the embodied self-recognition method, we
propose extended self-recognition method in order to
systematically examine the conditions of conjugated
agents of task.

It is frequent for Mid-Ag to perform an action by using the
other agent’s resources. It is necessary to develop
systematical method to validate the function and condition
of conjugated IoT devices, because of the following
reasons:

• To avoid runtime conflict in cooperation:

When a Mid-Ag is fully available, it usually considers
that it is available for task processing. However, if
cooperating agent is occupied with other task, task
execution fails because of the cooperating agents.

• To avoid agent messaging overload:

Without systematical support to examine conjugated
agent’s condition, it is difficult to code the message
flow for each action with the other agents. It induces
agent message overload among agents, because
without systematical method, there is no clear end to
exchanging messages to monitor other agent’s
condition.

Fig. 11 shows the overview of extended self-recognition
process in Mid-Ag. Extended self-recognition method is
an extension of proposed embodied self-recognition
method. In the embodied self-recognition method, when a
Mid-Ag receives a task announcement, it lists the
matching eligibilities and the realizing actions of the
eligibilities. If an action utilizes other agent’s action, the
Mid-Ag sends information-request message, and receives
information-reply message to check the availability. The
request and reply message are triggered when there are
agent IDs with the referred agent’s object ID in the
following clauses:

• Self-Eligibility: Mid-Ag sends the referred agent the
referred eligibility ID, and the asked agent replies a
binary value representing the availability of the asked
eligibility

• Self-Action: Mid-Ag sends the referred agent the
referred action ID, and the asked agent replies a
binary value representing the availability of the asked
action

• Self-State: Mid-Ag sends the referred agent the
referred state ID, and the asked agent replies the
associated values to the asked state ID.

• Self-Composition: Mid-Ag sends the referred agent
the referred parts ID, and the asked agent replies the
associated values to the asked parts ID.

The relationship among AIoT agents which have the other
agent’s ID in the embodiment knowledge with each other,
is called conjugate relation. The agents in conjugate
relation works tightly together to solve problems, and
frequently share information with each other. Concrete
example of the knowledge description on extended self-
recognition is given in Section 4.1 with the implemented
AIoT device.

3.5 Resilient Service Re-organization Scheme for IoT
Applications

The condition of task processing organization changes
(lowering task processing speed, suspension of action,
etc.) due to the fluctuation in the individual agents and IoT

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

47

devices’ conditions (CPU load, physical failure, etc.), as
well as the condition of environment (change of weather,
appearance of unexpected object, etc.).

In order to deal with the changes to sustain the task as an
organization, we propose the real-time replacement and
tuning of agents in organization in AIoT re-organization
scheme. To realize the re-organization of agent, manager
needs to have CK (cooperation knowledge) to interpret the
events and requests that arise in the agent organization,
and to tune and replace the agents based on the
interpretation.

A manager needs to have various knowledge to control the
contractors, concretely, the knowledge on error report
interpretation, task description modification, agent
selection, agent activation, agent termination, etc.
Common CK on these actions are embedded into each
AIoT agent participating the organization by AIoT
middleware.

Fig. 12 shows the proposed AIoT re-organization
scheme’s flow which extends the AIoT agent organization
scheme. In case that a contractor (e.g. Mid-Ag) fails at the
assigned task, the agent sends the report to the manager
(e.g. AP-Ag). The report includes the task ID, detected
event and device conditions, etc.

After receiving the report, the manager interprets the
report, then starts AIoT organization of the reported failed
task (subtask). If necessary, the task description is
modified by the manager before starting the AIoT
organization.

If there is an alternative proposal among the propose
messages which can handle the failed task, the manager
terminates the failed Mid-Ag, and simultaneously award a
task to the matched agent. If the manager cannot find the
alternative agent, the organization is no longer able to
continue the task.

AIoT re-organization is not only about replacing agent,
but also tuning of participating agents in organization, thus,
the report is not necessarily a failure report, it can be the
processing time report of task. If the processing time is
considered insufficient, manager can either replace the
agent with others, or change the parameters of the task.

The re-organization protocol can be used both in AP-Ag
and Mid-Ag, to organize agents in both in AP layer and

Fig. 13 Agent and device configuration of logistics robot (UGV1)
controlled by Mid-Ags.

Mid layer. Concrete example of the re-organization and
task modification is given in Section 4.3.

4. Implementation and Experiment of AIoT
Logistics Application for AIoT
Architecture Evaluation

In order to confirm the effectiveness of proposed AIoT
architecture and AIoT middleware, we have implemented
an autonomous logistics [20] application using simplified
small robots with attached sensors.

In this section, we confirm the effect of AIoT device
agentification, AIoT organization and re-organization
scheme to realize autonomic and resilient service
provisioning in IoT system. The simplified logistics
system is organized by agentified robots of logistics and
an application agent. We also performed architecture-level
analysis on the organized AIoT logistics system, based on
the comparison with the conventional architecture-based
implementation [5] of the equivalent logistics application.

4.1 Configuration of Implemented Experimental
System using AIoT Devices

We have implemented the autonomous logistics
application using repository-based multi-agent framework,
ADIPS [21][22]. The AIoT agents are implemented as
software agents of the ADIPS framework. Each ADIPS
agent has a built-in inference engine, and runs as an

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

48

Fig. 14 EK of UGV1 in OAV form.

independent computing process. The control knowledge is
described in rules and embedded in the agents, so are the
proposed 3 kinds of knowledge, PSK, EK and CK. The
ADIPS agent has an interface function that interacts with a
procedural program, and the function is used to realize
agentification of IoT device. The rest of this subsection
describes the implementation of AIoT agents and IoT
devices in autonomous logistics application using ADIPS
framework.

Fig. 13 shows the configuration of logistics robot and its
controlling agent. This robot consists of two IoT devices,
which are SunSPOT (multiple functional sensor) [23] and
LEGO Mindstorms NXT intelligent kit [24]. These two
devices are controlled individually via different APIs.
Logistics robot has several sensors and actuators, such as
LED light, touch sensor, servomotors, etc. The control
logic of each part of NXT is programmed in the agent’s
knowledge as EK in if-then rule sets. SunSPOT also
equips multiple functions, and the control logic is likewise
programmed in the agent’s knowledge. The Mid-Ags
controlling Lego Mindstorms NXT and SunSPOT have
PSK to perform primitive actions to solve problem using
control logic in EK, and CK for agent organization and re-
organization.

Fig. 14 shows the partial EK description on UGV1 agent.
As described in Section 3, as a Mid-Ag, UGV1 has self-
eligibility, self-action, self-state, and self-composition
knowledge in part of EK. These attributes are referred by
rule sets in CK, PSK, and EK. For example, as shown in
self-eligibility clause in Fig. 14, UGV1 is able to detect

Fig. 15 Information Request and Reply Message Format of Agent Status
Information based on Proposed Knowledge Representation.

obstacle, carry things from point to point, and show
carrying status of UGV itself. Also, conjugated agents,
such as NXT1 agent and SunSPOT1 agent, are referred in
self-action, self-state, and self-composition clauses,
because UGV1 physically consists of NXT1 and
SunSPOT1. The composite property of UGV1 is
represented by these references.

Although the UGV1 physically does not have
functionality to physically carry package from point to
point, the agent emulates the package handover among
UGVs in order to demonstrate autonomous logistics based
on AIoT agents. Only the information of package is
exchanged among agents. The UGV carrying a package
lights the LED built in a SunSPOT, therefore it is possible
to visually confirm the handover of a package in
experiment.

As shown in Fig. 15, using the agent ID and property ID,
agents are able to exchange information request and reply
message to monitor individual state as a UGV. Likewise,
SunSPOT1 agent and NXT1 agent has self-embodiment
knowledge representing the functions and states. The
handover of package is realized by an information
exchange among two logistics robots when two robots are
physically near to each other.

As shown in Fig. 15, using the agent name and property
name, agents are able to exchange information request and
reply message to monitor individual state as a UGV.
Likewise, SunSPOT1 agent and NXT1 agent has self-
embodiment knowledge representing the functions and
states. Since UGV1, NXT1 and SunSPOT1 agents are
physically coupled together, NXT1 and SunSPOT1 agents
are designed not to respond to task announcement message,
because UGV1 agent represents these agent’s and controls
them.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

49

Fig. 16 Overview of autonomous logistics task for AIoT agents.

Fig. 17 Description example of PSK representing logistics action of UGV,
to carry a package to Place B from Place A after picking up a package

from the source.

Fig. 18 Description example of PSK representing logistics action of UGV
to go back to the source of package after handing over a package at Place

B.

We have also introduced an UAV, Parrot AR. Drone [25]
as a logistics robot, which is implemented as AIoT device
through the proposed agentification. The agent of the
UAV, UAV agent also has the knowledge on logistics
application similar to the UGV agent. The difference
between UGV and UAV agent is that UAV can fly to a
specified point with carrying a package, so that UAV can
carry package over an obstacle, unlike UGV.

In the next section, we explain an autonomous logistics
application using multiple AIoT devices, which are the
UGV, and UAV mentioned above.

4.2 Experiment 1: AIoT Organization of
Autonomous Logistics Application among
Heterogeneous Devices

Using the AIoT agent and device implemented as in last
subsection, experiment 1 examines the effect of following
proposals:

• S1) Agentification of IoT device to AIoT device

• S2) AIoT Organization Scheme for Autonomic AIoT
Application Composition

We evaluate these proposals by a case study of
autonomous logistics using unmanned vehicles. Following
sub-subsections explains the given task to AG-Ag, the
organization process of autonomous logistics application,
the result of logistics experiments, and scalability analysis
of the organization.

i) Given Autonomous Logistics Task and AIoT
Agents

The task is to carry packages from the source to the
destination. Fig. 16 shows the overview of autonomous
logistics task for AIoT agents. Place A is a source of
packages, where construction is ongoing and packages of
timbers are continuously generated, with the package ID
corresponding to the order of shipping packages. Place D
is a destination of the packages. The distance between
Place A-B, Place B-C, Place C-D are 180km, 60km, and
180km, respectively. The distances are determined based
on the typical physical constraints and characteristics of
autonomous logistics vehicles [20].

The logistics task is divided into 3 tasks, i.e. task to carry
package from Place A to Place B is task 1, Place B to
Place C is task 2, and Place C to Place D is task 3. In each
area, autonomous logistics robot handles the logistics of
packages. The tasks are divided, because of the basic
limitation of vehicles, such as fuel. In each area, at least
one autonomous vehicle is required, hence three vehicles
are required to accomplish the whole task.

We introduce three UGVs which have function to carry 1
package at a time from place to place. The UGVs are
agentified and controlled by Mid-Ags. In addition to
primitive control logic of UGV’s physical parts, as PSK,
the following actions of UGVs are introduced:

• Pickup a package

• Go to specified point

• Handover a package to the other logistics capable
entity

The start and ending of the task is commanded by an AP-
Ag of this autonomous logistics task, which is logistics
agent. In each area, UGV picks up a package, goes to
another point, and handover package to the other UGV.
Each UGV repeats this flow of actions repeatedly.

At Place A, UGV picks up a package from the source,
hence it does not receive package from other agent. At
Place D, UGV handover package to the destination, hence

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

50

it also does not need to handover package to the other
UGV. The handover of package is taken place in the relay
points of Place B and Place C.

Description example of problem solving knowledge is
shown in Fig. 17 and Fig. 18. The rule of Fig. 17 is to
carry a package from place A to place B. In line 2,
carry_AtoB is a rule name, and the clause before “-->” is
IF part, and clauses after the symbol is the THEN part.
The rule reads as follows:

• IF my device (Mid-Ag’s device) is in Place A, not
carrying object, and the area in charge is between
Place A-B (line 3),

• THEN send the command of carryAtoB(“PB”) to
move the device to Place B through NXT1 agent and
its DCM (line 5).

The rule of Fig. 18 is to go back to Place A after handing
over a package to other agent. The rule reads as follows:

• IF “received” message is received from ?device (line
3), and my device is at place B, not carrying object,
and the area in charge is Place A-B (line4),

• THEN send “lightoff” to SunSPOT1 agent to stop
lighting LED, and then modify my status of carrying
package to no, and send goTo(“PA”) command to
NXT1 agent to go to Place A.

PSK, as well as the other knowledge’s rule description is
written in this OAV form based rule language provided by
ADIPS framework. The explained PSK on logistics is also
embedded in UAV agent.

The knowledge description of task1 is shown in Fig. 19.
The eligibilitySpecificaiton clause has the list of keywords
representing the object carrying eligibilities, and the
physical area in charge as “Place A-B” which means a
logistics robot is in Place A-B and authorized to carry
packages in the area. The taskAbstraction clause has a
reference to logistics action flow, which is in lgs-action-
flow clause from line 10. The lgs-action-flow clause is also
sent to the prospective contractors. The bidSpecification
clause has the required information from prospective
contractors in bidding message, which are loadWeight and
fuelConsumption. ADIPS agents can use this form of task
description in the agent program file, and refer to these
object IDs and values in the rules. The organization of
autonomous logistics application is demonstrated and
evaluated in the next sub-subsection.

Fig. 19 Knowledge description of autonomous logistics task (task1) in
Logistics agent (AP-Ag), a part.

Fig. 20 Agent and device configuration of autonomous logistics
application and contract conclusion result of task1, 2 and 3.

ii) Autonomic Organization of AIoT Logistics
Application and Configuration of AIoT devices

In order to evaluate the feasibility of AIoT organization
scheme, we performed the autonmic organization of AIoT
logistics application logistics task explainer, and executed
the autonomous logistics task among AIoT devices. The
experiment configuration and contract conclusion result
are shown in Fig. 20. We placed UGV1 in Place A-B,
UGV2 and UAV in Place B-C, and UGV3 in Place C-D.
The Mid-Ags of logistics robots are able to communicate
through network via messages. UGV and UAV both have
the ability to carry packages, and UAV has the advantage
to carry things above obstacles. Logistics agent is an
application agent that manages the task of carrying
packages from Place A to D periodically.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

51

Fig. 21 Measured message flow and processing time measurement point
of AIoT organization process to organize AIoT logistics application.

With these agents mentioned above, we started logistics
experiment by the AIoT organization initiated by Logistics
agent. We have measured the message flow among agents
in AIoT organization, and measured the flow and
processing time measured point as in Fig. 21. Logistics
agent performs AIoT organization scheme three times, for
task1, task2 and task3.

In the organization of task1, UGV1 is selected as a
contractor. As soon as the task is awarded to UGV1, it
starts carrying a package from Place A. Logistics agent
makes the logistics start in Place A-B, because there is low
possibility that UGV1 arrives at Place B before the
selection of logistics entity in Place B-C. The other
logistics robot also starts the logistics task right after the
task assignment.

In the organization of task2, UGV2 is selected by
Logistics agent. The selection among bidding proposal is
dependent on the knowledge embedded in an Logistics
agent. In this case, Logistics agent chooses UGV2 because
it consumes less fuel for transportation. UGV3 is also
selected like UGV1.

Fig. 22 shows the measured result of organized AIoT
logistics application, with fifty contractors. Horizontal axis
represents package IDs, which corresponds to the order of
shipment from Place A. Vertical axis represents the order

Fig. 22 The result of autonomous logistics, the order of package arrival.

of arrival at Place D. Therefore, ideal result without error
is that all of the package IDs match the number of the
order of arrival. As the result of logistics experiment using
AIoT devices mentioned above, the degree of irregularity
(DoI) was 0, as calculated below:

where N = 100 which is the number of packages, OA is
the order of arrivals, and OS is the order of shipment, i is
the package ID. OAi and OSi are the order of arrival of
package i, and the order of shipment of package i,
respectively.

From this experimental result, we have confirmed the
AIoT architecture based control’s feasibility of AIoT
logistics in terms of the adequacy and accuracy. This is an
effect of introduced PSK, as well as the agentification of
IoT devices.

It is also confirmed that our proposal cleared the problem
of the autonomic organization of AIoT application based
on various requirements. Because of the agentification of
logistics robots (Mid-Ag), as well as introducing Logistics
agents (AP-Ag) that organizes the logistics application,
heterogeneous AIoT devices are capable to cooperate
together by organizing themselves based on AIoT
organization scheme to accomplish a task in autonomic
manner.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

52

Fig. 23 Time Length of AIoT Application Organization (average of 1000-

times trial runs.)

iii) Processing Time of AIoT Organization with
increasing number of AIoT devices

We have measured the processing time of AIoT
organization, by increasing the number of contractor in
emulation. In this measurement, we have used the logistics
robots in emulation, in which AIoT agents are not
physically connected to IoT devices, but the command and
response from IoT device are emulated. In the experiments,
the agent workplace and the agents are running on a single
computer (CPU: Intel Core-i7 4GHz, Memory: 16GB, OS:
macOS Sierra). The result of the simulation is shown in
Fig. 23. Starting with four contractors (the same number
of contractor in the logistics experiment above), we
increased the number of contractors up to fifty. In each
number of contractors, we have executed the AIoT
organization one thousand times, and calculated the
average time of organization process, which is the average
time of organization process (ATOP).

In Fig. 23, horizontal axis represents the number of
contractors participating in the AIoT organization, and
vertical axis represents the average processing time of
organization process as calculated below:

where N = 1000 which is the number of trials, tfi is the
ending time of the organization as in Fig. 21, and tsi is the
starting time of the organization.

From this experimental result, we have confirmed that
even there are dozens of prospective contractors, the

Fig. 24 Experimental result of AIoT re-organization scheme to sustain
logistics application among UGVs and a UAV controlled by Mid-Ags.

processing time of AIoT organization is in the order of a
few seconds. It is fast enough for logistics application,
because it is far less than the load time of carrying
package in each area, hence the processing lag of AIoT
organization does not disturb any interactions in the
logistics application. Likewise, since the organization,
service composition process are conventionally performed
manually by an administrator, the order of seconds are
considerably short.

4.3 Experiment 2: Resilient Adaptation in
Autonomous Logistics Application

Experiment 2 examines the resilient adaptation capability
of AIoT agent organization toward environmental change.
In this experiment, among the proposed knowledge of
AIoT agent, we focus on CK (cooperation knowledge)
which is commonly introduced by proposed middleware.
Therefore, the evaluated proposals is:

• S3) AIoT Re-organization scheme for Resilient AIoT
Application Operation

In order to sustain the given task to AIoT agent
organization, the organization needs to re-organize
(replace agent(s), re-configure agent(s)) the member agent
to address the problem caused by situational changes.

The task of this experiment is the same as experiment 1. It
is to carry packages from Place A to Place D, and the path
is divided into three areas (Place A-B, Place B-C, Place C-
D), and there are logistics robots in each area.

As shown in Fig. 24, the difference between experiment 1
and 2 is the appeared obstacle in Place B-C. UGV2
receives a package at Place B and tries to go to Place C,
however an obstacle appears between Place B and C to
block UGV2. As described in Section 4.1, UGV2 has

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

53

function to detect obstacle using its sensor. Fig. 24 also
shows the experimental result of AIoT re-organization
against the environmental change. As the result, through
the AIoT re-organization scheme, task2 is awarded to
UAV1 agent instead of UGV2 agent.

The measured message flow of the AIoT re-organization is
shown in Fig. 25. After detecting an obstacle by the
sensing result, UGV2 makes decision that it is no longer
able to carry packages in the area Place B-C. Following
the proposed AIoT re-organization scheme, UGV2 agent
generates and sends a report to Logistics agent (manager).
The report includes the abstracted task information, and
UGV2’s information about its self-state, as well as the
detected event that there is a blocking obstacle in Place B-
C.

After the report arrives the Logistics agent (manger), the
Logistics agent starts re-organization process. First
process is the modification of logistics task eligibility
requirement to carry package over the detected blocking
obstacle. The modification is to add “flyTo” attribute in
eligibility requirement clause. Based on the proposal,
Logistics agent and other agents are exchanging messages
(task announcement, bidding, and awarding) to decide
next agent to handle logistics task in Place B-C area.

UAV1 agent in Place B-C has matching eligibility to
handle modified task, and the task is awarded to UAV1
agent instead of the failed UGV2 agent. The task is
awarded to UAV1 agent, and as the awarding decision is
finalized in Logistics agent, the task termination message
is sent to UGV2 agent. We have confirmed that UAV1
agent starts working on the logistics task to pick up,
handover package with one another to participate the
autonomous logistics task.

It is confirmed that the organized AIoT logistics
application detected, interpreted and dealt with the
environmental change to resiliently sustain the assigned
logistics task. From the result of this experiment, it is
confirmed that the AIoT devices are able to re-organize
themselves by the proposed AIoT re-organization scheme
in order to resiliently sustain services based on arising
events. Therefore, it is confirmed that our proposal
realized the resilience in IoT system service provisioning,
and cleared the problem of tuning and replacing
components in IoT system based on various requirements.

4.4 Evaluation of architecture-level flexibility of
AIoT architecture

Since IoT system deals with heterogeneous multiple
devices as well as multiple users, it generally faces various

Fig. 25 Measured Message Flow of AIoT Re-organization Scheme to
Sustain AIoT Logistics Application towards the Appearance of Obstacle

in Task2.

changes, such as user requirement change, system
condition change, and environmental condition change.

The proposed AIoT organization and re-organization
capability provides autonomous construction and
sustainable adaptation. These capabilities mitigate the
administrative burden of IoT system, because in the
conventional method, organization and re-organization
performed manually. Furthermore, the AIoT architecture
effectively separates the individually modifiable
components as AIoT devices. It helps the modification of
individual device’s function in case that re-organization is
not sufficient.

In order to examine the reduction of administrative cost,
we have performed the architecture-level modifiability
analysis (ALMA) [26]. We view the organized AIoT
autonomous logistics application as an IoT system, and
compare it with conventional architecture-based logistics
application using the existing development middleware [7],
using Node.js, REST, and HTTP technologies. The
conventional system’s description of components, and the
system configuration are shown in Fig. 28 and Fig. 29.
The component description of AIoT autonomous logistics
application is shown in Fig. 30.

Since the task-oriented organization is originally proposed
and provided in AIoT architecture and middleware, the
conventional architecture based logistics application does
not support device organization nor re-organization. Each
process controlling UGV has problem solving procedures
in the Node.js codes.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

54

Table 1: Evaluation Results of Administrative Effort and Ease of Modification based on Architecture-level Comparison between AIoT Architecture based
and Conventional Architecture based Autonomous Logistics Application

System Requirement
Change Scenario ID Scenario Description

Conventional Architecture
based Logistics Application

AIoT Architecture based
Logistics Application

Component
Modification

Ratio

LoC to
modify

Component
Modification

Ratio

LoC to
modify

Scenario 1
Replacement of single logistics robot in an area with the
same logistics robot, in order to deal with the partial
failure in a hardware or software.

0 out of 54 =
0 %

0 out of
5786 LoC

0 out of 17 =
 0 %

0 out of
4341 LoC

Scenario 2

Replacement of single logistics robot in an area with the
heterogeneous logistics robot (e.g. replacing UGV with
UAV), in order to deal with the environmental change in
an area.

9 out of 54 =
16 %

202 out of
5786 LoC

0 out of 17 =
 0 %

0 out of
4341 LoC

Scenario 3
Addition of heterogeneous logistics robot in each area, in
order to accelerate the speed of logistics.

15 out of 54 =
27 %

1012 out
of 5786

LoC

0 out of 17 =
0 %

0 out of
4341 LoC

Scenario 4
Modification of logistics strategy to allow the
accumulation of package in certain storage.

27 out of 54 =
 50 %

1707 out
of 5786

LoC

1 out of 17 =
6 %

508 out of
4341 LoC

Scenario 5
Hardware upgrade of all logistics robot to increase the
speed and torque of locomotion.

15 out of 54 =
27 %

645 out of
5786 LoC

6 out of 17 =
35 %

302 out of
4341 LoC

Scenario 6
Hardware upgrade of all logistics robots to increase load
and carry multiple packages at one time.

27 out of 54 =
50 %

2184 out
of 5786

LoC

6 out of 17 =
35 %

990 out of
4341 LoC

Based on the ALMA method, we performed following
five steps to compare AIoT architecture and conventional
architecture.

Architecture-level Modifiability Analysis Steps

Step 1. Determine evaluation goal: We set the goal of
this comparison as the evaluation of the ease of
modification in case of design requirement changes.

Step 2. Describe software architecture: If the
modification of component is necessary in IoT
system, the difficulty of modification is quantifiably
measured by examining the number of modified
components, and the lines of codes (LoC) to be
modified. We described component configuration
diagram to observe the effect of system modification.

Step 3. Elicit scenarios: Based on the instruction in
ALMA method, multiple scenarios are elicited in the
logistics scenario that may require re-configuration,
replacement, or modification of system components.

Step 4. Evaluate architecture using scenarios: In each
scenario, modified (LoC) and number of
components (NoC) are measured.

Step 5. Interpret results: To achieve the goal of
comparison, the comprehensive consideration of
measured results is performed.

Table 1 shows the result of the evaluation result based on
the comparison between AIoT architecture-based and
conventional architecture-based logistics system. We have
elicited six of requirement change scenarios based on the
policy of ALMA method.

In scenario 1, both systems do not need any modification
since it is simply a replacement of the same component. In
scenario 2, in case of AIoT architecture based system, as
long as newly introduced robot is properly agentified and
share PSK and CK, there is no need for the existing robots
to be modified. Unlike the AIoT case, conventional
architecture based system require changes in
communicator parts of the existing robots to adjust the
communication with the replaced robot.

Scenario 3 requires conventional system to change the
communicator part, as well as the other communication
related modules that manage package information. AIoT
based system does not need any modification as long as
the newly added device is properly agentified and share
the cooperation knowledge as provided by the AIoT
middleware.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

55

Scenario 4 illustrates the effect of introducing AIoT
architecture. This scenario finally requires modification in
AIoT based system, however the modification is within
Logistics agent (AP-Ag) to command agents in
organization because AIoT architecture separates the
control logic in EK and PSK in Mid-Ag. On the other
hand, conventional system requires number of components
to be modified.

Scenario 5 and 6 also illustrates the effect of introducing
AIoT architecture. In AIoT architecture, there is no need
for Logistics agent (AP-Ag) to be modified, but UGV
agents and NXT agents because of AIoT architecture’s
layered structure of AP layer and Mid layer. In real world,
UGV agent can be considered as driver agent, where NXT
agent is a vehicle controlling agent. Conventional
architecture requires the comprehensive modification
because of ripple effect stem from the unseparated
architecture.

AIoT architecture has an advantage in all of the modified
LoC in each scenario. This is an effect of separating
functionality of autonomous logistics application into AP-
Ag and Mid-Ag which avoid the ripple effect in
modification. Likewise, AIoT architecture has advantage
in NoC change rate to be modified as well, except scenario
5. Scenario 5 requires 2 components’ modification in each
UGV, which is a relatively large number of modified
components, and the conventional architecture did not
cause ripple effect. Because the scenario did not require
modification in components that manage packages, which
results in narrower focus of modification. However, in
terms of LoC, AIoT architecture has advantage in scenario
5 as well.

The results of the architecture-level comparison between
AIoT architecture based logistics application, and the
conventional architecture based logistics application
reveals the architectural flexibility and resilience of AIoT
application. It is confirmed that, in terms of design and
implementation as well, AIoT architecture mitigates the
administrative burden on organizing and re-organizing IoT
systems, because of the effectively structured architecture
of AIoT architecture.

5. Conclusion

In this paper, we proposed agent-based IoT architecture to
and its middleware to realize autonomic and resilient
service provisioning in IoT systems. The target problems
are autonomic composition of IoT systems by taking into
account the user’s requirement and diverse IoT device
functions, because composing IoT system involves great
burden on managing heterogeneous IoT devices that

require different control logics. Since IoT systems are
running in physical, real world, the change of environment
happens frequently. Therefore, we also targeted the tuning
and replacement of IoT system components to deal with
systematical, and environmental change.

To address these problems, we proposed AIoT (Agent-
based IoT) architecture of application, and agentification
of IoT devices, as well as the autonomic AIoT
organization, and re-organization scheme to autonomously
compose and operate application using the agentified IoT
devices.

We have evaluated the effect of these proposals, in two of
autonomous logistics experiments, as well as the
architecture-level modifiability analysis. The results show
that our proposed AIoT architecture and middleware
address the target problems, and help developers and users
realize autonomic and resilient service provisioning in the
Internet of Things paradigm.

Our future work is to apply the AIoT architecture to
diverse fields of application, such as home automation,
energy management, smart agriculture, etc. We also plan
to extend the functionality of AIoT middleware to
comprehensively support AIoT application development,
such as semi-automatic knowledge description generation
of AIoT devices.

Acknowledgments

This work was supported by JSPS KAKENHI Grant
Number 15J06341, 16K00118, and 16K00292.

Appendix 1 Knowledge Description Scheme of Task
Knowledge and Embodiment Knowledge

Fig. 26 shows the description scheme of task knowledge
for task manager in AIoT organization. The description is
in OAV (Object-Attribute-Value) format. Fig. 26 is a full
description of the task description in Fig. 5.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

56

Fig. 26 Description scheme of task knowledge for task manager in AIoT
organization.

Fig. 27 shows the description scheme of embodiment
knowledge for Mid-Ags in AIoT organization scheme.
The description is in OAV (Object-Attribute-Value)
format. Fig. 27 is a full description of the task description
in Fig. 9.

Fig. 27 Description scheme of embodiment knowledge in Mid-Ag for
systematical change of its AIoT device status.

Appendix 2 Component Descriptions of AIoT
Architecture-based Autonomous Logistics
Application and Conventional Architecture-based
Logistics Application

Fig. 28. Component description of conventional (Web of Things)
architecture-based process to control a UGV evaluated in Section 4.4.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

57

Fig. 29. System configuration of conventional architecture-based
logistics application.

In autonomous logistics experiment in Section 4, we have
performed a comparison between proposed AIoT
architecture based logistics application, and conventional
architecture based logistics application. Fig. 28 shows the
component description of WoT (Web of Things) process
controlling a UGV in logistics application. Each rectangle
represents individual component and corresponding file
names. The lines represent the references among
components in code. The system configuration of
conventional architecture based logistics application is
shown in Fig. 29. On each UGV, WoT process in Fig. 28
is running. These processes communicate via TCP/IP
network using web-based protocols.

Fig. 30. Component description of AIoT architecture based autonomous
logistics application evaluated in Section 4.4.

Fig. 30 shows the component description of AIoT
architecture based autonomous logistics application. The
files with the name ending with .dash are control
knowledge description of ADIPS agents. The
commonKR.rset file has sets of common rules and
vocabularies among the agents. The files with the name
ending with .java are control module processes.

References
[1] J. A. Stankovic, "Research Directions for the Internet of

Things," IEEE Internet of Things Journal, vol.1, no.1, pp.3-
9, Feb. 2014.

[2] A. H. Ngu, M. Gutierrez, V. Metsis, Surya Nepal, Q. Z.
Sheng, "IoT Middleware: A Survey on Issues and Enabling
Technologies," IEEE Internet of Things Journal, vol.4, no.1,
pp.1-20, Feb. 2017.

[3] P. Rashidi, A. Mihailidis, "A Survey on Ambient-Assisted
Living Tools for Older Adults," IEEE Journal of
Biomedical and Health Informatics, vol.17, no.3, May 2013.

[4] T. Tomita, K. Ushiki, Y. Kawakatsu, N. Fujino, H. Mineno,
“Task-Driven Device Ensemble System Supporting
Seamless Execution of User Tasks Despite Multiplexed
Interruptions,” International Journal of Informatics Society,
vol.5, pp.49–58, 2013.

[5] L. Mainetti, V. Mighali, L. Patrono, “A Software
Architecture Enabling the Web of Things,” IEEE Internet of
Things Journal, vol.2, no.6, pp.445-454, Dec. 2015.

[6] Node-RED, A Visual Tool for Wiring the Internet of Things.
(2015.) http://nodered.org (accessed 2017.6.1).

[7] W3C Web of Things Interest Group, "Web of Things
Framework for NodeJS," https://github.com/w3c/web-of-
things-framework (accessed 2017.6.1).

[8] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, S. Clarke,
“Middleware for Internet of Things: A Survey,” IEEE
Internet of Things Journal, vol.3, no.1, pp.70-95, Feb. 2016.

[9] G. Fortino, A. Guerrieri, M. Lacopo, M. Lucia, W. Russo,
"An Agent-Based Middleware for Cooperating Smart
Objects," in Highlights on Practical Applications of Agents
and Multi-Agent Systems, J. M. Corchado Eds. Springer
Berlin Heidelberg, vol.365, pp.387-398, May 2013.

[10] M. Ruta, F. Scioscia, E.D. Sciascio, G. Loseto, “Semantic-
Based Enhancement of ISO/IEC 14543-3 EIB/KNX
Standard for Building Automation,” IEEE Trans. on
Industrial Informatics, vol.7, pp.731-739, Sep. 2011.

[11] M. Ruta, F. Scioscia, G. Loseto, E.D. Sciascio, “Semantic-
Based Resource Discovery and Orchestration in Home and
Building Automation: A Multi-Agent Approach,” IEEE
Trans. on Industrial Informatics, vol.10, pp.730-741, Feb.
2014.

[12] N. Michal, K. Artem, K. Oleksiy, N. Sergiy, S. Michal, and
T. Vagan, “Challenges of middleware for the Internet of
Things,” in Automation Control Theory and Practice, A. D.
Rodić Eds. InTech, Croatia, pp.247-270, 2009.

[13] V. Terziyan, O. Kaykova, D. Zhovtobryukh, “UbiRoad:
Semantic Middleware for Context-aware Smart Road
Environments,” in the Proc. 5th International Conference on
Internet Web Applications and Services (ICIW), pp.295-302,
May 2010.

[14] A. Katasonov, V. Terziyan, “Smart Resource Platform and
Semantic Agent Programming Language (S-APL),” in the
Proc. of 5th German Conference on Multiagent System
Technologies, LNAI 4687, pp.25-36, Aug. 2007.

[15] T. Liu, M. Martonosi, “Impala: A Middleware System for
Managing Autonomic, Parallel Sensor Systems,” in Proc. of
ACM SIGPLAN symposium on Principles and practice of
parallel programming, vol.38, no.10, pp.107-118, Oct. 2003.

[16] P. Kang, C. Borcea, G. Xu, A. Saxena, U. Kremer, L. Iftode,
“Smart Messages: A Distributed Computing Platform for
Networks of Embedded Systems,” Computer Journal, vol.47,
pp.475-494, 2004.

[17] Y. Kwon, S. Sundresh, K. Mechitov, G. Agha, “Actornet:
An Actor Platform for Wireless Sensor Networks,” in the
Proc. of Fifth International Joint conference on Autonomous
Agents and Multiagent Systems (AAMAS 2006), pp.1297-
1300, May, 2006.

[18] C.-L. Fok, G.-C. Roman, C. Lu, “Agilla: A Mobile Agent
Middleware for Self-adaptive Wireless Sensor Networks,”
ACM Transactions on Autonomous and Adaptive Systems
(TAAS), vol.4, no.3, pp.1-26, July 2009.

http://nodered.org/
https://github.com/w3c/web-of-things-framework
https://github.com/w3c/web-of-things-framework

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

58

[19] R.G. Smith, “The Contract Net Protocol: High-Level
Communication and Control in a Distributed Problem
Solver,” IEEE Trans. on Computers, vol. C-29, pp.1104-
1113, Dec. 1980.

[20] A. Schuldt, "Autonomous Control in Logistics," in
Multiagent Coordination Enabling Autonomous Logistics,
A. Schuldt Eds. Springer-Verlag, Berlin Heidelberg, pp.37-
69, 2011.

[21] IDEA: Interactive Design Environment for Agent System,
http://www.k.riec.tohoku.ac.jp/s/idea/ (accessed 2017.6.1).

[22] S. Fujita, H. Hara, K. Sugawara, T. Kinoshita, N. Shiratori,
"Agent-Based Design Model of Adaptive Distributed
Systems," Applied Intelligence, vol.9, pp.57–70, 1998.

[23] SunSPOT, http://www.sunspotdev.org/ (accessed 2017.6.1).
[24] LEGO Mindstorms,

http://www.lego.com/en-us/mindstorms/ (accessed
2017.6.1).

[25] Parrot AR. Drone 2.0,
http://global.parrot.com/jp/products/ardrone-2/ (accessed
2017.6.1).

[26] P. Bengtsson, N. Lassing, J. Bosch, H. Vliet, "Architecture-
level modifiability analysis (ALMA)," The Journal of
Systems and Software, vol.69, pp.129–147, Jan. 2004.

Takumi Kato is currently a Ph.D.
candidate at the Graduate School of
Information Sciences (GSIS), Tohoku
University, Japan. He received his B.S. in
Engineering from Sendai National College
of Technology in 2011, and the M.S. in
Information Sciences from Tohoku
University in 2013. His research interests
include Internet of Things (IoT),

knowledge-based system and agent-based computing. He is a
member of IPSJ and IEEE.

Hideyuki Takahashi is an assistant
professor of Research Institute of Electrical
Communication of Tohoku University,
Japan. He received his doctoral degree in
Information Sciences from Tohoku
University in 2008. His research interests
include ubiquitous computing, green
computing and agent-based computing. He
is a member of IEICE and IPSJ.

Tetsuo Kinoshita is a professor of
Research Institute of Electrical
Communication of Tohoku University. He
received the B.E. degree in electronic
engineering from Ibaraki University, Japan,
in 1977, and the M.E. and Dr. Eng. degrees
in information engineering from Tohoku
University, Japan, in 1979 and 1993,
respectively. His research interests include

agent engineering, knowledge engineering, knowledge-based
systems and agent-based systems. Dr. Kinoshita is a member of
IEEE, ACM, AAAI, IEICE, IPSJ, and JSAI.

http://www.k.riec.tohoku.ac.jp/s/idea/
http://www.sunspotdev.org/
http://www.lego.com/en-us/mindstorms/
http://global.parrot.com/jp/products/ardrone-2/

