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Abstract  
Map-Reduce is often used in implementation of critical and 
important tasks such as analysis of the scientific data. However, 
evidences in the past indicate the presence of optional errors that 
can destroy the results of Map-Reduce. Of course, run times of 
Map-Reduce like Hadoop can tolerate crash errors, but do not 
tolerate arbitrary or Byzantine errors. Hence in this paper, at first, 
the Hadoop architecture in distributed system will be investigated 
and then Hadoop will be compared with Map-Reduce and finally 
the Map-Reduce fault tolerance will be investigated. 
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1. Introduction 

Map-Reduce is a framework that has been created by 
Google for batch processing of large data which consists of 
a programming model and a run-time system that is widely 
used by Google in its data centers that supports its main 
work tasks such as processing parameters for its Web search 
engine.  Google execution is not available publicly but it is 
an open source version that is widely used by computational 
companies, such as Amazon, Facebook, Rock spice, 
LinkedIn, Twitter and Yahoo. 
Map reduce is also a new approach for scientific computing. 
The last argument on the importance of map reduce is 
related to the release of economic versions such as Map-
Reduce window azure and Map-Reduce Amazon elastic. 
Map reduce is designed to have fault-tolerant capability, 
because in the scale of thousands of computers of and 
hundreds other devices such as network switches, routers 
and power units, components errors occur frequently. For 
example, in the first year of Google Assembly the president 
of Google reported that, there were a thousand of machine 
errors and thousands of hard drive errors. Map-Reduce of 
Hadoop and Google Maps often endure crash and reduce 
tasks. If one of these tasks before the work outcome stops, 
it will be identified and new instance of the task will be 
created. 
While enduring tasks crash and the loss of data on the disc 
is crucial, but other errors that affect the accuracy of Map-
Reduce results certainly will occur in the future. A new 

study on the dram errors in a large number of servers in 
Google's database for a period of 2.5 years showed that such 
errors are more common than previously thought and Dual 
In-line Memory Module (DIMM) are affected 8 per cent 
annually; though, be protected by an error correct codes [1]. 
A research by Microsoft on the one million customers’ PC 
revealed that CPU and core parts errors often occur. Slow 
implementation tolerance mechanisms of Map-Reduce that 
are called Hadoop cannot cope with this potential errors or 
optional errors (we did not consider pessimistic errors). 
These errors cannot be identified by CheckSum and often 
will not lead to a task crash that has an impact on it. 
Consequently, it can destroy the result of a task invisibly 
and gently. These errors should be identified and their 
effects should be covered by the execution of each duty [2]. 
This basic idea has been suggested in the voluntary 
computing platform to stimulate the biased volunteers that 
their activity as a result of wrong results will be returned. 
But that work considered the application of qualitative tasks 
that are easier than Map-Reduce jobs. A similar but more 
general solution is more precise machinery byzantine fault 
tolerant approach, in which a set of programs in parallel can 
be run by different servers that implement the commands 
similarly but such an approach directly would not be useful 
to respond Map-Reduce tasks that only follow client-server 
model services (such as a file server). If the results do not 
match a simple solution for Map-Reduce is implementation 
any work for 2 times and re-execution of the work but these 
solutions cost a lot if there is any mistake [3]. 

2. The outstanding feature of Hadoop 

Hadoop is a software environment for writing and 
implementing distributed applications that processes huge 
amount of data. Hadoop was originally developed to 
support the search engine project. Nowadays Hadoop is an 
important part of the computing infrastructure for many 
internet companies such as LinkedIn. Many traditional tasks 
such as telecommunications and media have adapted 
themselves with these systems. Hadoop and processing 
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distributed large-scale data rapidly are becoming a skill and 
an essential part of the programming toolbox [4]. 
Among the benefits of Hadoop we can mention the 
following elements: 

2.1 Accessibility 

Hadoop operates on large clusters of machines or cloud 
computing services. 

2.2 Strength 

Hadoop is the architecture by assuming the frequent 
disorders in hardware performance and consequently it is 
very convenient to deal with such disruptions. 

2.3 Scalability 

Hadoop is scalable linearly to handle big data by adding 
more nodes to the cluster. 

2.4 Simplicity 

Hadoop allows users to write efficient parallel codes [5]. 

3. Hadoop against distributed systems and 
SQL databases  

A viable alternative for Moore's law, when making larger 
servers, is connecting a large number of smaller machines 
to each other to act as a distributed system. Although they 
are suitable for storing large amounts of data but are 
inefficient to process this massive and intensive data, these 
architectures require continuous data transfer between the 
server and the client but Hadoop focuses on the code 
transfer to the data place instead of continuous transfer and 
in a Hadoop cluster there are both of the data and the 
calculations. Most important of all is that philosophy of data 
transferring to the code location within the cluster has been 
broken and as far as possible calculations are done on the 
data that resides on the same machine. Here data 
transferring the data will take more time than calculations 
action on data, data remains in its current location and only 
executable code is transferred to the host machine language 
[5]. 
The main reason for the popularity of Hadoop compared 
with SQL databases is that SQL is designed to work with 
structured data; on the other hand, early Hadoop 
applications are presented to work on the unstructured data 
such as texts, from this perspective, Hadoop is a more 
general pattern. 
In fact, Hadoop and SQL complete each other. 
Hadoop unlike SQL that stores data in relational tables with 
the resident schema, uses pairs of (key, value) as a base unit 
that is flexible for a variety of unstructured data. Hadoop, 

instead of using SQL declarative language uses the Map 
Reduce functional programming language and instead of 
query expressions codes and under Map Reduce scripts. 
Hadoop is the best choice for write-once and read many 
times and by default uses KFKF queue and five scheduling 
priorities for tasks scheduling [5]. 

4. Hadoop architecture 

Hadoop uses Master/slave architecture for data storage 
systems and distributed computing. 
Data storage file system in Hadoop is known as HDFS. A 
small cluster of Hadoop includes the following 
components: 

4.1 Name Node 

Let’s begin with arguably the most vital of the Hadoop 
daemons—the Name Node. Hadoop employs a 
master/slave architecture for both distributed storage and 
distributed computation. The distributed storage system is 
called the Hadoop File System, or HDFS. The Name Node 
is the master of HDFS that directs the slave Data Node 
daemons to perform the low-level I/O tasks. The Name 
Node is the bookkeeper of HDFS; it keeps track of how your 
fi les are broken down into fi le blocks, which nodes store 
those blocks, and the overall health of the distributed file 
system. The function of the Name Node is memory and I/O 
intensive. As such, the server hosting the Name Node 
typically doesn’t store any user data or perform any 
computations for a Map-Reduce program to lower the 
workload on the machine. This means that the Name Node 
server doesn’t double as a Data Node or a Task Tracker. 
There is unfortunately a negative aspect to the importance 
of the Name Node—it’s a single point of failure of your 
Hadoop cluster. For any of the other daemons, if their host 
nodes fail for software or hardware reasons, the Hadoop 
cluster will likely continue to function smoothly or you can 
quickly restart it. Not so for the Name Node [5]. 

4-2- Data Node  

Each Data Node in the Hadoop file system is the location of 
reserving actual data and performing assigned tasks. When 
you want to read or write a HDFS file, file is broken down 
into blocks and Name Node tells the client that which 
blocks does have each Data Node. Clients directly 
communicate with Data Node to process local File in the 
blocks. Data Node may communicate with each other to 
replicate data blocks. 
Figure 1 shows the performance of Name Node and Data 
Node [5]. 
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Fig 1: Name Node /Data Node interaction in HDFS. The Name Node 

keeps track of the fi le metadata—which fi les are in the system and how 
each fi le is broken down into blocks. The Data Nodes provide backup 
store of the blocks and constantly report to the Name Node to keep the 

metadata current [5]. 

This illustration, each block has three replicas. For example, 
block 1 (used for data1) is replicated over the three 
rightmost Data Nodes. This ensures that if any one Data 
Node crashes or becomes inaccessible over the network, 
you’ll still be able to read the files. Data Nodes are 
constantly reporting to the Name Node. Upon initialization, 
each of the Data Nodes informs the Name Node of the 
blocks it’s currently storing. After this mapping is complete, 
the Data Nodes continually poll the Name Node to provide 
information regarding local changes as well as receive 
instructions to create, move, or delete blocks from the local 
disk. [5]. 

4.3. Secondary Name Code (SSN4) 

The Secondary Name Node (SNN) is an assistant daemon 
for monitoring the state of the cluster HDFS. Like the Name 
Node, each cluster has one SNN, and it typically resides on 
its own machine as well. No other Data Node or Task 
Tracker daemons run on the same server. The SNN differs 
from the Name Node in that this process doesn’t receive or 
record any real-time changes to HDFS. Instead, it 
communicates with the Name Node to take snapshots of the 
HDFS metadata at intervals defined by the cluster 
configuration. As mentioned earlier, the Name Node is a 
single point of failure for a Hadoop cluster, and the SNN 
snapshots help minimize the downtime and loss of data. 
Nevertheless, a Name Node failure requires human 
intervention to reconfigure the cluster to use the SNN as the 
primary Name Node. We’ll discuss the recovery process in 
chapter 8 when we cover best practices for managing your 
cluster. 

4.4 Job Tracker 

Job Tracker is the interface between applications and 
Hadoop. Initially the user delivers the code to the cluster 
and then Job Tracker provides the action plan to determine 
which files must be processed and determining the nodes 
for each section of the work and monitors during the run. 

4.5. Task Tracker 

Such as storage architecture, computational management 
sector obeys Master / Slave architecture. Job Tracker 
manages the implementation of separate tasks on each Slave 
node.  
In Figure 2 Job Tracker structure is provided by Task 
Tracker. 

 
Fig 2: Job Tracker and Task Tracker interaction. After a client calls the 

Job Tracker to begin a data processing job, the Job Tracker partitions the 
work and assigns different map and reduce tasks to each Task Tracker in 

the cluster [5]. 

One of the Task Tracker tasks is constant communication 
with Job Tracker. If Job Tracker does not receive a 
communication from the Task Tracker in specified time 
then it is assumed that Task Tracker has been failed and 
again it is presented for other nodes in the cluster of related 
job [5]. 
Figure 3 displays the complete Hadoop architecture with 
different parts of a given cluster. 

 
Fig 3: Topology of a typical Hadoop cluster. It’s a master/slave 

architecture in which the Name Node and Job Tracker are masters and the 
Data Nodes and Task Trackers are slaves [5]. 
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5. Comparing Map-Reduce and Hadoop 

Map-Reduce includes a programming model based on 
reduction functions that can be found in programming 
(albeit with slightly modified meaning) and is a running 
space that can be found in groups and databases which has 
been created by a large number of computers. Programmers 
define map and define reduction functions. Map is 
processing input file and production of key-value pairs and 
reduction function is to create several of these pairs (with 
the same key). Environment first splits the input files and 
then feeds several map functions by those pieces then 
multiple maps outputs are classified as sensitive to keys and 
then re-split and this time they are placed under the feeding 
of multiple reduction functions. In the case that it is called 
disruption, additional reduction outputs finally come 
together in one output file. According to Dean and 
Ghemawet expression of all the real activities in the world 
is possible by using this model. Hadoop is one performance 
from Map-Reduce that has been created from scratching 
and it is accessible for free via the Apache License. Hadoop 
is not just a template for the construction and 
commissioning of Map-Reduce algorithms in Java but it is 
also a usable tool to create improved systems and alternative 
for Map-Reduce, as an example that is provided in this 
study. Hadoop users offer jobs to it. The input file should 
already be stored in the Hadoop file system (HDFS) that 
breaks files into identical copy chunks and it is called gap. 
These gaps are homogeneously stored in the same nodes 
that are available to run Hadoop jobs. HDFS is file system 
(file system) that is suitable for Hadoop. HDFS manages the 
namespace of a file and allows the user data that be saved 
in file in chunks and distributed. Blocks of files data can be 
done on multiple hosts and in three short hooks that two of 
them are in one hook and the other is other hook. Although 
it will not implement HDFS and postx but its performance 
has been set for large data files and result of data (Blocks 
within mb 1/4) HDFS by a node name (Name Node) unit 
will be run. Also by using the main server that manages 
name spare files performance (open and closed and 
renaming) and processes the client’s access to files.  

6. Map-Reduce  

Map-Reduce is a programming model. It is used for 
computing large data sets with parallel and distributed 
algorithms in the cluster. Map-Reduce is the heart of 
Hadoop.  

7. Materials and Methods Fault Tolerance  

Fault tolerance is defined as, when the system functions 
properly without any data loss even if some hardware 
components of the system has failed. It is very hard to reach 

cent percent fault tolerance but faults can be tolerated up to 
some extent. HDFS provide high throughput to access data 
application and suitable to have large data sets as their input 
[15]. The main purpose of this fault tolerance is to remove 
frequently taking place failures, which occurs commonly 
and disturbs the ordinary functioning of the system.  
Single point failure nodes occur when a single node failure 
causes the entire system to crashes. The primary duty of 
fault tolerance is to remove such node which disturbs the 
entire normal functioning of the system [14]. Fault tolerance 
is one of the major advantages of using Hadoop. The three 
main solutions which are used to produce fault tolerance are 
data replication, heartbeat messages and checkpoint and 
recovery.  

8. Fault tolerance in Hadoop 

Due to the lack of specific literature about fault tolerance in 
Hadoop it was necessary to inspect the source code in order 
to understand how it works. This section provides a 
summary of the main features that have been analyzed so 
far. 
Regarding the infrastructure of Hadoop, in the rest of the 
document the term worker will be used to refer to the 
computing elements in the network, and the term node will 
be used to refer to a unit composed by both a worker and its 
corresponding part of the HDFS. 
One of the main components of Hadoop is the Job Tracker, 
which is executed as a daemon process that executes on a 
master node. The Job Tracker is the scheduler and the main 
coordinator of tasks. It is in charge of distributing the Map-
Reduce tasks between the available computing nodes. Each 
time the Job Tracker receives a new job to execute, it 
contacts a set of Task Tracker processes, which are 
daemons that execute on the working nodes (one Task 
Tracker exists for each worker in the infrastructure). Map-
Reduce tasks are then assigned to those working nodes for 
which their Task Tracker daemons report that they have 
available slots for computation (several tasks assigned to 
the same worker are handled by a single Task Tracker 
daemon) [16]. 
The Job Tracker continuously monitors the Task Tracker 
nodes using control messages named heartbeat signals. 
These heartbeat signals are sent from the Task Tracker to 
the Job Tracker and, after receiving this signal, the Job 
Tracker sends a response including some commands (such 
as start or end a task, or if the Task Tracker needs to be 
restarted) to the Task Tracker called Heartbeat Response 
[17]. 
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Fig 4: Communications between the Task Trackers and the Job Tracker 
in Hadoop [17] 

In case the Job Tracker does not receive any heartbeat from 
a Task Tracker for a specified period of time, the Job 
Tracker understands that the worker associated to that Task 
Tracker has failed. When this situation happens, the Job 
Tracker needs to reschedule all pending and in progress 
tasks to another Task Tracker, because the intermediate data 
belonging to the failed Task Tracker may not be available 
anymore. All completed map tasks need also to be 
rescheduled if they belong to incomplete jobs, because the 
intermediate results residing in the failed Task Tracker file 
system may not be accessible to the reduce task. A Task 
Tracker can also be blacklisted. In this case, the blacklisted 
Task Tracker remains in communication with the Job 
Tracker, but no tasks are assigned to the corresponding 
worker. When a given number of tasks (by default, this 
number is set to 4) belonging to a specific job managed by 
a Task Tracker fails, the system considers that a fault has 
occurred. Then, when a specific Task Tracker has more than 
a given number of faults (by default, this number is also set 
to 4) the Task Tracker is blacklisted. There are two 
possibilities for a Task Tracker to be removed from the 
blacklist: if one or several faults expires (by default, a fault 
expires in 24 hours) the Task Tracker is automatically 
removed from the blacklist, without need of any 
communication. The other possibility is for the Task 
Tracker to reboot, when this happens the Job Tracker is 
notified in the Heartbeat sent by the Task Tracker, and it is 
removed from the blacklist.  
Since one of the most important components of Hadoop 
related to fault tolerance features is the heartbeat procedure, 
after learning the basics about how Hadoop works, 
heartbeat became the focus of the research. 
Some of the relevant information in the heartbeats the Task 
Tracker sends to the Job Tracker are: 
●The Task Tracker Status 
●Restarted 
●If it is the first heartbeat 
●If the node requires more tasks to execute 

The Task Tracker Status contains information about the 
worker managed by the Task Tracker, such as available 
virtual and physical memory and information about the 
CPU. 
The Job Tracker keeps the blacklist with the faulty Task 
Tracker and also the last heartbeat received from that Task 
Tracker. So, when a new restarted/first heartbeat is received, 
the Job Tracker, by using this information, may decide 
whether to restart the Task Tracker or to remove the Task 
Tracker from the blacklist. After that, the status of the Task 
Tracker is updated in the Job Tracker and a Heartbeat 
Response is created. This Heartbeat Response contains the 
next actions to be taken by the Task Tracker. If there are 
tasks to perform, the Task Tracker requires new tasks (this 
is a parameter of the Heartbeat) and it is not in the blacklist, 
then cleanup tasks and setup tasks are created (the 
cleanup/setup mechanisms have not been further 
investigated yet). In case there are not cleanup or setup tasks 
to perform, the Job Tracker gets new tasks. When tasks are 
available, the Lunch Task Action is encapsulated in each of 
them, and then the Job Tracker also looks up for: 
●Tasks to be killed 
●Jobs to kill/cleanup 
●Tasks whose output has not yet been saved. 
All this actions, if they apply, are added to the list of actions 
to be sent in the Heartbeat Response. 
The fault tolerance mechanisms implemented in Hadoop 
are limited to reassign tasks when a given execution fails. 
In this situation, two scenarios are supported: 
In case a task assigned to a given Task Tracker fails, a 
communication via the Heartbeat is used to notify the Job 
Tracker, which will reassign the task to another node if 
possible. 
If a Task Tracker fails, the Job Tracker will notice the faulty 
situation because it will not receive the Heartbeats from that 
Task Tracker. Then, the Job Tracker will assign the tasks 
the Task Tracker had to another Task Tracker. 
There is also a single point of failure in the Job Tracker, 
since if it fails, the whole exception fails. 
The main benefits of the standard approach for fault 
tolerance implemented in Hadoop consists on its simplicity 
and that it seems to work well in local clusters. However, 
the standard approach is not enough for large distributed 
infrastructures such as the ones considered in the 
PERMARE project, as the distance between nodes may be 
too big, and the time lost in reassigning a task may slow the 
system. This approach neither considers a pervasive 
environment where new nodes can appear in the system, so 
if a new node is available tasks will not be assigned to it, 
this means that the system will be wasting available 
resources. 
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9. Related work in the field of fault tolerance 
in Map-Reduce 

Map-Reduce has been the subject of many researches. 
Activities have been carried out that the Map-Reduce be 
used in such a way that works well in many environments 
and enforces different uses. These applications include 
multi-core and multi-processor systems in heterogeneous 
environments such as Amazon, EC2 dynamic competitive 
environments, possible homogeneous environments with 
high hiding such as windows azure, twister system 
applications and intensive applications of memory and CPU. 
Another important research trend is related to the use of 
Map-Reduce for scientific computing, Such as handling 
high-energy physics data analysis and clustering k-means 
and it is also present for the production of Digital Upgrade 
models of several systems that acts as Map-Reduce. The 
programming model provides large data for batch 
processing. Map-Reduce covers more complex transactions 
or provides a higher level of abstraction, such as: Nephle 
and Pig Latin dryad. All these jobs show the important of 
Map-Reduce model programming but from the standpoint 
of fault tolerance it has nothing more than the original Map-
Reduce. Tolerating optional fault has broad power in the 
discussion fault tolerance. Voting mechanism to cover 
Byzantine errors and the distributed system was introduced 
in the early 1980s. State machinery copying is a generic 
solution to create a service or byzantine fault tolerance. 
Enforcement enough action of operating systems and 
byzantine errors will be practical and has already been 
shown and long range of its viability has been shown that 
include libraries such as: Upright and Gbawa. As was 
pointed out copying of state machine to create Map-Reduce 
byzantine fault tolerance is not enough. It is possible that 
the total of Map-Reduce run is copied on multiple servers 
but costs will rise. Byzantine systems maximum for data 
storage have been used to run simultaneously with multiple 
Semantics (even virtually). Although the voting techniques 
have similarities to function in our system but these 
solutions cannot be used in the implementation of the BFT1 
Map-Reduce. We do not have storage service, but we have 
a system for processing. For voluntary tasks set computing 
performance, Luis Sarmenta offered a method based on the 
voting for fault tolerance. That job is mainly related to the 
workers’ timing that specific kinds of errors should not be 
occurred. While we also use voting, we do not consider our 
workers’ malicious behavior and only consider the random 
errors. So we do not follow something in sophisticated 
timing unless the two orders of an activity in a knot should 
be prevented. In addition, most of our activities in the 
context of the implementation of the two-step processing 
                                                           

1 Byzantine Fault-Tolerant 
 

(map and reduction) and high data volume (sample) are in 
line with enhancing the performance. This action is quite 
different from the aim of that article.  In other activity, 
studied the same problem and provided optimal scheduling 
algorithms. Fernandez and others studied the same problem 
but few studies were based on probability analysis. We 
restate that the problem we have explored was different and 
this analysis is not the objective of the current research. 
Recently similar research has been offered from voluntary 
calculations for Map-Reduce users. The similarity of those 
activities was that both were based on voting. The main 
difference was that this work was focused on a different 
environment (voluntary calculations) and did not try to 
reduce costs and improve the performance. Therefore did 
not have any optimization that the core activity had. That 
article also offers possible model for algorithm that the 
makes it possible to assess the chances of a false result. Of 
course, we do not discuss it here. The problem of errors 
tolerance in parallel applications that run on parallel 
unreliable machines, in the distant past was studied by 
Kedem and others. However, they offered a solution based 
on calculations of intermediate steps to reveal errors. In 
contrast, we do assume that optional errors detection in 
optional programs is not applicable, so comparing the  two 
or more runs of the same activity may be the only way to 
discover the wrong processing [11] [10] [9] [8] [7]. 

10. Conclusion 

This paper deals with the important issue of fault tolerance 
in Map-Reduce and based on the observed results, Map-
Reduce been the subject of many researches. Activities has 
been conducted the Map-Reduce could be used in such a 
way that works well in many environments and launches 
different uses. These applications include multi-core and 
multi-processor systems in heterogeneous environments 
such as Amazon, EC2 dynamic competitive environments, 
possible homogeneous environments with high hiding such 
as windows azure, twister system applications and intensive 
applications of memory and CPU. Another important 
research trend is related to the use of Map-Reduce for 
scientific computing, Such as handling high-energy physics 
data analysis and clustering k-means and it is also present 
for the production of Digital Upgrade models of several 
systems that acts as Map-Reduce. The programming model 
provides large data for batch processing. Map-Reduce 
covers more complex transactions or provides a higher level 
of abstraction, such as: Nephle and Pig Latin dryad. All 
these jobs show the importance of Map-Reduce model 
programming but from the standpoint of fault tolerance it 

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0ahUKEwjAkcfhoYrTAhVMDxoKHe1gCsgQFgg0MAQ&url=http%3A%2F%2Fwww.di.fc.ul.pt%2F%7Ebessani%2Fpublications%2Fcloudcom11-bftmr.pdf&usg=AFQjCNHaW44nIaWALd1M_PGmMGb7vhvGYQ&sig2=t6Ilfss3Rorus_gO4onIwQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0ahUKEwjAkcfhoYrTAhVMDxoKHe1gCsgQFgg0MAQ&url=http%3A%2F%2Fwww.di.fc.ul.pt%2F%7Ebessani%2Fpublications%2Fcloudcom11-bftmr.pdf&usg=AFQjCNHaW44nIaWALd1M_PGmMGb7vhvGYQ&sig2=t6Ilfss3Rorus_gO4onIwQ
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has nothing more than the original Map-Reduce. The 
running time of one cycle essentially is doubled in small 
clusters which is almost twice the time. There is a true 
assumption, first, why intentional errors are few. Second, 
this equality means that the possibility of more than a false 
copy of something similar that returns the same output is 
unimportant. 
It is important to note that Map-Reduce incur any number 
of wrong activities performances at low cost. This is not 
something that is happening by simple solutions such as the 
implementation of a job more than once by using the 
original Hadoop and comparing the output. If any 
performance is affected by a mistake in any activity job may 
be repeated for several times that no two outputs can paired 
together. 
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