
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

81

Manuscript received June 5, 2017
Manuscript revised June 20, 2017

Investigating Hadoop Architecture and Fault Tolerance in Map-
Reduce

Armin Kashkouli1*, Behzad Soleimani2, mina rahbari3

*1Corresponding Author, Computer Department, Faculty of Engineering, Islamic Azad University, Isfahan (Khorasgan)
Branch, Isfahan, Iran

2Computer Department, Faculty of Computer & Electrical, University of Kashan, Kashan, Isfahan, Iran.
3Computer Department, Faculty of Engineering, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran

Abstract
Map-Reduce is often used in implementation of critical and
important tasks such as analysis of the scientific data. However,
evidences in the past indicate the presence of optional errors that
can destroy the results of Map-Reduce. Of course, run times of
Map-Reduce like Hadoop can tolerate crash errors, but do not
tolerate arbitrary or Byzantine errors. Hence in this paper, at first,
the Hadoop architecture in distributed system will be investigated
and then Hadoop will be compared with Map-Reduce and finally
the Map-Reduce fault tolerance will be investigated.
Key words:
Map-Reduce, Hadoop, Fault Tolerance, Task, Job, Architecture.

1. Introduction

Map-Reduce is a framework that has been created by
Google for batch processing of large data which consists of
a programming model and a run-time system that is widely
used by Google in its data centers that supports its main
work tasks such as processing parameters for its Web search
engine. Google execution is not available publicly but it is
an open source version that is widely used by computational
companies, such as Amazon, Facebook, Rock spice,
LinkedIn, Twitter and Yahoo.
Map reduce is also a new approach for scientific computing.
The last argument on the importance of map reduce is
related to the release of economic versions such as Map-
Reduce window azure and Map-Reduce Amazon elastic.
Map reduce is designed to have fault-tolerant capability,
because in the scale of thousands of computers of and
hundreds other devices such as network switches, routers
and power units, components errors occur frequently. For
example, in the first year of Google Assembly the president
of Google reported that, there were a thousand of machine
errors and thousands of hard drive errors. Map-Reduce of
Hadoop and Google Maps often endure crash and reduce
tasks. If one of these tasks before the work outcome stops,
it will be identified and new instance of the task will be
created.
While enduring tasks crash and the loss of data on the disc
is crucial, but other errors that affect the accuracy of Map-
Reduce results certainly will occur in the future. A new

study on the dram errors in a large number of servers in
Google's database for a period of 2.5 years showed that such
errors are more common than previously thought and Dual
In-line Memory Module (DIMM) are affected 8 per cent
annually; though, be protected by an error correct codes [1].
A research by Microsoft on the one million customers’ PC
revealed that CPU and core parts errors often occur. Slow
implementation tolerance mechanisms of Map-Reduce that
are called Hadoop cannot cope with this potential errors or
optional errors (we did not consider pessimistic errors).
These errors cannot be identified by CheckSum and often
will not lead to a task crash that has an impact on it.
Consequently, it can destroy the result of a task invisibly
and gently. These errors should be identified and their
effects should be covered by the execution of each duty [2].
This basic idea has been suggested in the voluntary
computing platform to stimulate the biased volunteers that
their activity as a result of wrong results will be returned.
But that work considered the application of qualitative tasks
that are easier than Map-Reduce jobs. A similar but more
general solution is more precise machinery byzantine fault
tolerant approach, in which a set of programs in parallel can
be run by different servers that implement the commands
similarly but such an approach directly would not be useful
to respond Map-Reduce tasks that only follow client-server
model services (such as a file server). If the results do not
match a simple solution for Map-Reduce is implementation
any work for 2 times and re-execution of the work but these
solutions cost a lot if there is any mistake [3].

2. The outstanding feature of Hadoop

Hadoop is a software environment for writing and
implementing distributed applications that processes huge
amount of data. Hadoop was originally developed to
support the search engine project. Nowadays Hadoop is an
important part of the computing infrastructure for many
internet companies such as LinkedIn. Many traditional tasks
such as telecommunications and media have adapted
themselves with these systems. Hadoop and processing

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

82

distributed large-scale data rapidly are becoming a skill and
an essential part of the programming toolbox [4].
Among the benefits of Hadoop we can mention the
following elements:

2.1 Accessibility

Hadoop operates on large clusters of machines or cloud
computing services.

2.2 Strength

Hadoop is the architecture by assuming the frequent
disorders in hardware performance and consequently it is
very convenient to deal with such disruptions.

2.3 Scalability

Hadoop is scalable linearly to handle big data by adding
more nodes to the cluster.

2.4 Simplicity

Hadoop allows users to write efficient parallel codes [5].

3. Hadoop against distributed systems and
SQL databases

A viable alternative for Moore's law, when making larger
servers, is connecting a large number of smaller machines
to each other to act as a distributed system. Although they
are suitable for storing large amounts of data but are
inefficient to process this massive and intensive data, these
architectures require continuous data transfer between the
server and the client but Hadoop focuses on the code
transfer to the data place instead of continuous transfer and
in a Hadoop cluster there are both of the data and the
calculations. Most important of all is that philosophy of data
transferring to the code location within the cluster has been
broken and as far as possible calculations are done on the
data that resides on the same machine. Here data
transferring the data will take more time than calculations
action on data, data remains in its current location and only
executable code is transferred to the host machine language
[5].
The main reason for the popularity of Hadoop compared
with SQL databases is that SQL is designed to work with
structured data; on the other hand, early Hadoop
applications are presented to work on the unstructured data
such as texts, from this perspective, Hadoop is a more
general pattern.
In fact, Hadoop and SQL complete each other.
Hadoop unlike SQL that stores data in relational tables with
the resident schema, uses pairs of (key, value) as a base unit
that is flexible for a variety of unstructured data. Hadoop,

instead of using SQL declarative language uses the Map
Reduce functional programming language and instead of
query expressions codes and under Map Reduce scripts.
Hadoop is the best choice for write-once and read many
times and by default uses KFKF queue and five scheduling
priorities for tasks scheduling [5].

4. Hadoop architecture

Hadoop uses Master/slave architecture for data storage
systems and distributed computing.
Data storage file system in Hadoop is known as HDFS. A
small cluster of Hadoop includes the following
components:

4.1 Name Node

Let’s begin with arguably the most vital of the Hadoop
daemons—the Name Node. Hadoop employs a
master/slave architecture for both distributed storage and
distributed computation. The distributed storage system is
called the Hadoop File System, or HDFS. The Name Node
is the master of HDFS that directs the slave Data Node
daemons to perform the low-level I/O tasks. The Name
Node is the bookkeeper of HDFS; it keeps track of how your
fi les are broken down into fi le blocks, which nodes store
those blocks, and the overall health of the distributed file
system. The function of the Name Node is memory and I/O
intensive. As such, the server hosting the Name Node
typically doesn’t store any user data or perform any
computations for a Map-Reduce program to lower the
workload on the machine. This means that the Name Node
server doesn’t double as a Data Node or a Task Tracker.
There is unfortunately a negative aspect to the importance
of the Name Node—it’s a single point of failure of your
Hadoop cluster. For any of the other daemons, if their host
nodes fail for software or hardware reasons, the Hadoop
cluster will likely continue to function smoothly or you can
quickly restart it. Not so for the Name Node [5].

4-2- Data Node

Each Data Node in the Hadoop file system is the location of
reserving actual data and performing assigned tasks. When
you want to read or write a HDFS file, file is broken down
into blocks and Name Node tells the client that which
blocks does have each Data Node. Clients directly
communicate with Data Node to process local File in the
blocks. Data Node may communicate with each other to
replicate data blocks.
Figure 1 shows the performance of Name Node and Data
Node [5].

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

83

Fig 1: Name Node /Data Node interaction in HDFS. The Name Node

keeps track of the fi le metadata—which fi les are in the system and how
each fi le is broken down into blocks. The Data Nodes provide backup
store of the blocks and constantly report to the Name Node to keep the

metadata current [5].

This illustration, each block has three replicas. For example,
block 1 (used for data1) is replicated over the three
rightmost Data Nodes. This ensures that if any one Data
Node crashes or becomes inaccessible over the network,
you’ll still be able to read the files. Data Nodes are
constantly reporting to the Name Node. Upon initialization,
each of the Data Nodes informs the Name Node of the
blocks it’s currently storing. After this mapping is complete,
the Data Nodes continually poll the Name Node to provide
information regarding local changes as well as receive
instructions to create, move, or delete blocks from the local
disk. [5].

4.3. Secondary Name Code (SSN4)

The Secondary Name Node (SNN) is an assistant daemon
for monitoring the state of the cluster HDFS. Like the Name
Node, each cluster has one SNN, and it typically resides on
its own machine as well. No other Data Node or Task
Tracker daemons run on the same server. The SNN differs
from the Name Node in that this process doesn’t receive or
record any real-time changes to HDFS. Instead, it
communicates with the Name Node to take snapshots of the
HDFS metadata at intervals defined by the cluster
configuration. As mentioned earlier, the Name Node is a
single point of failure for a Hadoop cluster, and the SNN
snapshots help minimize the downtime and loss of data.
Nevertheless, a Name Node failure requires human
intervention to reconfigure the cluster to use the SNN as the
primary Name Node. We’ll discuss the recovery process in
chapter 8 when we cover best practices for managing your
cluster.

4.4 Job Tracker

Job Tracker is the interface between applications and
Hadoop. Initially the user delivers the code to the cluster
and then Job Tracker provides the action plan to determine
which files must be processed and determining the nodes
for each section of the work and monitors during the run.

4.5. Task Tracker

Such as storage architecture, computational management
sector obeys Master / Slave architecture. Job Tracker
manages the implementation of separate tasks on each Slave
node.
In Figure 2 Job Tracker structure is provided by Task
Tracker.

Fig 2: Job Tracker and Task Tracker interaction. After a client calls the

Job Tracker to begin a data processing job, the Job Tracker partitions the
work and assigns different map and reduce tasks to each Task Tracker in

the cluster [5].

One of the Task Tracker tasks is constant communication
with Job Tracker. If Job Tracker does not receive a
communication from the Task Tracker in specified time
then it is assumed that Task Tracker has been failed and
again it is presented for other nodes in the cluster of related
job [5].
Figure 3 displays the complete Hadoop architecture with
different parts of a given cluster.

Fig 3: Topology of a typical Hadoop cluster. It’s a master/slave

architecture in which the Name Node and Job Tracker are masters and the
Data Nodes and Task Trackers are slaves [5].

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

84

5. Comparing Map-Reduce and Hadoop

Map-Reduce includes a programming model based on
reduction functions that can be found in programming
(albeit with slightly modified meaning) and is a running
space that can be found in groups and databases which has
been created by a large number of computers. Programmers
define map and define reduction functions. Map is
processing input file and production of key-value pairs and
reduction function is to create several of these pairs (with
the same key). Environment first splits the input files and
then feeds several map functions by those pieces then
multiple maps outputs are classified as sensitive to keys and
then re-split and this time they are placed under the feeding
of multiple reduction functions. In the case that it is called
disruption, additional reduction outputs finally come
together in one output file. According to Dean and
Ghemawet expression of all the real activities in the world
is possible by using this model. Hadoop is one performance
from Map-Reduce that has been created from scratching
and it is accessible for free via the Apache License. Hadoop
is not just a template for the construction and
commissioning of Map-Reduce algorithms in Java but it is
also a usable tool to create improved systems and alternative
for Map-Reduce, as an example that is provided in this
study. Hadoop users offer jobs to it. The input file should
already be stored in the Hadoop file system (HDFS) that
breaks files into identical copy chunks and it is called gap.
These gaps are homogeneously stored in the same nodes
that are available to run Hadoop jobs. HDFS is file system
(file system) that is suitable for Hadoop. HDFS manages the
namespace of a file and allows the user data that be saved
in file in chunks and distributed. Blocks of files data can be
done on multiple hosts and in three short hooks that two of
them are in one hook and the other is other hook. Although
it will not implement HDFS and postx but its performance
has been set for large data files and result of data (Blocks
within mb 1/4) HDFS by a node name (Name Node) unit
will be run. Also by using the main server that manages
name spare files performance (open and closed and
renaming) and processes the client’s access to files.

6. Map-Reduce

Map-Reduce is a programming model. It is used for
computing large data sets with parallel and distributed
algorithms in the cluster. Map-Reduce is the heart of
Hadoop.

7. Materials and Methods Fault Tolerance

Fault tolerance is defined as, when the system functions
properly without any data loss even if some hardware
components of the system has failed. It is very hard to reach

cent percent fault tolerance but faults can be tolerated up to
some extent. HDFS provide high throughput to access data
application and suitable to have large data sets as their input
[15]. The main purpose of this fault tolerance is to remove
frequently taking place failures, which occurs commonly
and disturbs the ordinary functioning of the system.
Single point failure nodes occur when a single node failure
causes the entire system to crashes. The primary duty of
fault tolerance is to remove such node which disturbs the
entire normal functioning of the system [14]. Fault tolerance
is one of the major advantages of using Hadoop. The three
main solutions which are used to produce fault tolerance are
data replication, heartbeat messages and checkpoint and
recovery.

8. Fault tolerance in Hadoop

Due to the lack of specific literature about fault tolerance in
Hadoop it was necessary to inspect the source code in order
to understand how it works. This section provides a
summary of the main features that have been analyzed so
far.
Regarding the infrastructure of Hadoop, in the rest of the
document the term worker will be used to refer to the
computing elements in the network, and the term node will
be used to refer to a unit composed by both a worker and its
corresponding part of the HDFS.
One of the main components of Hadoop is the Job Tracker,
which is executed as a daemon process that executes on a
master node. The Job Tracker is the scheduler and the main
coordinator of tasks. It is in charge of distributing the Map-
Reduce tasks between the available computing nodes. Each
time the Job Tracker receives a new job to execute, it
contacts a set of Task Tracker processes, which are
daemons that execute on the working nodes (one Task
Tracker exists for each worker in the infrastructure). Map-
Reduce tasks are then assigned to those working nodes for
which their Task Tracker daemons report that they have
available slots for computation (several tasks assigned to
the same worker are handled by a single Task Tracker
daemon) [16].
The Job Tracker continuously monitors the Task Tracker
nodes using control messages named heartbeat signals.
These heartbeat signals are sent from the Task Tracker to
the Job Tracker and, after receiving this signal, the Job
Tracker sends a response including some commands (such
as start or end a task, or if the Task Tracker needs to be
restarted) to the Task Tracker called Heartbeat Response
[17].

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

85

Fig 4: Communications between the Task Trackers and the Job Tracker
in Hadoop [17]

In case the Job Tracker does not receive any heartbeat from
a Task Tracker for a specified period of time, the Job
Tracker understands that the worker associated to that Task
Tracker has failed. When this situation happens, the Job
Tracker needs to reschedule all pending and in progress
tasks to another Task Tracker, because the intermediate data
belonging to the failed Task Tracker may not be available
anymore. All completed map tasks need also to be
rescheduled if they belong to incomplete jobs, because the
intermediate results residing in the failed Task Tracker file
system may not be accessible to the reduce task. A Task
Tracker can also be blacklisted. In this case, the blacklisted
Task Tracker remains in communication with the Job
Tracker, but no tasks are assigned to the corresponding
worker. When a given number of tasks (by default, this
number is set to 4) belonging to a specific job managed by
a Task Tracker fails, the system considers that a fault has
occurred. Then, when a specific Task Tracker has more than
a given number of faults (by default, this number is also set
to 4) the Task Tracker is blacklisted. There are two
possibilities for a Task Tracker to be removed from the
blacklist: if one or several faults expires (by default, a fault
expires in 24 hours) the Task Tracker is automatically
removed from the blacklist, without need of any
communication. The other possibility is for the Task
Tracker to reboot, when this happens the Job Tracker is
notified in the Heartbeat sent by the Task Tracker, and it is
removed from the blacklist.
Since one of the most important components of Hadoop
related to fault tolerance features is the heartbeat procedure,
after learning the basics about how Hadoop works,
heartbeat became the focus of the research.
Some of the relevant information in the heartbeats the Task
Tracker sends to the Job Tracker are:
●The Task Tracker Status
●Restarted
●If it is the first heartbeat
●If the node requires more tasks to execute

The Task Tracker Status contains information about the
worker managed by the Task Tracker, such as available
virtual and physical memory and information about the
CPU.
The Job Tracker keeps the blacklist with the faulty Task
Tracker and also the last heartbeat received from that Task
Tracker. So, when a new restarted/first heartbeat is received,
the Job Tracker, by using this information, may decide
whether to restart the Task Tracker or to remove the Task
Tracker from the blacklist. After that, the status of the Task
Tracker is updated in the Job Tracker and a Heartbeat
Response is created. This Heartbeat Response contains the
next actions to be taken by the Task Tracker. If there are
tasks to perform, the Task Tracker requires new tasks (this
is a parameter of the Heartbeat) and it is not in the blacklist,
then cleanup tasks and setup tasks are created (the
cleanup/setup mechanisms have not been further
investigated yet). In case there are not cleanup or setup tasks
to perform, the Job Tracker gets new tasks. When tasks are
available, the Lunch Task Action is encapsulated in each of
them, and then the Job Tracker also looks up for:
●Tasks to be killed
●Jobs to kill/cleanup
●Tasks whose output has not yet been saved.
All this actions, if they apply, are added to the list of actions
to be sent in the Heartbeat Response.
The fault tolerance mechanisms implemented in Hadoop
are limited to reassign tasks when a given execution fails.
In this situation, two scenarios are supported:
In case a task assigned to a given Task Tracker fails, a
communication via the Heartbeat is used to notify the Job
Tracker, which will reassign the task to another node if
possible.
If a Task Tracker fails, the Job Tracker will notice the faulty
situation because it will not receive the Heartbeats from that
Task Tracker. Then, the Job Tracker will assign the tasks
the Task Tracker had to another Task Tracker.
There is also a single point of failure in the Job Tracker,
since if it fails, the whole exception fails.
The main benefits of the standard approach for fault
tolerance implemented in Hadoop consists on its simplicity
and that it seems to work well in local clusters. However,
the standard approach is not enough for large distributed
infrastructures such as the ones considered in the
PERMARE project, as the distance between nodes may be
too big, and the time lost in reassigning a task may slow the
system. This approach neither considers a pervasive
environment where new nodes can appear in the system, so
if a new node is available tasks will not be assigned to it,
this means that the system will be wasting available
resources.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

86

9. Related work in the field of fault tolerance
in Map-Reduce

Map-Reduce has been the subject of many researches.
Activities have been carried out that the Map-Reduce be
used in such a way that works well in many environments
and enforces different uses. These applications include
multi-core and multi-processor systems in heterogeneous
environments such as Amazon, EC2 dynamic competitive
environments, possible homogeneous environments with
high hiding such as windows azure, twister system
applications and intensive applications of memory and CPU.
Another important research trend is related to the use of
Map-Reduce for scientific computing, Such as handling
high-energy physics data analysis and clustering k-means
and it is also present for the production of Digital Upgrade
models of several systems that acts as Map-Reduce. The
programming model provides large data for batch
processing. Map-Reduce covers more complex transactions
or provides a higher level of abstraction, such as: Nephle
and Pig Latin dryad. All these jobs show the important of
Map-Reduce model programming but from the standpoint
of fault tolerance it has nothing more than the original Map-
Reduce. Tolerating optional fault has broad power in the
discussion fault tolerance. Voting mechanism to cover
Byzantine errors and the distributed system was introduced
in the early 1980s. State machinery copying is a generic
solution to create a service or byzantine fault tolerance.
Enforcement enough action of operating systems and
byzantine errors will be practical and has already been
shown and long range of its viability has been shown that
include libraries such as: Upright and Gbawa. As was
pointed out copying of state machine to create Map-Reduce
byzantine fault tolerance is not enough. It is possible that
the total of Map-Reduce run is copied on multiple servers
but costs will rise. Byzantine systems maximum for data
storage have been used to run simultaneously with multiple
Semantics (even virtually). Although the voting techniques
have similarities to function in our system but these
solutions cannot be used in the implementation of the BFT1
Map-Reduce. We do not have storage service, but we have
a system for processing. For voluntary tasks set computing
performance, Luis Sarmenta offered a method based on the
voting for fault tolerance. That job is mainly related to the
workers’ timing that specific kinds of errors should not be
occurred. While we also use voting, we do not consider our
workers’ malicious behavior and only consider the random
errors. So we do not follow something in sophisticated
timing unless the two orders of an activity in a knot should
be prevented. In addition, most of our activities in the
context of the implementation of the two-step processing

1 Byzantine Fault-Tolerant

(map and reduction) and high data volume (sample) are in
line with enhancing the performance. This action is quite
different from the aim of that article. In other activity,
studied the same problem and provided optimal scheduling
algorithms. Fernandez and others studied the same problem
but few studies were based on probability analysis. We
restate that the problem we have explored was different and
this analysis is not the objective of the current research.
Recently similar research has been offered from voluntary
calculations for Map-Reduce users. The similarity of those
activities was that both were based on voting. The main
difference was that this work was focused on a different
environment (voluntary calculations) and did not try to
reduce costs and improve the performance. Therefore did
not have any optimization that the core activity had. That
article also offers possible model for algorithm that the
makes it possible to assess the chances of a false result. Of
course, we do not discuss it here. The problem of errors
tolerance in parallel applications that run on parallel
unreliable machines, in the distant past was studied by
Kedem and others. However, they offered a solution based
on calculations of intermediate steps to reveal errors. In
contrast, we do assume that optional errors detection in
optional programs is not applicable, so comparing the two
or more runs of the same activity may be the only way to
discover the wrong processing [11] [10] [9] [8] [7].

10. Conclusion

This paper deals with the important issue of fault tolerance
in Map-Reduce and based on the observed results, Map-
Reduce been the subject of many researches. Activities has
been conducted the Map-Reduce could be used in such a
way that works well in many environments and launches
different uses. These applications include multi-core and
multi-processor systems in heterogeneous environments
such as Amazon, EC2 dynamic competitive environments,
possible homogeneous environments with high hiding such
as windows azure, twister system applications and intensive
applications of memory and CPU. Another important
research trend is related to the use of Map-Reduce for
scientific computing, Such as handling high-energy physics
data analysis and clustering k-means and it is also present
for the production of Digital Upgrade models of several
systems that acts as Map-Reduce. The programming model
provides large data for batch processing. Map-Reduce
covers more complex transactions or provides a higher level
of abstraction, such as: Nephle and Pig Latin dryad. All
these jobs show the importance of Map-Reduce model
programming but from the standpoint of fault tolerance it

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0ahUKEwjAkcfhoYrTAhVMDxoKHe1gCsgQFgg0MAQ&url=http%3A%2F%2Fwww.di.fc.ul.pt%2F%7Ebessani%2Fpublications%2Fcloudcom11-bftmr.pdf&usg=AFQjCNHaW44nIaWALd1M_PGmMGb7vhvGYQ&sig2=t6Ilfss3Rorus_gO4onIwQ
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&cad=rja&uact=8&ved=0ahUKEwjAkcfhoYrTAhVMDxoKHe1gCsgQFgg0MAQ&url=http%3A%2F%2Fwww.di.fc.ul.pt%2F%7Ebessani%2Fpublications%2Fcloudcom11-bftmr.pdf&usg=AFQjCNHaW44nIaWALd1M_PGmMGb7vhvGYQ&sig2=t6Ilfss3Rorus_gO4onIwQ

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017

87

has nothing more than the original Map-Reduce. The
running time of one cycle essentially is doubled in small
clusters which is almost twice the time. There is a true
assumption, first, why intentional errors are few. Second,
this equality means that the possibility of more than a false
copy of something similar that returns the same output is
unimportant.
It is important to note that Map-Reduce incur any number
of wrong activities performances at low cost. This is not
something that is happening by simple solutions such as the
implementation of a job more than once by using the
original Hadoop and comparing the output. If any
performance is affected by a mistake in any activity job may
be repeated for several times that no two outputs can paired
together.

References
[1] P. NÄSHOLM, “Extracting Data from NoSQL Databases”,

Examen sarbeteförmaster examen, English, vol 74, 2012.
[2] A. LITH, and J. MATTSON, “Investigating storage solutions

for large data” ,Department of Computer Science and
Engineering G¨oteborg, Sweden, 2010.

[3] Ch. Strauch, Kriha, ”NoSQL Databases”, INTERNET, 2012
[4] T. WHITE, “Hadoop, The Definitive Guide”, O’Reilly Media,

Inc, 2011.
[5] Ch. Lam, “Hadoop in action”, Printed in the United States of

America, 2011.
[6] K. Shvachko, H. Kuang, S. Radia,”TheHadoop Distributed

File System”, IEEE, 2010.
[7] M. Edwards, A. Rambani, and y. ZHU, ”Design of Hadoop-

based Framework for Analytics of
LargeSynchrophasorDatasets”, Elsevier B.V., Procedia
Computer Science 12, 254-258, 2012.

[8] R. Chansler, H. Kuang, S. Radia, K.Shvachko, and S.
Srinivas, “The Hadoop Distributed File System”,
http://www.aosabook.org/en/HDFS.html.

[9] D. Borthakur, “The Hadoop Distributed File System:
Architecture and Design”, copyright from internet, 2007.

[10] W. Zhao, “BFT-WS: A Byzantine fault tolerance framework
for web services,” in Proc. of EDOC’07, 2008, pp. 89–96.

[11] Z. Zheng, T. Zhou, M. Lyu, and I. King, “FTCloud: A
Component Ranking Framework for Fault-Tolerant Cloud
Applications,” in Proc. of ISSRE’10, 2010, pp. 398–407.

[12] B.He, W.Fang, Q.Luo, N.Govindaraju, and T.Wang. Mars:
aMap-Reduce framework on graphics processorsACM, 2008.

[13] C.Olston, B.Reed, U.Srivastava, R.Kumar, and A.Tomkins.
Pig latin: a not-so-foreignlanguage for data processing.
InSIGMOD ’08: Proceedings of 2008 ACM SIGMOD
international conference on Management of data, ACM, 2008.

[14] Selic, B. 2004. Fault tolerance techniques for Distributed
systems.IBM.http://www.ibm.com/developerworks/rational/
libray/114.htm.

[15] The Hadoop Distributed File System: Architecture
andDesign” by Dhruba Borthakur,
http://hadoop.apache.org/docs/r0.18.0/HDFS_design.pdf

[16] Apache Hadoop (2013). Hadoop documentation. Available at
http://hadoop.apache.org/, accessed August 2013.

[17] S. Kadirvel and J. Fortes (2013). Towards self-caring Map-
Reduce: a study of performance penalties under faults.

Concurrency and Computation: Practice and Experience.
Online first 28 May 2013. DOI:10.1002/cpe.3044.

http://hadoop.apache.org/docs/r0.18.0/hdfs_design.pdf

