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Abstract 
With the emergence of Wireless Sensor Networks (WSNs), Data 
Acquisition (DAQ) and signal reconstruction have been 
considered as the main area of interest in the IT research. In this 
paper, using an external server connected to the internet, the 
adaptive acquisition framework and WSN of signal 
reconstruction (AAR framework with D-PCA) along with the 
combination of the distilled sensing algorithms have been taken 
into account. Furthermore, for monitoring, Distributed Principal 
Component Analysis (D-PCA), data collection and signal 
reconstruction of WSNs are also considered. The results of the 
simulation show that using the adaptive algorithms of the 
Compressive Distilled Sensing in the signal sampling is more 
significant than the non-adaptive compressed Sensing algorithms. 
The former can solve the scalability problem and it also leads to 
the increase of the quality of signal sampling in WSNs. Moreover, 
by exploiting the algorithm of D-PCA for designing the Sparse 
Dictionary i.e. Ψ matrix in the server, the measurements with 
greater sparse have been transferred to the server which leads to a 
more exact reconstruction. In reconstructing the acquired signals, 
especially the sparse signals or signals with temporal correlation, 
the proposed framework in this work is very effective. The 
presented method decreased the number of samples and 
improved the signal reconstruction error smaller than 5 × 10-6. 
Keywords: 
Compressive sensing, compressive distilled sensing; 
distilledsensing:distributed principal component analysis; 
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1. Introduction 

The wireless sensor network is comprised of a great 
number of sensor nodes which are widely spread in an 
environment and it also collects information from the 
environment [1]. Data processing belongs to a large part of 
modern life. The favorite data usually have representations 
which are in the form of sparse in the main basis or the 
transformation basis. In general, the sparse has a 
significant role in sciences: For instance sparsity affects 
the estimates [2]. One of the important algorithms which is 
greatly effective in making sparsity structures is the 
principal components analysis algorithm [3] and this is 
particularly true with its distributed kind [4, 5]. Principal 
components analysis is a statistical analysis which selects 

a lower number of factors as the eigenvalues among the 
primal factors in order to omit some minor details.  
In the traditional methods for sampling the data, all of the 
data are obtained firstly and then compressed. According 
to Donoho the problem with such processing is that: “Why 
these attempts are made to collect all the data while most 
of them will be discarded? Cannot we measure just the 
part which is not going to be discarded?” [6]. Instead, 
compressed sensing will do the same thing.  
In the spite of attractions of compressed sensing method, 
this method has problems with the augmentation or 
existence of strong noise in the environment and losses 
required efficiency from accuracy and reduced in signal 
reconstruction error. This issue has made us to implement 
our proposed framework based on the adaptive 
compressive distilled sensing sampling method [7]. Our 
proposed framework has been presented in the two forms 
of the adaptive and non-adaptive in which the non-
adaptive method compressed sensing of traditional theory 
[6] and has been used for sampling but in the other one, 
the distilled sensing [8] has been exploited in the 
compressed sensing.  
 
To monitor and control all of the operations in the wireless 
sensor network through a server connected to the internet, 
an architecture framework has been designed and 
implemented. The overall architecture of our proposal 
consists of four blocks which are treated momentarily. 
However these blocks include: 

 Database: It is responsible for storing the 
measurements of the wireless sensor network. 

 The reconstruction signal and adaptive control 
block consists of two main modules: 

b.1. Adaptive control module: It is responsible for 
transferring the measurement instruction and refining 
locations from which the measurements are collected. 
Other method of this analysis algorithm module is the 
principal distributed component which is the sparsity 
dictionary i.e. Ψ matrix (it is worth noting that signal 
values and sparsity dictionary are respectively located in Ф 
and Ψ matrices which are displayed by a change of the 
variable and like many of the articles, it is demonstrated in 
symbolic form as a matrix i.e. A. Thus the matrix of A 
equals  A = Ψ Ф) to redesign the next round of 
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measurements.  
b.2. Signal reconstruction module: It is responsible for 

reconstructing the signals presented in the database; the 
core of this module is the first order algorithm NESTA [9]. 

 Transmission block: This block is responsible 
for wireless sensor network transmissions. 

 Representation Block: It is responsible for 
displaying the reconstructed measurements in a dialogic 
context for the end user. 
 
In the second section, the literature review is provided. In 
the third section, non-adaptive approach, adaptive 
approach, the principal component analysis algorithm and 
its distributed kind, NESTA algorithm and the theoretical 
stages of the reconstruction of the results from an adaptive 
framework of sampling signal are explained by NESTA 
algorithm. In the fourth section, all of the frameworks of 
adaptive framework of sampling signal and the proposed 
signal reconstruction are explained. In the fifth section, the 
results of the simulation which has been obtained by 
MATLAB software and frameworks under MATLAB, the 
l_1-Magic [10] and GPSR [11] will be explored. In the last 
section, the results and the solutions are provided for the 
future researches.  

2. SecLiterature Review 

The system Ebrahim and Assi[12] introduced the approach 
based on parallel projections on the basis of compressed 
sensing. They demonstrated that parallel approach can be 
effective in improving the consumed energy by decreasing 
the transmissions rate. However, this method in is non-
adaptive and, as we will see in the last section of this paper, 
non-adaptive methods have weak performance in noisy 
contexts. In [13] solving the problem of data collection in 
WSNs with compressed sensing theory based on Random 
Walk approach has been considered. In this article a 
framework is proposed for collecting data with the random 
approach. It is worth noting that, the influence of ambient 
noise on the signal in its DAQ and reconstruction has been 
overlooked. In [14] a framework has been proposed for 
monitoring the wireless sensor network based on 
compressed sensing.  In this article the samples are also 
made in the non-adaptive form and by a random matrix, 
besides at the round called the stage of training, the sensor 
nodes start to collect the data with the possibility equal to 
1 which leads to the increase in the load of network as a 
result of decrease in the lifetime.   

3. Data Acquisition Methods and Signal 
Reconstruction from Theoretical Viewpoint 

3.1 Non-Adaptive Approach Based on Traditional 
Compressed Sensing 

In this section, we deal with the general issue of 
reconstructing the sparse vector 𝑥𝑥 ∈ 𝑅𝑅𝑛𝑛 .     Let us 
assume that 𝑥𝑥 is simply described as the following Eq. 
(1).  
𝑦𝑦 = 𝑥𝑥 + 𝑒𝑒 .   (1) 
Where 𝑒𝑒 ∈ 𝑅𝑅𝑛𝑛shows noise, x is regarded as sparse signal 
and all the non-zero components of  𝑥𝑥 have the same 
value like  μ > 0. Support of x  Eq. is shown in the 
form of 𝑆𝑆 = 𝑆𝑆(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) which is a collection of 
all of the parameters in which x  have non-zero 
components, for the noise quantity, we assume that 𝑒𝑒 ∈
ℝ𝑛𝑛 represents a vector of additive Gaussian white noise; 
i.e. 𝑒𝑒𝑗𝑗 𝑖𝑖.𝑖𝑖.𝑑𝑑~ 𝒩𝒩(0,1), 𝑗𝑗 = 1,2, … ,𝑛𝑛  where i.i.d. stands for 
independent and identically distributed𝒩𝒩(0,1)denotes the 
standard Gaussian distribution. The main goal in this work 
is to reconstruct support of 𝑥𝑥 or to obtain an accurate 
estimation using the 𝑦𝑦noise data; here the support is 
shown as S� = S�(y) = S�DS. 

3.2 Adaptive Approach Based on Compressive 
Distilled Sensing 

3.2.1. Distillation Sensing 

We begin our discussion with Distillation Sensing (DS) by 
presenting a slightly generalized model of Eq. (1). Assume 
that we are able to collect measurements of x components 
in T observation steps; according to the model (1), we 
will have: 
𝑦𝑦𝑡𝑡,𝑗𝑗 = 𝑥𝑥𝑗𝑗 + 𝜌𝜌𝑡𝑡,𝑗𝑗

−1/2𝑒𝑒𝑡𝑡,𝑗𝑗  , 𝑗𝑗 = 1,2, … ,𝑛𝑛, 𝑠𝑠 = 1,2, … ,𝑇𝑇. (2)  
Where the noise parameter is 𝑒𝑒𝑡𝑡,𝑗𝑗 with the equal value of 
𝑖𝑖. 𝑖𝑖.𝑑𝑑 𝒩𝒩(0,1), t is the index related to the observing step 
and 𝑠𝑠𝑡𝑡,𝑗𝑗 is the precision of non-negative parameters that 
can be selected for changing the noise variance at the 
current observation level. In other words, the variance of 
added noise related to the observing step 𝑦𝑦𝑡𝑡,𝑗𝑗equals 𝑠𝑠𝑡𝑡,𝑗𝑗

−1. 
Thus, the highest value of 𝑠𝑠𝑡𝑡,𝑗𝑗 is indicative of the greatest 
precision in observance. More specifically, the locations 
will be identified at the next steps which are related to the 
observations. They are strictly greater than zero meaning 
that I2 satisfies the following Eq. I2 = {j ∈ I1:𝑦𝑦𝑡𝑡 > 0}  . 
For more information and observation of DS algorithm 
code see the work elsewhere [8, 15]. 

3.2.2. Distillation in Compressive Sensing 

It is clear that adaptability in sampling can make 
considerable improvement in effective measurement of 
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SNR about the issue of sparse reconstruction. On the other 
hand, the number of the collected measurements by DS 
process [8] is absolutely greater than non-adaptive method. 
Since each component of the signal is measured at least 
once and some of the components might be measured T 
times meaning that every repetition of this process one 
time measurement is done, at the refinement step of DS 
algorithm(or in average) removes approximately half of 
the locations lacking signal components. 
The observation model (2) can be written as follows: 
𝑦𝑦𝑡𝑡,𝑗𝑗 = 𝜌𝜌𝑡𝑡,𝑗𝑗

1/2𝑥𝑥𝑗𝑗 + 𝑒𝑒𝑡𝑡,𝑗𝑗  , 𝑗𝑗 = 1,2, … ,𝑛𝑛, 𝑠𝑠 = 1,2, … ,𝑇𝑇(3) 
Under the above formulation, the whole process of 
sampling can be effectively modeled by the matrix vector 
formulation 𝑦𝑦 = 𝐴𝐴𝑥𝑥 + 𝑒𝑒 where A (A = ΨФ) is a matrix 
with the values of the signal. We provide our interpretation 
of resources measurement budget from the viewpoint of 
matrix A which is meant to state that the quantity1∑ 𝑠𝑠𝑡𝑡,𝑦𝑦𝑡𝑡,𝑗𝑗  
is related to the limitation on all of the observation times 
and also the relevant quantity of this model encapsulates 
an inherent flexibility in the sampling process which 
inclines sensing of the resources towards the locations 
which have useful data [7, 15], in the main limitation 
formulation of  ∑ 𝑠𝑠𝑡𝑡,𝑠𝑠𝑡𝑡,𝑗𝑗 , it is imposed on the 
measurement budget.  
Now, let us explore the compressive distilled sensing 
algorithm. Every step of the algorithm is displayed with 
the index below  𝑠𝑠 = 1, 2, … , T  .we calculate the 
measurements by 𝑚𝑚𝑡𝑡 × 𝑛𝑛t sampling matrix of 𝐴𝐴𝑡𝑡 through 
the following method. It means for 𝑠𝑠 = 1,2, … .𝑚𝑚𝑡𝑡 and 
𝑣𝑣 ∈ It ( It  is the same as set of promising locations), 
−𝐼𝐼(𝑠𝑠, 𝑣𝑣)th entry of 𝐴𝐴𝑡𝑡 is independently obtained from the 
distribution 𝒩𝒩(0, 𝜏𝜏𝑡𝑡

𝑚𝑚𝑡𝑡
) which𝜏𝜏𝑡𝑡 = 𝐵𝐵𝑡𝑡/|𝐼𝐼𝑡𝑡|. Otherwise, the 

mentioned entry in Atmatrix becomes equal to zero which 
means if v ∈ Ic, Ic is the total locations without signal 
components. For further information and observing the 
pseudo-code algorithm of DS see other works in the 
literature [7, 15].  

3.3 Making Sparsity Matrix and Compressing by 
PCA and D-PCA 

3.3.1. Compressing by PCA 

Assume that 𝑥𝑥𝑘𝑘 ∈ ℝ𝑁𝑁 is the measurement vector of our 
WSN in the time interval of  k  with 𝑛𝑛  nodes. The 
measurements are based on fixed sampling rate in k 
discrete-time of  𝐾𝐾 = 1,2, … . ,𝐾𝐾 have been collected. 
Geometrically speaking, 𝑥𝑥𝑘𝑘 is regarded as a location in 
ℝ𝑁𝑁 and by observing M-dimensional plan (where 𝑀𝑀 ≪

                                          
1This limitation is related to the total measurements which can be made it 
means that if we assume that 𝐵𝐵(𝑛𝑛) is the measurement budget the 
mentioned limitation should satisfy the Eq. below ∑ ∑ 𝑠𝑠𝑡𝑡,𝑗𝑗

𝐽𝐽
𝑗𝑗=1

𝑇𝑇
𝑡𝑡=1 ≤ 𝐵𝐵(𝑛𝑛). 

𝑁𝑁), the best location in accordance with 𝑥𝑥𝑘𝑘is obtained in 
terms of its smallest Euclidean distance. Mean and 
covariance of 2𝑥𝑥𝑘𝑘3 are respectively displayed by 𝑥𝑥� and 
∑� and is calculated easily by the following Eq. [16]: 

𝑥𝑥� =
1

𝑘𝑘 ∑ 𝑥𝑥𝑘𝑘𝐾𝐾
𝑘𝑘=1

,�
�

=
1
𝑘𝑘
�(𝑥𝑥𝑘𝑘

𝐾𝐾

𝑘𝑘=1

− �̅�𝑥)(𝑥𝑥𝑘𝑘 − �̅�𝑥)𝑇𝑇  (4) 

Notice that in 𝐾𝐾𝑦𝑦𝐾𝐾𝐾𝐾𝑛𝑛 theorem, maximizing  ∑ 𝑏𝑏𝑗𝑗𝑇𝑇∑𝑏𝑏𝑗𝑗𝑀𝑀
𝑗𝑗=1  

is related to finding out the linear transformation 𝑇𝑇:ℝ𝑁𝑁 →
ℝ𝑀𝑀4 which guarantees the maximum data about the main 
signal 𝑥𝑥𝑘𝑘 ∈ ℝ𝑁𝑁 should be maintained [3].  

3.3.2. Compressing by D-PCA 

PCA primal technique [3] is based on the linear 
transformation of sensor measurements. When the number 
of measurements is small, this linear transformation is 
effective, otherwise, it not only increases the computation 
time but also increases the consuming energy. The more 
the signal has sparsity, the more effective and precise the 
reconstruction can be [6]. Therefore, we use methods cited 
in to sparse the measured data framework and redesign its 
sparsity dictionary Ψ (which is shown here by 𝑋𝑋� and in 
the text by 𝐴𝐴 = 𝛹𝛹Ф) in the next round of our measurement.  
If 𝑦𝑦  inputs are sufficiently correlated, the total 
eigenvalues of sparsity in the sparsity dictionary 𝑋𝑋� can 
use compression matrix to compress M-dimensional 
measurements in the columns of Y to Q-dimension (𝑄𝑄 ≪
𝑌𝑌), which means �̂�𝑍 = 𝑋𝑋�ℎ𝑌𝑌. Now, the reconstruction of 
the signal can be done by implementing 𝑋𝑋�  as a 
decompression matrix which means Y = 𝑋𝑋�.In terms of the 
minimum error squares criterion to the linear compression, 
the function of 𝑋𝑋� is much better than Eq. of traditional 
PCA [4, 5]. 
If 𝑋𝑋�  is known, the coefficients of this matrix can be 
transferred to the nodes and it can be used in the future 
measurements of compression with X sparsity dictionary. 
To this end, the following block partition is defined [4]: 

𝑋𝑋� = �
𝑋𝑋�1
⋮
𝑋𝑋�𝐾𝐾
� .  (5) 

Where 𝑋𝑋�𝑘𝑘 is a part of 𝑋𝑋�coefficients which are used in𝑦𝑦𝑘𝑘. 
It means 𝑋𝑋�𝐻𝐻𝑦𝑦 = ∑ 𝑋𝑋�𝐾𝐾𝐻𝐻𝑦𝑦𝐾𝐾𝑘𝑘∈𝐾𝐾 , thus the node number of  k 
can transmit the observations in Q-dimension to the   
M-dimension. 

                                          
2 Mean and Covariance 



IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.6, June 2017 150 

3.4 Sparse Reconstruction Signal Algorithm of 
NESTA 

NESTA [9] is a quick and strong first-order method which 
is developed to resolve the Basis-pursuit problems. The 
mentioned algorithm uses two methods of 
YuriiNesterov[17, 18], the first of which is idea of the 
accelerated convergence scheme for the first-order method. 
It provides optimal convergence rate for the issues of the 
mentioned class. The second idea is the smooth technique 
which is a substitution for the non-smooth technique of 
𝑙𝑙1 −norm. 
NESTA primal algorithm solves the problem of Eq. 6, 
which is often known as the basis pursuit denoising 
(BDPN) [9]: 
(𝐵𝐵𝐵𝐵𝜀𝜀) 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒 ||𝑥𝑥||𝑙𝑙1𝑠𝑠𝑠𝑠𝑏𝑏𝑗𝑗𝑒𝑒𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠 ||𝑏𝑏 − 𝐴𝐴𝑥𝑥||𝑙𝑙2 ≤  𝜖𝜖 (6) 
Parameter  𝜖𝜖  is normally small and is calculated in 
accordance with the estimation of the standard deviation 
error from every noise in the measurements. If 𝜖𝜖 was 
equal to zero, this problem was just an issue of the basis 
pursuit. The smoothed version of NESTA solves the 
𝑙𝑙1 −norm meaning that instead of solving the problem as 
follows,  
𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒 ||𝛼𝛼||𝑙𝑙1  𝑠𝑠𝑠𝑠𝑏𝑏𝑗𝑗𝑒𝑒𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠 𝑥𝑥 ∈ 𝑄𝑄𝑝𝑝, (7)  
where𝑄𝑄𝑝𝑝is the primal feasible set as (8),  
𝑄𝑄𝑝𝑝 = �𝑥𝑥: ||𝑏𝑏 − 𝐴𝐴𝑥𝑥||𝑙𝑙2 ≤  𝜖𝜖� , (8) 
and solves it in the form of the following Eq.: 
𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒 𝐾𝐾𝜇𝜇(𝑥𝑥)𝑠𝑠𝑠𝑠𝑏𝑏𝑗𝑗𝑒𝑒𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠 𝑥𝑥 ∈ 𝑄𝑄𝑝𝑝. (9) 
Where 𝐾𝐾𝜇𝜇the smoothed version of is 𝑙𝑙1 −norm, which if 
𝜇𝜇 is equal to zero, 𝐾𝐾𝜇𝜇 is exactly the same as 𝑙𝑙1 −norm. It 
should be noted that in order to increase the accuracy, μ 
should be selected in a small number and for accelerating 
the performance one should choose a greater value of𝜇𝜇 . 

3.4.1. NESTA Sparse Signal Reconstruction Algorithm 

As mentioned in [7, 15] one can reconstruct the 
compressed signal which is the result of measurement 
vector of y  and sampling matrix of A  with various 
algorithms such as LASSO [19] or other sparse signal 
reconstruction algorithms [20]. Here, we are eager to 
resolve the convex optimization problem by the first-order 
and precise algorithm of NESTA [9]. To understand the 
reconstruction process, we can model the measurement 
model (3) by the standard and known sampling matrix 
equation: 
𝑦𝑦 = 𝐴𝐴𝑥𝑥 + 𝑒𝑒 ,(10) 
Where 𝑥𝑥  is assumed to be sparse,  A  is the sampling 
matrix of vector or measurement, y is the measurement 
vector in T time and e is the same as added noise to the 
signal in nosed contexts. Now, according to Model 10, the 
support set for the minimization of 𝑙𝑙1 −norm can be 
solved through the following Eq.: 

𝑥𝑥� = 𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚 ||𝑥𝑥||𝑙𝑙1
𝑠𝑠𝑠𝑠𝑠𝑠𝑗𝑗𝑚𝑚𝑠𝑠𝑡𝑡 𝑡𝑡𝑡𝑡 ||𝑦𝑦𝑡𝑡−𝐴𝐴𝑡𝑡𝑥𝑥||𝑙𝑙2≤𝜀𝜀

. (11) 

LASSO algorithm can be solved as: 
𝑥𝑥� = 𝐾𝐾𝑠𝑠𝑎𝑎𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚∈ℝ𝑛𝑛||𝑦𝑦𝑡𝑡 − 𝐴𝐴𝑡𝑡𝑍𝑍||22 + 𝜆𝜆||𝑍𝑍||1 .  (12) 
As mentioned above, the smoothed version of NESTA 
solves 𝑙𝑙1 − norm, instead of solving through the 
minimization Eq. 11 in the following form below: 
𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒 ||𝑥𝑥||𝑙𝑙1𝑠𝑠. 𝑠𝑠  𝑥𝑥 ∈ 𝑄𝑄𝑝𝑝 , (13) 
Where 𝑄𝑄𝑝𝑝is the same as the primal feasible set: 
𝑄𝑄𝑝𝑝 = {𝑥𝑥: ||𝑦𝑦𝑡𝑡 − 𝐴𝐴𝑡𝑡𝑥𝑥||𝑙𝑙2 ≤  𝜀𝜀, (14) 
and it is solved as: 
𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑒𝑒 𝐾𝐾𝜇𝜇(𝑥𝑥) 𝑠𝑠. 𝑠𝑠  𝑥𝑥 ∈ 𝑄𝑄𝑝𝑝. (15)  
Wherefµ(x) is the smoothed version of 𝑙𝑙1 −norm. With 
regard to the Eq. 𝑚𝑚𝑖𝑖𝑛𝑛

𝑥𝑥∈𝑄𝑄𝑝𝑝
𝐾𝐾(𝑥𝑥) in [18], the problem of Eq. 10 

can be rewritten for reconstructing by the NESTA 
algorithm as: 
𝑚𝑚𝑖𝑖𝑛𝑛
𝑥𝑥∈𝑄𝑄𝑝𝑝

||𝑥𝑥||𝑙𝑙1 , (16) 

Where 𝑄𝑄𝑝𝑝 is in the sampling interval of convex Tand 
𝑥𝑥 ∈ ℝ𝑛𝑛 one sparse vector with only Qeffective (𝑄𝑄 ≪ 𝑀𝑀) 
element for reconstructing. The 𝜀𝜀 is related to noise in 
matrix 𝑦𝑦𝑡𝑡 measurements in noisy environments and 𝐴𝐴is 
equal with 𝑠𝑠𝑡𝑡,𝑗𝑗

1/2  and is the sample matrix of our 
framework. In NESTA, ||𝑥𝑥||𝑙𝑙1in the form of a maximizing 
problem can be rewritten as: 
||𝑥𝑥||𝑙𝑙1 = 𝑚𝑚𝐾𝐾𝑥𝑥

𝑠𝑠∈𝑄𝑄𝑑𝑑
⟨𝑠𝑠 , 𝑥𝑥⟩ , (17) 

Where 𝑄𝑄𝑑𝑑 ⊆ ℝ𝑛𝑛 is the same as 𝑙𝑙∞and is defined as: 
𝑄𝑄𝑑𝑑 = {𝑠𝑠: ||𝑠𝑠||∞ ≤ 1} , (18) 
Thus, ||𝑥𝑥||𝑙𝑙1 function with regard to Eq. 9 is estimated as: 
||𝑥𝑥||𝑙𝑙1 ≃ 𝐾𝐾𝜇𝜇(𝑥𝑥) = 𝑚𝑚𝐾𝐾𝑥𝑥

𝑠𝑠∈𝑄𝑄𝑑𝑑
{ ⟨𝑠𝑠, 𝑠𝑠⟩ − 𝜇𝜇

2
||𝑠𝑠||𝑙𝑙2

2 }, (19) 

It is shown that the function 𝛻𝛻𝐾𝐾𝜇𝜇(𝑥𝑥)  is a Lipschitz 
function [9]. As a result, NESTA method solves the Eq.: 
𝑚𝑚𝑖𝑖𝑛𝑛𝑥𝑥∈𝑄𝑄𝑝𝑝′𝑚𝑚𝐾𝐾𝑥𝑥𝑠𝑠∈𝑄𝑄𝑑𝑑{⟨𝑠𝑠, 𝑥𝑥⟩ − 𝑠𝑠

2
||𝑠𝑠||𝑙𝑙2} . (20) 

Now, Eq. (13) can be solved through Nesterov 
minimization algorithm in a linear time by sequential 
evaluation of the elements of 𝑠𝑠. In fact, the supporting set 
which we display as �̂�𝑆𝐷𝐷𝐷𝐷 is calculated as below: 
�̂�𝑆𝐷𝐷𝐷𝐷 = 𝐾𝐾𝑠𝑠𝑎𝑎𝑚𝑚𝐾𝐾𝑥𝑥𝑠𝑠∈𝑄𝑄𝑑𝑑{⟨𝑠𝑠, 𝑥𝑥⟩ − 𝑠𝑠

2
||𝑠𝑠||22}  (21) 

Now the supporting set can be defined as below: 
�̂�𝑆𝐷𝐷𝐷𝐷 = �𝑗𝑗 ∈ 𝐼𝐼𝑡𝑡 , 𝑥𝑥�𝑗𝑗 > 0�.(22) 

4. Adaptive Framework of Data Acquisition 
and Reconstructing Wireless Sensor of 
Network Signal 

The proposed framework or namely adaptive framework 
for data acquisition and reconstruction signal in wireless 
sensor network with distributed PCA is abbreviated as  
AAR-Framework with D-PCA by combining the 
distributed component analysis and is comprised of four 
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main parts: database, signal reconstructing block including 
two main modules i.e. adaptive control module and signal 
reconstructing module, transmission block and 
representation block. 
1. Database: This component is the mediator 

between all the blocks which receive their 
required data from this component. Every 
measurement in this component is described by 
three fields first of which is Sensor ID: that is the 
characteristic of the sensor that transmitted the 
data. Signal Value: it measures the values by the 
sensor with the specified in the ID field. Capture 
Time: it shows discrete time sample 𝑠𝑠 =
1,2, … ,𝑇𝑇. 

2. Signal reconstructing block and adaptive control 
2.1 Adaptive control module: This module is 
responsible for synchronizingDAQ process with 
regard to the refinement step output related to 
compressive distilled sensing algorithm. The 
observation step with 𝑦𝑦𝑡𝑡 = 𝐴𝐴𝑡𝑡𝑥𝑥 + 𝑒𝑒𝑡𝑡  is the 
start of sampling step in which the order of 
starting the measurements is transferred and the 

measurements are calculated by the output 
resulted from the refinement step. As a result, it 
causes the practiced samples to become 
potentially having non-zero components of the 
signal. Thus, the refining step is implemented 
which divides the locations in the measurement 
step into two independent sets that are used in 
the the next round of iteration(in observation 
step), The theoretical expression of the module 
is done as below:  

𝑦𝑦1,𝑦𝑦2, … ,𝑦𝑦𝑡𝑡+1���������
𝑂𝑂𝑠𝑠𝑠𝑠𝑚𝑚𝑂𝑂𝑂𝑂𝑂𝑂𝑡𝑡𝑖𝑖𝑡𝑡𝑛𝑛 

 , 𝐼𝐼1, 𝐼𝐼2, … , 𝐼𝐼𝑡𝑡+1���������
𝑅𝑅𝑚𝑚𝑅𝑅𝑖𝑖𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑡𝑡

 (23) 

The set of locations equals with {𝐼𝐼𝑡𝑡}𝑡𝑡=1𝑇𝑇  and the 
observations is {𝑦𝑦𝑡𝑡 ,𝐴𝐴𝑡𝑡}𝑡𝑡=1𝑇𝑇  . One of the other 
responsibilities of this module is redesigning sparse 
dictionary. The coefficients of sparsity dictionary are 
calculated by the main distributed component analysis 
signal. Then, the sparsity dictionary is redesigned and 
transferred to the sensor nodes along with the promising 
locations. In Figure 1, a scheme of adaptive control 
module design is displayed: 

 

Fig. 1Adaptive control module 

2.2. Signal reconstructing module: It is 
responsible for reconstructing the main by the 
measurements within the database in every 
refining step which is shown by the index 𝑠𝑠 =
1,2, … ,𝑇𝑇.. The measurements are calculated by 
𝐴𝐴𝑡𝑡  matrix which is a  𝑚𝑚𝑡𝑡 ∗ 𝑛𝑛  matrix. The 
output of compressive distilled sensing 
algorithm or {𝑦𝑦𝑡𝑡 ,𝐴𝐴𝑡𝑡}𝑡𝑡=1𝑇𝑇  is the optimization 
NESTA reconstruction algorithm. 

3. Transmission block: It is the enter and exit gate 
of the frameworks messages which consists of 
adaptive control module messages for the next 

period of DAQ and the sensing network data to 
transmit to the database.  

4. Representation Block: The reconstructed data of 
WSNs are shown to the end user in an interactive 
environment.  

5. Results and Discussions 

In order to analyze the AAR Framework with D-PCA, by 
applying the changes, the package of 𝑙𝑙1 − 𝑀𝑀𝐾𝐾𝑎𝑎𝑖𝑖𝑠𝑠[10] of 
GPSR software is used [11]. In the present analysis, the 
proposed framework is compared with two WNS-Control 
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and Non-adaptive frameworks [14] with regard to 
precision, the amount of reconstruction error and the 
locations from which the samples are taken. It is worth 
noting that in these analyses to have a better glance at the 
efficacy of our framework, three main indices are used: 

i. Mean squared error index (MSE) [21]: This index is 
used for determining the amount of 
reconstruction error proportionate to the signal 
scale: 

𝑀𝑀𝑆𝑆𝑀𝑀 = �1
𝑛𝑛
� ||�̂�𝑠 − 𝑥𝑥||22(24) 

ii. False discovery proportion index (FDP) [15]: Non-
zero signal components are located in some of 
these locations while it is not the case: 

𝐹𝐹𝐹𝐹𝐵𝐵��̂�𝑆� = ��̂�𝐷 \ 𝐷𝐷�
��̂�𝐷�

  (25) 
iii. Non-discovery proportion index (NDP) [15]: A 

special situation including non-zero signal 
components, while this is not true: 

𝑁𝑁𝐹𝐹𝐵𝐵��̂�𝑆� = �𝐷𝐷 \ �̂�𝐷�
|𝐷𝐷|

  (26) 
The analysis under the different signal scales which are 
generally displayed by n are taken into consideration for 
𝑛𝑛 = 212, 213, … , 222. A summary of applying parameters 
are shown in Table 1: 

Table 1.Simulation Parameters. 
Index Value 

Sampling scale signal(or signal length) 𝑛𝑛 = 212, 213, … , 222 
Noise 0-25 dB 

Sparsity level (non-zero samples) 5-1024 
Number of experiment’s turn 1000 

Figure 2 displays ascatter plot of FDP and NDP values 
with the mean value of 1000 trials from both AAR- 
Framework with D-PCA and non-adaptive. The 
experiments are related to signal with the length of 𝑛𝑛 =

222and 128 non-zero existence within the range of  μ > 0 
and 𝑆𝑆𝑁𝑁𝑅𝑅 = 20𝑑𝑑𝐵𝐵. 
As shown in Fig. 2, the error performance of non-adaptive 
process with regard to  

 

Fig. 2NDP and PDF spread charts (scatter plot) for the adaptive framework AAR-Framework with D-PCA and non-adaptive algorithm 

Expansion of the dimensions decreases in a great extant 
while the performance of the adaptive framework is the 
same to a great extent. In Figure 3, we used the MSE 
criterion to estimate the reconstruction signal error with 
regard to the different amounts of noise in the 
environmentswithin the interval 𝑒𝑒 = [5 − 25]𝑑𝑑𝐵𝐵 and the 
fixed signal length of 𝑛𝑛 = 222  with the same 

reconstructed signal algorithms (NESTA). It is observed 
that the reconstruction error of our  proposed framework 
when confronted by the strong noise 𝑆𝑆𝑁𝑁𝑅𝑅 > 20𝑑𝑑𝐵𝐵 and a 
signal of very great scale due to exploiting the distributed 
principal component analysis algorithm in redesigning the 
sparsity dictionary is under the certainthreshold of 10−6. 
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Fig. 3Examining the amount of signal reconstruction error with MSE signal 

In Figure 4, the signal length of 𝑛𝑛 = 210, the number of 
components of non-zero main signal within the range of 
𝑘𝑘 = [5 − 600]  (sparsity level) and noise level are 
considered as equal to25𝑑𝑑𝐵𝐵. The results show that non-

adaptive method recognizes a lower number of non-zero 
components of the main signal along with the increase in 
the amount of signal scale which causes impairment in 
reconstructing process and loss of much of signal data. 

 

Fig. 4The number of adaptive non-zero components of the main signal 

6. Conclusions  

AAR framework with D-PCA was proposed for 
monitoring and acquisition wireless sensor network. In this 
framework, distilled sensing theory for DAQ of wireless 
sensor network in adaptive form is exploited, disturbed 
principal component analysis algorithm for redesigning 
sparsity dictionary Ψ (or A) and signal reconstruction 
algorithm of NESTA. The results of simulation showed 
that the proposed method has been scalable and due to the 
improvement of signal reconstruction error, it lead into the 
precision and increase in the sampling quality.  
Moreover, according to redesigning of the sparsity 
dictionary through distributed principal component 

analysis algorithm, firstly the transmission rate in the 
network has decreased which leads to the increase in the 
life time of the wireless sensor network. Secondly, sparsity 
dictionary also in each period of implementation is 
redesigned effectively. Our future work is allocated to 
changing the refining step in the compressive distilled 
sensing algorithm for sampling the signals with the 
positive and negative amplitude. 
Introduction should argue the case for the study, outlining 
only essential background, and should not include the 
findings or the conclusions. It should not be a review of 
the subject area, but should finish with a clear statement of 
the question being addressed. 
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