
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.7, July 2017 

 

58 

Manuscript received July 5, 2017 
Manuscript revised July 20, 2017 

Sonar False Alarm Rate Suppression using Classification 
Methods Based on Interior Search Algorithm 

Sajjad Ravakhah1, Mohammad Khishe2, Majid Aghababaie3*, Esmail Hashemzadeh4 

1Department of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran.  
2 ,4 Department of Electrical Engineering, Imam Khomeini Marine University, Nowshahr, Iran.  

3*corresponding author, Department of Electrical Engineering, Imam Khomeini Marine University, Nowshahr, Iran. 
 

 
Summary  
False alarm rate reduction is one of the challenging issues in the 
sonar systems. This paper uses classification technique to 
identify real targets from false alarms. For this purpose, Radial 
Basis Function Networks (RBFNs) are utilized. Taking into 
account the use of gradient descent and recursive methods in the 
classic RBFNs, low Classification accuracy, slow convergence 
rate, and getting stuck in local optima, are the main drawbacks of 
RBFNs. In order to overcome these shortcomings, this paper 
suggests the use of the newly proposed Interior Search Algorithm 
(ISA) for training the RBFN. In order to measure the 
performance, ISA is compared with five well-known benchmark 
algorithms named PSO, ACO, GA, DE, and BBO in terms of 
entrapment in local minima, classification rate, and convergence 
speed. The results show that ISA is significantly better than the 
other well-known benchmark meta-heuristic algorithms in 
identifying real targets from false alarms. 
Key words: 
Sonar, Classification, Interior Search Algorithm, Radial Basis 
Function Networks. 

1. Introduction 

Classification of underwater targets from the acoustic 
backscattered signals includes discrimination between 
target and non-target objects as well as the description of 
background clutter [1]. There are a lot of components that 
complicate this procedure such as: non-repeatability and 
alteration of the target signature with aspect angles, range 
and grazing angle [2], challenging natural and man-made 
clutter [3], effects of latitude and longitude [4], highly 
variable and reverberant working environment [5,6], 
dependence on the water's temperature, the salinity, the 
depth [7] and the lack of any pre-knowledge about the 
form and the geometry of the non-target [8]. 
Considering mentioned complexities, three main 
classification schemes have been proposed in recent years: 
a) Methods based on oceanography [9,10], sonar modeling 
and engineering [11,12] and also statistical processing 
[13,14], b) signal processing [15,16] and feature extraction 
methods [17], and c) development of new classifiers 
[18-20]. 

In the first group, researchers attempts to consider 
environmental circum stances [1-4], multi-path effects 
[21], sonar specifications [10], sound propagation models 
[12], topographic effects [9], seabed's scattering models 
[10], and non-stationary clutter's resources [8] then to 
calculate the accurate statistical model (statistical 
distribution) for real targets and non-target echoes [13,14]. 
In these methods, discrimination was performed by 
calculating the distribution's parameters. For example, 
mean and variance of the normal distribution, the shape 
parameter of the K-distribution,  shape and scale 
parameters of the gamma distribution and lambda 
parameter of the Poisson distribution. 
In the second category, researchers attempt to utilize 
different signal processing techniques and feature 
extraction methodologies such as various filters [22], 
Discrete Wavelet Transform (DWT) [23], Mel-Frequency 
Cepstral Coefficient (MFCC) [24], Zero Crossing Rate 
(ZCR), entropy and dynamism features, low-frequency 
features [25] and etc to extract the best feature for 
reaching the best performance of the used classifier. 
In the last one, scientists propose new classifier to classify 
sonar dataset effectively. In recent years, many efforts 
have been done to propose effective classifier in this field 
[26-30]. Recently, using of Artificial Neural Networks 
(ANNs) is taken account into consideration for their 
outstanding achievements [31-34]. High accuracy, 
versatility, the inherently parallel structure which is very 
useful in hardware implementation and then real-time 
processing are some of the distinguished features of ANNs 
in the sonar target identification which encourage us to use 
assumed classifier. 
RBFNs are one of the most suitable ANNs for industrial 
application. Using these networks, complex problems can 
be solved. Generally speaking, RBFNs are used to target 
identification, function approximation, and time series 
prediction [35-37]. In spite of their applications, the 
unique ability of RBFNs is learning [38]. Learning is the 
fundamental part of all ANNs that can be separated into 
supervised [39] and unsupervised [40]. Generally speaking, 
the learning of the RBFNs is a crucial point for them. 
Many derivative-based methods have been used to train 
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RBFNs such as Gradient Descent (GD) [40], Kalman 
Filter (KF) [41] and Decoupling Kalman Filter (DKF) [42] 
and also Back Propagation (BP) [43]. As well as 
derivative-based methods, stochastic methods such as 
Genetic Algorithm (GA) [44], modified 
Biogeography-Based Optimization (BBO) [45, 46], 
Stochastic Fractal Search (SFS) [47], Particle Swarm 
Optimization (PSO) [48], and Gray Wolf Optimizer 
(GWO) [49] have been used in training ANNs. 
The ultimate purpose of the training process in RBFNs is 
regulating the best combination of network’s parameters 
for the sake of the least amount of error. To satisfy 
aforementioned condition, this paper suggests the use of 
the recently proposed meta-heuristic algorithm named 
Interior Search Algorithm (ISA) [50]. The main advantage 
of ISA is low setting parameters and low complexity in 
comparison to other meta-heuristic algorithms. 
The rest of the paper is structured as follow: Section 2 
presents RBFNs. The ISA algorithm is described in 
section 3. The method of applying ISA as a trainer for 
RBFN is presented in Section 4. Section 5 discusses the 
results. Finally, Section 6 provides conclusion and 
suggests some directions for future work. 

2. Radial Basis Function Networks 

RBFNs are one of the Feed-Forward Neural Networks 
(FFNNs) which are composed of three layers (an input 
layer, hidden layer, and output layer). The general block 
diagram of a typical RBFN is shown in Fig.1. In RBFNs, 
outputs of the input layer are manipulated by calculating 
the distance between inputs and centers of the hidden layer. 
The outputs of the second layer (hidden layer) are 
calculated by multiplying the outputs of the input layer 
and related connection weight. Each neuron of the hidden 
layer has a center. So, the general description of a typical 
RBFN is given by equation (1) [47]: 

1

ˆ ( )
I

j ij i j
i

y w x cφ β
=

= − +∑ .                  (1) 

In this paper, Euclidean distance is considered as the 
classic distance and Gaussian basis function is considered 
as RBF function as shown by the equation (2): 

2(r) exp( )i ix cϕ α= − − .                  (2) 

 

Fig.1: The general description of a typical RBFN. 

In equations (1) and (2), i is defined as { }1,2,3,...,i I∈  
where I is the number of hidden neurons, ijw  shows the 
connection weight from ith neuron in the hidden layer to 
jth neuron in the output layer, φ indicates Gaussian basis 
function, iα  shows variance parameter for ith hidden 
neuron, x is input vector, ic  is the center vector for 
neuron i, β shows the bias of jth neuron in the output layer 
and y is the output of the RBFN.  
Fig.2 shows an RBFN with three layer, where the number 
of inputs (x) is m. In this figure, the number of hidden 
neurons is I where the output of each neuron is calculated 
in terms of the Euclidean distance between the inputs and 
center vectors. The hidden neuron is included an 
activation function named RBF Gaussian Basis Function. 
Outputs of hidden layers transfer to the output layer 
through weights ( 1w ،...، 2w ). The output of the RBFN is a 
linear combination of the outputs of the hidden layer and 
bias parameter β. Finally, y is calculated as RBF's output. 

 

Fig.2: An RBFN with one hidden layer. 
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Where y is the desired output and y shows the calculated 
output. The final aim of RBF training method is 
minimizing the RMSE. 

3. Interior Search Algorithm 

This section describes Interior Search Algorithm (ISA), 
which is used to train an RBFN in the next section. ISA is 
inspired by the architectural processes, which is suggested 
by Gandomi [50]. This algorithm utilizes the concept of 
architectural design and decoration. Considering Fitness 
function, ISA uses two main searching operators named 
composition and mirror group for solving global 
optimization problems. In the first stage (composition 
group), the composition of the searching agents is changed 
to obtain a more beautiful vision. In the second stage 
(mirror group), mirrors are placed between these searching 
agents and the best searching agent to obtain better vision. 
A typical Scheme of this stage is shown in Fig.3. 

Global Best

 Elementthi  Elementthi

Global Best

a b

 

Fig.3: A typical Scheme of mirror search. 

Generally speaking, ISA is described as follow:  
• Step 1: The Positions of searching agents are 

stochastically generated. These stochastically 
positions are located between Upper Bounds (UB) 
and Lower Bounds (LB). 

• Step 2: Calculate the fitness functions of the searching 
agents. 

• Step 3: Obtain the best searching agents. In this 
special problem (RBFN training), the best searching 
agent has the minimum fitness function i.e. SSE. This 
searching agent ( j

gbx ) is the best agent at jth iteration. 
• Step 4: Other searching agents are stochastically 

divided into two main groups, composition group and, 
mirror group. For this purpose, a parameter (α) is 
suggested as equation (4). 

1

1

          
           

≤
 ≥

r a then mirror group
f

r a then composition group
    (4) 

 Where 
1

r  is a random value between 0 and 1. It is 

worth mentioning that a Must be carefully adjusted 
because it is the only parameter of the algorithm and it 
balances the swapping behavior between exploration 
and exploitation phases. 

• Step 5: In the first stage (composition), the 
composition of each searching agent is stochastically 
changed within a bounded search space as follow 
[50]: 

 
 2( )= + − ×j j j rj

ix LB UB LB ,     (5) 

Where 
j

ix  is the ith searching agent in the jth iteration, 
LBj and UBj are lower and upper bounds, respectively, 
and r2 is a random value between 0 and 1. 
• Step 6: For the second stage (mirror group), a mirror 
is stochastically located between each searching agent and 
the global best (best searching agent). The location of a 
mirror for the ith searching agent at jth iteration is as 
follows: 

( )1
, 3 31−= + −j j j

m i i gbx r x r x .                 (6) 
Where 

3
r  is a random value between 0 and 1. The 

location of the virtual position of the searching agents 
depends on the mirror location, as shown in equation (7). 

1
,2 −= −j j j

i m i ix x x .      (7) 
• Step 7: It is useful for the best searching agent (global 
best) to slightly change its location using the random walk 
as follows: 

1j j
gb gb nx x r λ−= + ×  .      (8) 

Where 
n

r  is a vector of random numbers, and λ is a scale 

factor depending on the size of the search space as follows 
[50]: 

0.01 ( )-λ = × UB LB    .      (9) 
This random vector works as a local search operator 
because it discovers around the best searching agent. 
•  Step 8: In the next step, the fitness functions of the 
searching agent and virtual agent’s location are calculated. 
Then update their positions if their fitness values are 
improved this step can be expressed as: 

( ) ( )1
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 ,       (10) 

• Step 9: Repeat the algorithm from step 2, if any of the 
stop criteria is not satisfied. The pseudo code of ISA is 
shown as follows. 
 

While  
 For I = 1 to n  
  If gbx   

1j j
gb gb nx x r λ−= + ×   

Else if  1r α<   

 ( )1
, 3 31j j j

m i i gbx r x r x−= + −   
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 End for 
 For I = 1 to n 
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 End for 
End while 

Fig.4: The pseudo code of ISA. 

4. The Training of RBFN Using ISA 

Generally speaking, there are three methods to present the 
parameters of RBFN: 1) vector-based, 2) matrix-based and 
3) binary state [1]. In the vector-based method, only one 
vector presents each searching agent. All weights, biases, 
and related centers should be obvious to train an RBFN. In 
the matrix-based presentation, one matrix presents each 
searching agent. In binary state presentation, each 
searching agent is shown in the form of a string of binary 
bits. Any of these presentations have special disadvantages 
and advantages that can be helpful within a specific 
problem.  
In this paper, the vector-based presentation is utilized to 
present the RBFN, because its structure is not very 
complex. Also, the ANN toolbox of MATLAB software is 
not utilized in order to reduce the time of running RBFN. 
As previously stated, training RBFN can be obtained by 
selecting optimum values for the following parameters: 
• W: Weights between the output layer and hidden 
layer.  
• a: Emission parameters of the Gaussian Basis function 

of the hidden layer. 
• c: Centers of the hidden layer.  
• β: Bias parameters of neurons in output layer. 
The number of neurons in the hidden layer is crucial 
parameter that should be carefully specified. Using more 
neurons than the normal number leads to over-fitting 
network, which caused to increase structural complexity 
and algorithm’s running time. According to [47] and 
studies that have been carried out, 4 neurons are chosen in 
the hidden layer. ISA’s searching agents are consist of 
weight ( ), bias vectors ( ), center vectors (c) and 
emission parameters ( ). A typical searching agent of ISA 

can be presented in the vector that is shown in equation 
(11): 

              (11) 
As previously stated, the ultimate aim of the training 
methods is tuning the special parameters of the RBFN. 
Each training iteration should calculate the fitness value of 
all searching agents. In this paper, searching agent’s fitness 
values are calculated by SSE as follows: 

           (12) 

5. Setting Parameters and experimental result 

In order to evaluate the performance of ISA in training 
RBFN, as well as ISA, the RBFN are taught by some 
well-known benchmark algorithms such as Biogeography 
Based Optimization (BBO), Ant Colony Optimization 
(ACO), Differential Evolution (DE), Particle Swarm 
Optimization (PSO), and Genetic Algorithm (GA). The 
initial values and essential parameters of these algorithms 
are presented in Table 1. In the next section, sonar dataset 
will be completely explained and then the designed RBFN 
will be evaluated on that dataset. 

5.1 Sonar dataset 

This paper uses Sonar dataset that is extracted from 
Gorman and Sejnowski marine experiment available in 
references [51, 52]. In this experiment, there are two types 
of echo: the first relates to the metallic cylinder (real 
target) and the second relates to a rock as the same size as 
the cylinder (false alarm). 
In the Gorman and Sejnowski experiment, a metal 
cylinder with a length of 5 feet and a rock with the same 
size located on the sandy seabed and a wide-band linear 
FM chirp pulse (ka=55.6) has been transmitted to the real 
target and false target. 

Table 1: Necessary Parameters and initial values 
Algorithms Parameters Value 

BBO 

The probability of correcting 
the habitants 1 

The probability range for 
migrating into for each gene [0, 1] 

Step size for the probability 
numerical integral 1 

Maximum migration into (I) 
and migrating out of (E) 

coefficient 
1 

Mutation probability 0.005 
Population size 200 

PSO 

Layout Full 
connection 

Cognitive constant (C1) 1 
Social constant (C2) 1 
Local constant (W) 0.3 
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Population size 200 

GA 

Type Real coded 
Selection Roulette 

wheel 
Recombination Single-point 

(1) 
Mutation Uniform 

(0.01) 
Population size 200 

ACO 

Primary pheromone ( 0τ ) 0.000001 

Pheromone updating constant 
(Q) 20 

Pheromone constant (q0) 1 
Decreasing rate of the overall 

pheromone (Pg) 0.9 

Decreasing rate of local 
pheromone (Pt) 0.5 

Pheromone sensitivity (a) 1 
Observable sensitivity ( β ) 5 

Population size 200 

DE Weighting factor (F) 0.5 
Crossover constant (CR) 0.5 

ISA a 0.2 
Random value [0.1,0.3] 

Backscattered echoes have been accumulated in the 
distance of 10 meters. Based on the SNR of received echo, 
of 1,200 collected backscattered echo has been selected 
208 echoes that their SNR between 4dB to 15dB. From 
this 208 backscattered echoes, 111 ones are of metal 
cylinders and 97 echoes are related to false alarm (rocks). 
Fig.5 shows typical backscattered echoes from the rock 
and metal cylinder. 
The pre-processing method for obtaining the spectrum 
envelope is shown in Fig.6. Fig.6a indicates a typical 
apertures and Fig.6b show a set of sampling apertures that 
are applied on two-sided spectrogram of the Fourier 
transform of the backscattered echoes. Spectral envelope 
is obtained from the accumulation of all aperture’s effects. 

 

Fig.5: Typical back-scattered echo from the rock and metal cylinder. 

In this pre-processing method, spectral envelope is 
produced from 60 spectrum samples that are normalized 
between 0 and 1. In the digitized spectral envelope, each 
sample presents summation energy accumulating by the 
aforementioned aperture. For example, after normalization, 
existence energy in the first aperture (η=0), produces the 
first number of the feature vector. In the other words, the 
feature vector has 60 number so that the each number of 
the vector, represents the related aperture’s accumulating 
spectral energy. 

 
  (a)  (b) 

Fig.6: The pre-processing method for obtaining spectral envelope.. 

5.2 Sonar False Alarm Suppression 

After pre-processing of the backscattered echoes, in this 
section, the normalized dataset got exerted on the RBFN, 
which is trained by various meta-heuristic algorithms. The 
designed RBFN is applied on sonar dataset and the 
performance of the newly proposed RBFN is evaluated in 
terms of the convergence speed and false alarm rate 
suppression. Each designed RBFN is executed 10 times 
and then the average suppression rate (Classification rate) 
is presented in Table 2. The typical results for 
convergence curve are shown in Fig.7. 

Table 2: Average suppression rate (classification rate) of various training 
algorithms. 

Algorithm ISA PSO BBO ACO DE GA 
Suppression 

Rate 93.17% 79.78% 91.45% 72.25% 85.39% 88.45% 
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Fig.7: convergence speed for various training algorithms.. 

According to the Table 2 and Fig.7, ISA with %93.17 has 
the best performance among the benchmark algorithms 
and ACO with %72.25 has the weakest performance. 
Regarding the high-dimension and the extra local minima 
of the sonar dataset, the possibility of falling into local 
minima is too much for an algorithm such as ACO. 
Whereas ISA with stochastic nature, having two powerful 
searching group (composition group and mirror group), 
and just one setting parameter, has better performance than 
other benchmark meta-heuristic algorithms. 

6. Conclusion 

In this paper, a newly proposed meta-heuristic algorithm 
known as ISA is firstly used to train an RBFN. To evaluate 
the performance of designed RBFN, sonar dataset have 
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been used and then obtained result are compared with 
BBO, PSO, ACO, DE, and GA. Results indicated that the 
ISA due to a simple structure and the capability to 
discover the search space, is able to provide much better 
results in terms of convergence speed and false alarm 
suppression’s rate in compare to benchmark algorithms. 
Due to the simple structure of Multi-Layer Perceptron 
Neural Network (MLP NN), it can be used as a neural 
network in future works instead of RBFN.  
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