
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.7, July 2017

267

Manuscript received July 5, 2017
Manuscript revised July 20, 2017

MORoles: An Abstract Hierarchy Model for Managing
Overlapping Security Roles

Ahmad Mousa Altamimi†
Applied Science Private University, Amman, Jordan

Summary
Protecting data against unauthorized access is an essential
demand for any information system. Such protection ranges from
simple authentication to the very complex authorization while at
the same time ensuring accessibility to authorized users. To
achieve these security considerations, security policies are
defined, usually by the system administrator, for controlling and
monitoring users accessing. These policies consist of a series of
constraints associated with a set of roles that, in turn, may be
assigned to one or more users according to their duties. In most
cases, user’s roles do not overlap or conflict. However, in a
rapidly changing systems, a user would likely have more than
one role, and some of these roles may very well overlap. In this
paper, an abstract hierarchy nature security model (MORoles)
that has been specifically designed for managing overlapping
security roles is presented. MORoles ensures that security roles
are mutually consistent by organizing roles into a hierarchy
structure to support a more expressive representation and then
extracts the highest non-conflicting roles amongst the user’s
assigned roles. To underscore the practical visibility of the
proposed approach, the open source library tree.hh is utilized to
provide a practical implementation.
Key words:
Security Policies, Privacy, Overlapping, Roles Hierarchy.

1. Introduction

Considerable effort has been devoted to formally defining
security policies in information systems. In fact, three
levels of policy specification having been identified in the
literature [1]. The first one is the High-level abstract
policies, which can be business goals, service level
agreements, or trust relationships. These policies are not
enforceable and their realization involves refining them
into one of the other two policy levels. The second level is
the Specification-level policies or business-level policies,
which are specified by the system administrator and
related to specific objects. And finally, the Low-level
policies or configurations such as security mechanism
configurations or device configurations that are related to
hardware. In this research, we focus on the second kind of
policies (Specification policies) and discuss the concepts
used to express these policies. After that we present a well-
structured model that is designed to manage the
overlapping policies roles.
Specification policies (hereafter simply referred to as
“policies”) determine which user, under what

circumstances, may access specific information. This can
be accomplished by defining a series of conditions
(constraints), usually by the system administrator, for
controlling and monitoring user access [2]. In general, a
policy is determined by the sensitivity of the information.
If it is sensitive, a policy should be developed to maintain
tight control over accessing that info. For instance, within
a hospital the pathological history of patients may be
considered as sensitive data. The policy could establish
that only doctors and nurse practitioners may access the
pathological history of patients; any other user should be
restricted from accessing this data. In fact, in alike systems,
security considerations range from simple policies to the
very complex policies in order to secure the sensitive
information.
That is, supporting such policies are typically based upon
an integration of three basic elements. Users to which
authorizations are granted. A User can be single or a group
of users within the system. Data to be protected, which can
be any part of the stored information. And finally, Roles,
which are named collections of authorizations or privileges
granted to Users to perform certain job functions. For
example, let us assume that we have an organization in
which roles are created based on the job functions of users.
Roles are subsequently have a set of Constraints based on
the requirements of the roles’ jobs. Users in turn are then
assigned appropriate roles based on their qualification.
In most cases, a user can be authorized to play several
roles, with overlapping permissions. These roles may be
organized into a hierarchy to support a more expressive
representation of their semantics. So before enforcing
policies, any conflicting authorizations may need to be
resolved. In other words, a user with two different roles
may have privileges to access all parts of information
authorized for one roles but restricted by the other roles. In
this case, the user should be given the highest permissions
amongst his/her roles by finding the highest non-
conflicting roles.
To address such issue, our model organizes the roles into a
hierarchical structure (i.e., tree structure) using an open
source library called tree.hh [3], then the inheritance is
resolved in the context of overlapping roles and finally the
non-conflicting permissions among the assigned roles are
extracted. More discussions about the model is provided in
section 5.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.7, July 2017

268

The rest of this paper is organized as follow: Section2
discusses the preliminaries terminologies relevant to this
approach. Section 3 in turn, presents an overview of
related work. Our methodology is discussed in Section 4.
The proposed model itself is then presented in Section 5
along with its implementation in Section 6. Final
conclusions are offered in Section 7.

2. Preliminaries

Before discussing our model, we provide a brief overview
of the basic terminology and structures relevant to policies
in general.

2.1 Users, Objects and Roles

In fact, policies consist of roles, data/objects, and users.
Roles are first created with specific constraints or
authorization on particular objects (data) based on the job
functions. Users in turn, would be a user or even a
program permitted to perform particular operations based
on their assigned roles. The using of such elements is
particularly useful for common operations such as
adding/dropping a user, or assigning/changing user roles.
Figure 1 depicts the relationship.

Fig. 1 Users, Roles, and Restrictions relationship

The consolidation of access control for many users into a
single role entry allows for much easier management of
the overall system and much more effective verification of
security policies. However, in large systems, role
hierarchy - and the need for finer-grained customized
privileges - makes administration potentially unwieldy. As
such, the management of an individual's constraints
becomes much simpler in that constraints do not have to
be directly assigned on a user-by-user basis. Further details
about roles hierarchy are given next.

2.2 Roles Hierarchy

Roles may have organized into a hierarchy which, in turn,
defines a partial ordering, denoted as ≼ [4]. Such
hierarchies support a more expressive representation
especially in the case of existing overlapping permissions.

More formally, we can say that given a role domain R, let
ri , rj ∊ R be individual roles. If ri precedes rj in the
hierarchy ordering (ri ≼ rj), we say that ri is partially
ordered relative to rj and, furthermore, that ri is a child of
rj, and rj is a parent of ri. This implies that ri inherits all
constraints that are assigned to rj, and that all users who
are mapped to ri are affected by the rj constraints. This is
formally expressed in Definition 1.

Definition1: A role ri in a role hierarchy H inherits all
constraints of roles R = (rj , …, rz), where ri ≼ rj and rj ≼
rx ≼ rz for all roles rx ∊ R. We say that ri inherits all
constraints of roles reachable from ri to the Root role of R.

An example of a role hierarchy is illustrated in Figure 2,
where any role inherits all constraints that are assigned to
its parents up to the Root role. For instance, suppose that a
Store table with four attributes (e.g., Country, Province,
City, and Store_Number) should not be accessed by users
of the Marketing role. Consequently, any user who is
assigned to the Marketing Role or any of its children is
restricted from accessing the Store table and, by extension,
is also restricted from accessing all the attributes of the
specified table. This what will be called Security Object
and defined formally in Definition 2.

Fig. 2 Roles hierarchy

Definition 2. A Security Object O for roles R = {{v}: {v}=
values of tables T restricted to roles R, where {v} = all T’s
attributes vales}.

3. Related Work

Policies have been extensively considered in the literature.
For example, many languages have been designed or
extended for expressing policies such as the XML
concepts based languages [5, 6, 7] and the logic
programming based languages [8, 9, 10]. One can consider
for example the eXtensible Access Control Markup

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.7, July 2017

269

Language (XACML), which is one of the most relevant
proposed languages [11, 5]. Such XML-based languages
are particularly suitable to convey requirements related to
authorization and privacy for web-based systems [12].
Other researchers considered the policies formulation.
Authors of [13, 14], for instance, utilized the Unified
Modeling Language (UML) to express trust policies using
predicate expressions whose grammar is expressed in
UML. Similarly, authors of [15] presented a Trust
Management Framework that supports policy life cycle
management using UML diagrams.
Policy specification in web-based applications has been
also proposed in [16, 17, 18]. SELinks, for instance,
targets web apps and provides a uniform programming
model (in the style of LINQ and Ruby on Rails), with
language syntax for accessing objects residing either in the
database or at the server [17]. Still other frameworks
investigate the association of security policies with client
side code, with protection provided by the interception and
analysis of database queries [19]. For the most part,
however, none of these works are designed to manage or
consider the overlapping roles but the policy design itself.
Recently, the object-oriented paradigm has been utilized to
provide a policy specification model [20]. In that research,
the features set of the object-oriented paradigm (i.e., the
concepts of classes and objects) was borrowed to create
instances of various policy constructs such as Users, Roles,
and Objects. These instances are then combined together
to create more expressive policies. A primary objective of
this approach is to allow policy designers to identify
security constructs at the level of the conceptual data
model, without regard for the complexity of the underlying
logical or physical implementation.

4. The Methodology

Managing overlapping policies requires a formal basis (i.e.,
a suitable model with clear architecture) to ensure that they
are mutually consistent and to allow the using of policies
without requiring modifications to the existing access
control mechanism. For this purpose, we propose a well-
structured model that is hierarchy based nature. To this
ends, roles are organized into a hierarchy to support a
more expressive representation. Then the highest
permissions amongst the assigned roles are extracted by
finding the highest non-conflicting roles.
To address such issue, our model relies on an open source
library called tree.hh to organize the roles into a
hierarchical structure (i.e., tree structure), then the
inheritance is resolved in the context of overlapping roles
and finally the highest non-conflicting permission are
found. A detailed discussion for our model is provided in
the next section.

5. The MORoles Model for Managing
Overlapping Security Roles

As illustrated, it would be helpful to be able to assign a
user to more than one role according to his/her duties.
Each role would have different permissions to access
specific information. In most cases, roles do not
overlap/conflict. However, in a rapidly changing enterprise
environment, a user would likely have more than one role,
and some of these roles may very well overlap. In fact,
most existing information systems apply a “Restriction
takes Precedence” principle. However, the problem with
this approach is that it may lead to unintended restrictions
on accessible data. In other words, if a user is a member of
several roles with different permissions, the user will be
restricted according to the permissions of the least
powerful role, which results in restricting the user from
access to data even if he/she is permitted to access them by
using other role(s).
For example, suppose the administrator of an information
system is included in the roles shown in Figure 2 and
assigns user Alice to the Administration role, which has
full access to the whole information. Over time, and
because of special situations, Alice is assigned also to the
Marketing role, which restricts her from accessing Product
data. In this example, Alice's roles conflict; Alice is
restricted from accessing Product data because of the
Marketing role, but at the same time, she is allowed to
access the same data because of the Administration role.
To address this issue, Alice should be given the highest
permissions amongst her roles by finding her highest non-
conflicting roles. To do this, roles should be organized in a
hierarchal structure (i.e., a tree structure) in order to pick-
up the highest role/node. That is, within a role-hierarchy
restrictions will be inherited such that a role may inherit all
restrictions that are assigned to its parents up to the top of
the hierarchy. Consequently, all users who are mapped to
this role are affected by the role's restrictions plus all the
inherited restrictions as formally expressed in Definition 3.

Definition 3: A User u who assigned to roles Rn = (r1 …
rn) affected by all constraints of Rn PLUS all constraints
of Rn hierarchies Hn = (h1 … hn), where h1 is the
hierarchy for r1 … and hn is the hierarchy for r1 , and hx
consists of rj , …, rz, where ri ≼ rj and rj ≼ rx ≼ rz for all
roles rx ∊ R. We say that u restricts by all constraints of Rn
PLUS all constraints reachable from ri to the Root role of
R.

To ground our conceptual work, in the next section, we
discuss the implementation of such a hierarchy and we
also give an example to illustrate both the power and
intuitive nature of our approach.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.7, July 2017

270

6. MORoles Model Implementation

To represent roles in a hierarchal structure (i.e., a tree
structure), we employ the open source tree.hh library. Tree
library is an STL-like container class designed to represent
n-ary trees [3]. It provides various types of iterators such
as breadth first, depth first, and sibling iterators to traverse
the tree nodes where its access methods are compatible
with the C++ STL libraries. In our case, we assume a
depth first search strategy, where the algorithm traverses
the tree starting from the root role(s) and explores as far as
possible along each branch before backtracking. If the role
is identified as an assigned role, the role's restrictions are
extracted and the traversal then backtracks to another
branch. In the worst case, we have to visit each node
exactly once, since we do not cross the same edge more
than once. As such, the time complexity is O(n) where n is
the number of roles/nodes, which is generally quite small.

Fig. 3 Roles Hierarchy represented in a tree structure

Figure 3 illustrates the Role Tree associated with the roles
hierarchy depicted in Figure 2. Numbers near each node
represent the roleID. In the roles tree, every node is
connected to an arbitrary number of child nodes/roles. At
the top of the tree, there may also exist a set of roles which
are characterized by the fact that they do not have any
parents. Nodes at the same level are called “siblings”' and
are not overlapping. So, if a user is assigned to sibling
roles, the user's permissions will be the union of all his
role's restrictions. However, nodes at different levels may
indeed overlap. Each node may inherit its parent's
restrictions if any exist.
To improve the search performance, the user's role(s),
along with their restrictions, are stored in a relational
repository. The highest or most privileged roles amongst
the user roles are also stored there. So, instead of re-
executing the search process each time the user request a n
access to the stored information, his/her highest roles are
retrieved from the repository and cached in memory for
future accessing. Figure 4 illustrates an example for a
user’s roles stored in the repository.

Fig. 4 User’s roles in the Policy Repository

Of course, the user's roles can be changed or affected over
the time (e.g., Assign, Withdraw, and Drop roles). For
example, assume that the user Sue is assigned to the
following roles: Marketing, e_Marketing, e_Reporting,
and t_Supporting. Sue's restrictions will be defined by the
union of these roles. Note, e_Marketing is a child of the
Marketing role and because the user utilizes the highest
role, e_Marketing is not listed in the highest roles table. As
a consequence, its restrictions will be ignored.
Now, suppose the user Sue becomes an Administrator user.
The roles Marketing, t_Marketing, and e_Reporting will
no longer be listed in the highest roles table, and their
restrictions will be ignored in the security checking
process because they are children of the Administration
role. Finally, suppose that the policy is once again altered
and the user Sue is withdrawn from the same
Administration role. The user's highest roles should then
be reset to Marketing, e_Reporting, and t_Supporting.
Figure 5 shows an example for the Assign, Withdraw and
Drop operations, and their effect on the security tables.
Ultimately, we note that the Roles Tree itself may also be
affected by the Drop operation. For instance, when a role
is dropped, the tree is re-structured by moving all children
of the deleted role so that they become siblings of that role.
For example, suppose the Marketing role is dropped. Here,
the t_Marketing and e_Marketing roles should be
connected directly to the Administration role. For this
purpose, we also provide a simple algorithm to rebuild the
tree. It starts from the parent of the deleted node, extracts
the sub-trees of its child nodes, and then attaches each one
to the parent of the deleted role. The full tree can be re-
structured if necessary. Figure 6 shows the roles tree after
dropping the Marketing role.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.7, July 2017

271

Fig. 5 How the Repository is affected by Assign, Withdraw, and Drop
operations

Fig. 6 The updated roles tree

7. Conclusions

In this paper, we have introduced a model that is designed
specifically to manage overlapping security roles
(MORoles). In most complex information systems, a user
would likely have more than one role, and some of these
roles may have conflicted constraints. MORoles is built
upon the well-known tree hierarchy structure. As a
consequence of organizing the roles in such a way,
constraints of multi-level hierarchies would be inherited by
the descendant roles. Moreover, security administrators
not only work in a familiar setting, but would enable
verifying security policies to ensure that they are mutually
consistent
We have also discussed the implementation of MORoles
using the open source STL-like container class library
(tree.hh) that is designed to represent n-ary trees. Finally, a
simple case study is carried out to discuss how the roles
tree is affected/re-structured by applying different
operations such as drop, assign, and revoke roles. In
conclusion, we believe that the model presented in this
work represents a significant contribution to the literature
in that it gives a general solution to the problem of
overlapping roles.

Acknowledgments

The authors are grateful to the Applied Science Private
University, Amman-Jordan, for the full financial support
granted to cover the publication fee of this research article.

References
[1] Nicodemos Damianou. A Policy Framework for

Management of Distributed Systems. PhD thesis, Imperial
College London, March 2002.

[2] Dieter Gollmann. Computer Security, 3rd ed. Wiley
Publishing, 2011.

[3] tree.hh: an STL-like C++ tree class, June 2017.
http://www.tree.phi-sci.com.

[4] Altamimi, Ahmad and Eavis, Todd: “Securing Access to
Data in Business Intelligence Domains”. The International
Journal on Advances in Security, vol 5, no 3 & 4. pp. 94 –
111. 2012.

[5] OASIS. eXtensible Access Control Markup Language
(XACML) Version 3.0, June 2017. https://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml.

[6] Mariemma Yag¨ue. Survey on xml-based policy languages
for open environments. Journal of Information Assurance
and Security, 1(1):11–20, 2006.

[7] Kevin P. Twidle, Naranker Dulay, Emil Lupu, and Morris
Sloman. Ponder2: A policy system for autonomous
pervasive environments. In Radu Calinescu, Fidel Liberal,
Mauricio Marn, Lourdes Pealver Herrero, Carlos Turro, and
Manuela Popescu, editors, ICAS, pages 330–335. IEEE
Computer Society, 2009.

http://www.tree.phi-sci.com/
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml
https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=xacml

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.7, July 2017

272

[8] Moritz Y. Becker, C´edric Fournet, and Andrew D. Gordon.
Secpal: Design and semantics of a decentralized
authorization language. J. Comput. Secur., 18(4):619–665,
December 2010.

[9] Matteo Dell’Amico, Gabriel Serme, Muhammad Sabir
Idrees, Anderson Santana de Olivera, and Yves Roudier.
Hipolds: a security policy language for distributed systems.
In Proceedings of the 6th IFIP WG 11.2 international
conference on Information Security Theory and Practice:
security, privacy and trust in computing systems and
ambient intelligent ecosystems, WISTP’12, pages 97–112,
Berlin, Heidelberg, 2012. Springer-Verlag.

[10] Aarthi Nagarajan, Vijay Varadharajan, and Michael
Hitchens. Alopa: Authorization logic for property attestation
in trusted platforms. In Proceedings of the 6th International
Conference on Autonomic and Trusted Computing,
ATC ’09, pages 134–148, Berlin, Heidelberg, 2009.
Springer-Verlag.

[11] Sonia Jahid, Carl A. Gunter, Imranul Hoque, and Hamed
Okhravi. Myabdac: compiling XACML policies for
attribute-based database access control. In Proceedings of
the first ACM conference on Data and application security
and privacy, CODASPY ’11, pages 97–108, New York, NY,
USA, 2011. ACM.

[12] Q.Z. Sheng, Jian Yu, Z. Maamar, Wei Jiang, and Xitong Li.
Compatibility checking of heterogeneous web service
policies using vdm++. In Services - I, 2009 World
Conference on, pages 821–828, 2009.

[13] Masoom Alam, Ruth Breu, and Michael Hafner. Model-
driven security engineering for trust management in sectet.
Journal of Software, 2(1):4759, 2007.

[14] Muhammad Alam, Michael Hafner, Ruth Breu, and Stefan
Unterthiner. A framework for modeling restricted delegation
in service oriented architecture. Trust and Privacy in Digital
Business, pages 142–151, 2006.

[15] Skogsrud Halvard, R. Motahari-Nezhad Hamid, Benatallah
Boualem, and Casati Fabio. Modeling trust negotiation for
web services. Computer, 42(2): 54–61, 2009.

[16] PieroAndrea Bonatti, JuriLuca Coi, Daniel Olmedilla, and
Luigi Sauro. Rulebased policy representations and reasoning.
In Franois Bry and Jan Mauszyski, editors, Semantic
Techniques for the Web, volume 5500 of Lecture Notes in
Computer Science, pages 201–232. Springer Berlin
Heidelberg, 2009.

[17] Brian J. Corcoran, Nikhil Swamy, and Michael Hicks.
Cross-tier, label-based security enforcement for web
applications. In Proceedings of the 2009 ACM SIGMOD
International Conference on Management of data,
SIGMOD ’09, pages 269–282, New York, NY, USA, 2009.
ACM.

[18] Ian Jacobi, Lalana Kagal, and Ankesh Khandelwal. Rule-
based trust assessment on the semantic web. In Nick
Bassiliades, Guido Governatori, and Adrian Paschke, editors,
Rule-Based Reasoning, Programming, and Applications,
volume 6826 of Lecture Notes in Computer Science, pages
227–241. Springer Berlin Heidelberg, 2011.

[19] Adrienne Porter Felt, Matthew Finifter, Joel Weinberger,
and David Wagner. Diesel: applying privilege separation to
database access. In Proceedings of the 6th ACM
Symposium on Information, Computer and

Communications Security, ASIACCS ’11, pages 416–422,
New York, USA, 2011. ACM.

[20] Altamimi, Ahmad and Eavis, Todd: OSSM: An Object
Oriented Security Specification Model for OLAP Systems.
The 25th Australasian Database Conference (ADC),
Brisbane, Australia, 2014.

Ahmad Mousa Altamimi is assistance
professor of computer science at Applied
Science Private University. He has been
received his PhD degree in Computer
Science from Concordia University –
Montreal, Canada in 2014 and his MSc
degree in 2007. Altamimi has joined
Applied Science University - the Faculty
of Information Technology as an assistant
professor since July 2014. His research

interests are primarily in software engineering and data privacy
for interactive and non-interactive database environments. Dr.
Altamimi participated in the organization of many conferences,
he was the publicity chair of CSIT 2016 conference.

