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Summary 
In open dynamic multi-agent systems, trust is commonly 
considered as a critical concept to be handled and managed. 
Computational trust models are a kinds of formal models that 
have been proposed to manage trust in such situation. These 
models present a new form of distributed intelligence in virtual 
societies and collective intelligence. However, the diversity of 
those models makes user confused about which one to choose. 
Different testbeds were proposed to evaluate trust and reputation 
systems and verify the robustness of the underlying trust models. 
However, those testbeds are not flexible to handle different 
scenarios in various contexts. In this paper, the authors present a 
testbed for evaluating computational trust models that could 
provide user more flexibility while comparing trust models in 
open systems. The ultimate objective is to evaluate and classify 
available computational trust models. 
Key words: 
trust, reputation, testbed, multi-agent systems. 

1. Introduction 

Trust is an ubiquitous concept that exists in our social 
world. The concept has become a booming topic of 
research due to the fast growing that knows the area of 
distributed architectures and multi-agent systems. Multi-
agent systems are a kind of distributed systems that consist 
of multiple interacting intelligent agents, used together to 
solve problems which are difficult to be solved by an 
individual agent. An agent that belongs to a multi-agent 
system is able to communicate and act within the system 
and analyze perceived events using its own strategy. In the 
last two decades, multi-agent systems and distributed 
architectures have been converted to a more open structure 
with less restriction on the internal behavior of agents in 
the system. Many systems in use by millions of users today 
provide such features. P2P networks, online games, social 
networks and e-commerce platforms are a kind of open 
dynamic networks, where users could enter and leave the 
system dynamically. With the evolution that knows the 
area of those open distributed systems, a new kind of 
malicious intelligent agents could be developed and used 
in those systems. Malicious agents have the intention to 
switch their behaviors and to act dishonestly. This kind of 
intelligent agent raises a challenge of managing trust and 
reputation within the system. To address the trust and 
reputation challenge in such situation, researchers have 

looked for a formalism of the trust management so that an 
agent can apply formal strategies to decrease the risk of 
delegating tasks to distrusted peers. Those researches led 
to computational trust models, where their authors propose 
metrics, and learning strategies for trust assessment that 
could be applied by agents to manage and evaluate the 
trustworthiness of their peers. Learning strategies proposed 
by a trust model wrap the intelligence that an agent will use 
while managing trust within the system. When using a 
computational trust model within a distributed system, 
agents that belong to this system will use one or more 
learning strategies proposed by the model. Each of the trust 
models, found in the literature, presents its main 
components and its specific learning strategies to use for 
managing trust. When introducing a trust model into an 
implementation’s system, agents that belong to this system 
become able to reason about trustworthy of their peers. 
The diversity of computational trust models makes the user 
confused while trying to select a model for a specific 
system. Another difficulty that arises is that the proposed 
models are experimented using limited scenarios and a set 
of data proposed by their authors. To address this situation, 
comparative tools called testbeds were proposed by 
researchers to expose those computational trust models to 
different scenarios, and also to compare the robustness of 
each model with respect to different scenarios. Those 
testbeds have shown their utilities of verifying the 
perception level of trust models. But the lack in existing 
testbeds is that some of them do not handle trust per 
context, others do not handle diverse attack strategies. To 
this end, the authors propose a testbed that presents two 
advantages: on the one hand, the proposed testbed 
manages trust assessment per context while handling 
diverse services, and on the other hand it introduces 
various attack strategies to evaluate the robustness of trust 
models against those attacks. 
The remainder of this paper is organized as follows. 
Section 2 presents some of the known existing testbeds 
proposed to evaluate computational trust models. Section 3 
is an overview of a proposed Framework for Modeling 
Multi-Agent Trust denoted for (GeFMMAT) and it’s 
Meta-Model. Section 4 presents the implementation of 
GeFMMAT using JADE. Section 5 introduces the 
proposed testbed. It describes the architecture and also the 
implementation of the testbed along with some 
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experimentation. Finally, Section 6 concludes the paper 
and presents perspectives for future work. 

2. Trust Testbeds : Related Works 

To handle the diversity of existing trust models, some 
testbeds have been proposed to evaluate and compare trust 
models. Four known testbeds could be found in the 
literature namely the Agent Reputation and Trust (ART), 
Trust and Reputation Experimentation and Evaluation 
Testbed (TREET) [7] Alpha testbed [9] and Zhang 
Testbed [10]. In ART, agents play the role of art appraisers. 
Each agent appraises the value of paintings of a client by 
either using its own knowledge or by asking other agents 
for help. Agents can use trust models to evaluate their 
peers and to evaluate their opinions. In ART, there is no 
variety of attack strategies that dishonest agents could use; 
there is also no collision attacks that a group of agents 
could perform. The ART testbed is inspired from the work 
of Kerr and Cohen [7] to create a more general and 
focused testbed, called TREET. In TREET, the game 
scenario is a simulation of a marketplace where sellers and 
buyers exchange items. Buyers are motivated by the value 
of items, while sellers are motivated by the profit they 
make from sales. Sellers can cheat by not shipping the item 
and so increasing their profits. With TREET, no specific 
format of trust value is imposed, and the user can 
implement new collision attacks easily. Both testbeds do 
not evaluate the quality of trust model classification, but 
just the quality of whether the selected partner is honest or 
not.  
Another testbed, called Alpha, was proposed by Jelen  [9], 
tries to distinct between the trust assessment phase where 
the agent apply learning techniques to evaluate the 
trustworthiness of their peers, and the decision making 
phase. Jelen confirm in his research that the decision 
making mechanism influences the performance of the trust 
model. Yet other recent testbed has included many attacks 
strategies to verify the robustness of evaluated trust models, 
this recent testbed was proposed by Zhang [10]. However, 
it still uses the scenario of buyers and sellers with a single 
service. This presents a lack of flexibility and could cause 
loss of information in the case where the evaluated trust 
model uses a trust evaluation per context. This raises the 
necessity of building a testbed that provides at the same 
time the possibility of managing more than one service in 
parallel to handle the management of trust in specific 
context, and to evaluate trust models against many attack 
strategies. 

3. The GEFMMAT Framework 

Several frameworks were proposed by researchers to 
design multi-agent systems by capturing common concepts 
used in such systems. Each of the proposed frameworks 
uses a specific domain model that design agent systems 
from different perspectives. Some of them are based on 
organizational and hierarchical perspectives, and include 
the notions of environment, hierarchy and role. Others 
focus on the interactional aspects of agent systems. There 
are also other works that combine between different 
perspectives. However,   the proposed frameworks did not 
handle explicitly the concept of trust. To introduce the 
concept of trust in multi-agent systems, we have proposed 
a Generic Framework for Modeling Multi-Agent Systems 
in Untrusted Environment. This Framework is based on a 
meta-model that captures the semantics of concepts 
involved in open dynamic multi-agent systems. 
Each meta-class of GeFMMAT meta-model presented in 
Fig.1 represents a common concept used in open dynamic 
multi-agent systems.  

 

Fig.1 GeFMMAT Meta-model 

The meta-class Agent presents an autonomous entity that 
communicates with others agents and provides one or more 
services. There is no constraint on the internally 
specification of the agent model. Features that characterize 
an agent within the system are defined while designing a 
system. An agent has a list of features values. For example, 
in an ecommerce platform where some users could be 
represented by agents, each user has a profile composed of 
features (user name, country, registration time, experiences, 
etc.). Those features constitute the agent’s profile, and they 
reflect its instance within the system. The Service meta-
class presents an expertise that an agent can propose to 
other agents to perform their tasks. An agent can provide 
one or more services. The service concept uses some 
communication knowledge, and it is associated to one or 
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more activity contexts. The Communication Knowledge 
presents the policy of communication. This policy could be 
presented by an interaction protocol and knowledge used 
during the communication process. It’s like how the deal 
between the agent and his partner will be confirmed, what 
requirements should be shared before performing the task, 
and how results will be received. Those concepts would be 
handled by this meta-class. The Activity Context meta-
class represents the boundary that group a set of common 
services. The Task meta-class presents the delegated task 
that agents exchange and delegate. It could present a 
request for service, or for information. A task is related to 
an activity context, which present the context of 
application of this task. The Relationship meta-class 
presents the information that characterizes the relationship 
between two agents. It’s a directional relation between an 
initiator agent and its partners. This relationship contains 
also passed experiences between those agents, the trust 
evaluation of the initiator about its partners, and the trust 
metrics used. In general, if an initiator agent selects a 
partner to process a task, then two new relationships will 
be created between them, one for the initiator which 
presents his relation to the partner, and another one for the 
partner that presents his relation to the initiator. When the 
partner accomplishes task processing, the initiator will 
receive a result and use it with other parameters as an input 
to the trust metric to evaluate the trustworthiness of the 
partner. This evaluation is done using computational trust 
learning techniques proposed by the used model. Then, he 
updates the associated trust knowledge. The Trust 
Knowledge meta-class is defined as the model that presents 
the trust assessments that an agent uses and assesses while 
interacting with his partners. Several works have been 
done to setup a formal presentation for trust. Different 
presentation of trust have been proposed such as a variable 
that takes one value from a finite enumeration space  , 
numeric variable that takes its value from a range , vector 
in a multidimensional space where we can set to each 
agent’s feature an evaluation value 25 and generic form of 
trust using subjective logic 18. The approach of modeling 
trust using the subjective logic gives more control on the 
state of the unavailability of trust information (the case of a 
newcomer agent) because of the integration of the concept 
of uncertainty. The Trust Metric meta-class presents the 
logic applied to evaluate an agent. Each agent could 
associate a trust metric to one relationship with a partner 
who has accepted a delegated task. For an autonomous 
agent interacting with his peers, the agent could have a 
choice between many trust metrics. A group forms an 
aggregation of agents. Agents that are parts of a group 
could share specific features, thus, belonging to a group is 
helpful while identifying the nature of an agent. A group 
could be specified by the designer statically while 
designing the system, or by agents at runtime level. Those 

groups are dynamic, which means that members could 
change during the activities of the system, and at any time, 
the group should have an agent designated as the leader of 
the group. This form of aggregation would help agents to 
evaluate the trustworthiness of group’s members more 
efficiently, especially when trust knowledge about the 
targeted agent is scarce or unavailable. The presented 
meta-model reflects the structural part of the framework; 
the behavioral part is represented by a workflow process 
that defines steps applied by agents to assess trust and 
improve the process of decision making. The framework 
adopts a workflow of information for the management of 
the trust as shown in Fig.2. This workflow captures and 
presents in an abstract way how agents should manage 
information about the environment during the decision 
process, and how to use feedbacks after the decision 
process. It defines where an intelligent agent will use the 
learning strategy proposed by the computational trust 
model, and when its trust knowledge will be updated. 

 

Fig.2 GeFMMAT Workflow 

4. JADE Based Framework Implementation 

Many development platforms dedicated to implement 
multi-agent systems exists in the literature. There are 
platforms oriented middleware for implementing 
interoperable agent systems, such as Agent Development 
Kit (ADK) 12 and Java Agent DEvelopment Framework 
(JADE). There are social platforms that handle the 
organizational architecture and help expressing group 
behaviors such as MadKit. There are also reasoning 
platforms that focus on the internal processing of agents 
within the systems like JASON [22] and SOAR [24]. 
Pokahr et al. established in a detailed research [23] a 
classification of existing platforms. Each platform is based 
on a set of standards and specifications such as FIPA [11], 
JXTA [25], and web services. The advantage of the JADE 
over other platforms is that it complies with the FIPA 
specification for interoperable intelligent multi-agent 
systems and represents an agent middleware. It uses also 
an agent abstraction to design agent in the system. The 
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JADE platform provides a set of graphical tools to be used 
during the development process. The established 
implementation of the proposed Framework is based on 
JADE. We have extended the jade.core.Agent class to an 
Agent class that presents an abstraction of the agent used 
in our Framework. We have also introduced new classes 
such as AgentExperience that presents the acquired 
experience and TaskHandler that presents a listener for 
task request. A trust model metric is presented by the 
interface ITrustMetric where trust learning algorithms will 
be implemented. The testbed description section discusses 
how those classes and interfaces are used. 

5. The Framework Testbed 

In Section 2, we have presented some of the existing 
testbeds used to evaluate trust models, we have presented 
their features, advantages, and limitations. Our 
contribution is a new testbed that takes a step forward to 
provide a new way to evaluate trust models, and provide 
some new features that do not exist in the existing testbeds. 
Our testbed is based on an idea of a group of students. 
Each student is qualified in one or more topics. For 
example, we can find a student who is qualified in 
arithmetic operations such as addition or multiplication 
and also qualified in some physics operations. Each 
student has a set of homeworks to do, but he is not 
qualified in all of those homeworks. To simplify the 
processing in our testbed, we ignore homeworks that could 
be accomplished by the student itself and we just focus on 
homeworks that do not fit their skills. In this situation, an 
initiator student will seek help from his peers. Students will 
respond by a refuse or a proposal as a feedback for the 
request of the initiator student. Then, the initiator will use 
his history and received proposals and apply the trust 
metric strategy which present its social intelligence, then 
generate an evaluation of trustworthiness of each of his 
peers; such process will help the initiator choose the right 
student that will process the homework. Here, the right 
student does not mean the one who will certainly satisfy 
the initiator, but the student who is more likely qualified to 
satisfy the initiator from its point of view. The decision 
takes into consideration the knowledge experience that he 
acquires and the trust metric strategy that he is using to 
evaluate each of his peers. Each student in this group is 
simulated as an agent in the testbed, and he can play the 
role of a requester or a proposer or both of them. 

5.1 Testbed architecture 

As presented before, our testbed is based on the idea of the 
group students who try helping each other resolving their 
homeworks. There are two principal categories of students 

that we can distinguish: honest students and dishonest 
students. An honest student represents a student that has no 
intention to trick his peers, but it may sometime fail 
achieving some tasks with a specific probability. A 
dishonest student is a student with a bad intention while 
communicating with his peers. Every dishonest student 
follows an attack strategy. These attack strategies against 
trust and reputation systems differ in their natures and 
complexities from one to another. Some attacks are used 
against reputation systems where agents would ask for 
recommendation from other agents in the system such as 
Constant and Sybil attack [13]. Others are used to directly 
attack agents that acquired some positive/negative 
experience with the attacker agent [10]. We configure our 
testbed to handle the four known attacks: Constant or 
always dishonest attack, Camouflage attack, and 
Whitewashing attack. An agent that applies a constant 
dishonest attack always acts unfairly. This means that at 
each time the agent is selected by an initiator agent to 
perform a task, he will return a result different than what is 
expected by the initiator. This is the simplest attack 
because there is no timing strategy to trick peers over time 
or changing its identity. The second strategy that we 
introduce is the camouflage strategy. The idea of this 
attack is that the attacker gives fair result at the beginning 
of building its experience with his peers. Such behavior 
will initially give him a good reputation inside the system. 
Then, he will alter his behavior to trick the initiator. The 
third attack strategy introduced in our testbed is 
Whitewashing attack. An attacker agent who applies this 
strategy will leave and rejoin the system each time that he 
builds a bad reputation with his peers. The fourth attack is 
the random attack, where the agent randomly decides to 
respond fairly or unfairly. 
Recall that the purpose of evaluating a trust model is to 
check whether or not the model has the capability of 
assessing the trustworthiness for each agent. The process 
of evaluating computational trust model refers to statistical 
measure classifications. In statistics, we find methods that 
help evaluating the quality of a model prediction [20]. 
Several works have been done to compare such methods 
and to show their consistency and efficiency within 
different scenarios [16]-[19]-[17]. Jurman shows that the 
Matthews Correlation Coefficient (MCC) method is the 
best suited method for evaluating the quality of binary 
classifications [26], where we have to classify our dataset 
into two groups. Trust evaluation models are an example 
of a binary classification where agents are grouped by their 
trustworthiness. In case that the trust evaluation values 
belong to a range, we can first convert them to match a 
binary repartition, and then use measure classifiers to 
evaluate the model. 
Fig.4 illustrates the high level architecture of our testbed. 
The attack strategies and trust evaluation metrics are 
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configured to be used by the students who are represented 
by agents in the figure. The user will configure a test case 
by setting the number of honest students, the number of 
dishonest students, and will also specify the nature of each 
one of them. Later, the user defines the trust evaluation 
metrics that each agent requestor will use to evaluate his 
peers. When a test case starts, the monitoring dashboard 
could be used to preview the trust assessment values that 
set each of the task requester agent about his peers. Model 
evaluation metrics are used to evaluate the quality of the 
prediction of the trust model being used. Our testbed 
provide some features that are not available in existing 
testbeds. 

 

Fig.4 Testbed architecture 

It can evaluates more than one trust models at the same 
time in the same test case. It can also evaluate those 
models against different attack strategies. Table 1 
compares the characteristics of our testbed and some of the 
existing ones 

Table 1 : Comparison of GeFMMAT testbed and existing ones 

Testbed Parallel 
evaluation 

Attacks 
strategies 

attacks 
Extensibility 

Our 
testbed Yes 

Constant attack, 
Random attack 
White washing, 

Camouflage 

Yes 

ART No Random dishonest No 
TREET No Random dishonest Yes 

Lizi 
Zhang et 

al. 
No 

Constant attack, 
Sybil attack, 
Camouflage, 

Composite attack 

Yes 

 

Testbed Model evaluation 
metric 

System 
architecture 

Differen
t 

services 

Our 
testbed 

Evaluates the quality 
of prediction using 

correlation functions 
decentralized Yes 

MCC 

ART 

evaluates the accuracy 
and cooperation 

achievable by the 
system of appraiser 

agents 

decentralized No 

TREET 

-the ratio of sales 
(profits) between 

honest and cheating 
sellers 

centralized 
decentralized No 

Lizi 
Zhang et 

al. 

Specific function 
proposed by authors 

 
decentralized No 

5.2 Implementation and experimentation 

The testbed was designed following the best practices 
applied in object oriented programming such as separation 
of concerns and design patterns. The importance of design 
patterns is that they represent proven solutions to 
commonly occurring problems in software design. They 
also help developers to describe and understand design 
solutions using well-known conventions. We will not 
discuss the implementation details of each component 
here; we will just give an overview of the design structure 
and the role of each part. The source code of our testbed is 
available online [27]. Our testbed is composed of five 
distinct components: behaviors, operations, tasks, features 
and trust models. Each part is implemented in a separated 
package. 

 

Fig.5 Testbed components 
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 Fig.5 shows the relationships between those components. 
The package of students contains available behaviors that 
could be used by students. Those behaviors present the 
possible attack strategies. A student could play the role of 
a service requestor or a service provider or both of them at 
the same time. Roles played by a student are independent 
from his behavior nature; e.g., whether he is honest or 
dishonest. The operation package groups operations 
provided by students as services. Operations are 
independent from each others, and each operation has a set 
of features. For example, the addition operation has one 
feature, which is MathFeature; the CalculateSpeed 
operation has MathFeature and PhysicsFeature. 
Each student could provide a set of operations to serve his 
peers. The default implementation of an operation presents 
the right implementation that results in correct answer, or 
let’s say the honest implementation. A student who 
provides an operation may alter the result depending on the 
nature of his behavior. Honest students will use this 
implementation without any changes. Dishonest students 
alter the logic applied in those services. Each dishonest 
student uses his own alteration strategy. Each of the 
available operations is intended to process specific tasks. 
To this end, a distinct task model is defined for each 
operation. The package task groups task models. To 
evaluate the result and manage the trustworthiness of an 
agent’s peers, the agent needs a trust metric, which is the 
implementation of a trust model. Those trust models are 
intended to be evaluated by the testbed. We have 
implemented four different trust models: Jonker trust 
model [14], Beta Reputation System (BRS) [18], Forgive 
Factor model [15], and an empty trust model called 
NoModel. It is also possible to introduce new models by 
implementing the interface ITrustMetric. The 
communication between students could be monitored using 
a sniffer tool provided by JADE platform. Fig.6 shows the 
screenshot of the interaction result between the set of 
students. 

 

Fig.6 Interactions between agents 

As shown in Fig.6, an initiator agent called 
taskGeneratorStudent_0_B first requests the list of 
registered students in the Directory Facilitator; then, it 
sends call for proposals to all of those students. Each 
student could respond with a proposal or a refuse. The 
initiator agent handles those responses and selects the best 
proposal depending on his trust knowledge. The selected 
agent will receive an accept proposal with the task to be 
performed, the rest will receive a reject proposal. When 
the selected agent performs the delegated task, it will send 
a result back to the initiator. The initiator will verify the 
validity of the result and updates its trust knowledge about 
the selected agent. 
To evaluate the prediction quality and the robustness of 
implemented trust models against dishonest agents, the 
user needs to setup a configuration for an evaluation 
scenario. The configuration used to experiment the testbed 
in this paper is presented in Table 2. 

Table 2 : An example of test case configuration 
Category Instance Number 

Honest agents 5 
Camouflage agents 5 

Random dishonest agents 5 
Always dishonest agents 5 

Whitewashing agents 5 
Task requester agents 4 
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It is possible to execute one or many task requester agents 
that will send a call for proposals to delegate their tasks. 
The testbed gives the possibility to evaluate more than one 
trust models in the same test case. This is done by 
configuring a task requester agent for each trust model. 
This evaluation scenario uses four task requester agents to 
evaluate the four implemented trust models at the same 
time. We have launched two test cases using this 
configuration. In the first test case, each task requester 
agent prepares and delegates 25 tasks, which is the number 
of task handler agents. In this case, the results will show 
the initial acquired trust assessment obtained using each of 
configured trust models. In the second test case, each task 
requester agent prepares and delegates 500 tasks. This case 
will show the convergence of trust assessments of those 
trust models. Results are presented in tables 3 and 4 that 
show the trust knowledge of a task requester about their 
peers grouped by category. The value of trustworthiness 
associated to an agent is in the form of 
belief/disbelief/uncertainty (selection time). The belief 
factor presents the degree of how an agent thinks that its 
peer is trustworthy. The disbelief factor presents the degree 
of untrustworthy that the agent thinks about his peer, and 
the uncertainty value presents the doubt that an agent still 
has about his peer. The selection time parameter shows 
how many times the agent has selected a peer of the 
category. Values within Tables 3 and 4 present means of 
evaluation values acquired by trust models about each 
category of students. For example, if the agent uses BRS as 
a trust metric, and delegates some tasks to five agents with 
the camouflage behavior (seven tasks in the case of 3), 
then the value shown in the table presents the mean 
evaluation of those five camouflage. 

Table 3 : Case 1: 25 Tasks per requester 
Trust 
model Honest agent Camouflage Random 

Junker 0,200/0,000 
/0,800(6) 

0,150/0,00 
/0,850(5) 

0,200/0,050 
/0,750(5) 

BRS 0,387/0,000 
/0,613(10) 

0,320/0,000 
/0,680(7) 

0,320/0,000 
/0,680(7) 

Forgive 
Factor 

0,330/0,000 
/0,670(4) 

0,480/0,000 
/0,520(11) 

0,000/0,480 
/0,520(4) 

No model 0,000/0,000 
/1,000(3) 

0,000/0,000 
/1,000(5) 

0,000/0,000 
/1,000(8) 

 
Trust 
model 

Constant 
Dishonest Whitewashing 

Junker 0,000/0,167 
/0,833(3) 

0,100/0,150 
/0,750(6) 

BRS 0,000/0,167 
/0,833(3) 

0,000/0,167 
/0,833(3) 

Forgive 
Factor 

0,000/0,480 
/0,520(4) 

0,240/0,120 
/0,640(3) 

No model 0,000/0,000 
/1,000(5) 

0,000/0,000 
/1,000(4) 

Table 4 : Case 2: 500 Tasks per requester 
Trust 
model Honest agent Camouflage Random 

Junker 0,900/0,100 
/0,000(306) 

0,000/1,000 
/0,000(46) 

0,150/0,750 
/0,150(75) 

BRS 0,922/0,050 
/0,028(428) 

0,244/0,404 
/0,351(23) 

0,302/0,369 
/0,329(23) 

Forgive 
Factor 

0,371/0,229 
/0,400(437) 

0,255/0,345 
/0,400(21) 

0,171/0,429 
/0,400(17) 

No model ,000/0,000 
/1,000(109) 

00,000/0,000 
/1,000(124) 

0,000/0,000 
/1,000(85) 

 
Trust 
model 

Constant 
Dishonest Whitewashing 

Junker 0,000/1,000 
/0,000(20) 

0,200/0,800 
/0,000(53) 

BRS 0,302/0,369 
/0,329(23) 

0,213/0,393 
/0,393(16) 

Forgive 
Factor 

0,000/0,600 
/0,400(7) 

0,181/0,419 
/0,400(18) 

No model 0,000/0,000 
/1,000(93) 

0,000/0,000 
/1,000(89) 

 
Values used in Table 3 and Table 4 do not show the 
prediction quality of the used trust models. They just give 
a general idea about the defense of trust models against 
different attacks. To infer the prediction quality of each 
trust models, the results obtained by trust metrics (trust 
knowledge acquired during the task delegation process) 
need to be analyzed using measures discussed in Section 5 
to extract the correlation between the prediction 
trustworthiness calculated by metrics, and the real 
trustworthiness. The MCC measure is used for this purpose. 
Table 5 shows the results obtained using those measures, 
and the number of satisfactions and dissatisfactions. 

Table 5 : Trust model’s correlation coefficient 
Trust model MCC Satisfaction Dissatisfaction 

Junker 0.81 388 112 
BRS 0,885 416 84 

Forgive Factor 0,994 461 39 
No model 0 218 282 

 
MCC values are between -1 and 1; when its value is close 
to 1, it means that the metric is positively correlated with 
the expected values, which are the trustworthiness of 
agents in the system, and therefore, it has a good prediction 
quality. If its value is close to -1, it means that the metric is 
negatively correlated with the expected values. For small 
values close to 0, they means that there is no correlation 
between the results obtained while using the metric and the 
expected results. 
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6. Conclusion 

In this paper we presented a JADE based testbed for 
evaluating learning techniques proposed by computational 
trust models. This testbed helps users compare the 
performance and efficiency of learning techniques 
proposed by existing trust and reputation models that uses 
probabilistic methods and machines learning techniques to 
evaluate trustworthiness of agents. In contrast to most of 
the existing testbeds, our testbed provides more flexibility 
while comparing those models within the system where 
agents manage and request different services. It provides 
also the possibility of testing many trust models at the 
same time in the same test case. For future work, we will 
study the impact of combination of different attacks 
strategies used to compromise the decision of an initiator 
agent. We will also try to introduce new possible attacks to 
view their impacts on the trust models used in this study. 
We also plan to improve the design of our testbed to 
handle and evaluate new trust models at runtime level. 
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