
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.7, July 2017

273

Manuscript received July 5, 2017
Manuscript revised July 20, 2017

A Testbed for the Evaluation of Multi-Context Trust Models in
Open Multi-Agent Systems

Mifrah Youssef 1, En-Nouaary Abdeslam1 and Dahchour Mohamed 1
1 Institut National des Postes et Télécommunications, Rabat, Morocco.

Summary
In open dynamic multi-agent systems, trust is commonly
considered as a critical concept to be handled and managed.
Computational trust models are a kinds of formal models that
have been proposed to manage trust in such situation. These
models present a new form of distributed intelligence in virtual
societies and collective intelligence. However, the diversity of
those models makes user confused about which one to choose.
Different testbeds were proposed to evaluate trust and reputation
systems and verify the robustness of the underlying trust models.
However, those testbeds are not flexible to handle different
scenarios in various contexts. In this paper, the authors present a
testbed for evaluating computational trust models that could
provide user more flexibility while comparing trust models in
open systems. The ultimate objective is to evaluate and classify
available computational trust models.
Key words:
trust, reputation, testbed, multi-agent systems.

1. Introduction

Trust is an ubiquitous concept that exists in our social
world. The concept has become a booming topic of
research due to the fast growing that knows the area of
distributed architectures and multi-agent systems. Multi-
agent systems are a kind of distributed systems that consist
of multiple interacting intelligent agents, used together to
solve problems which are difficult to be solved by an
individual agent. An agent that belongs to a multi-agent
system is able to communicate and act within the system
and analyze perceived events using its own strategy. In the
last two decades, multi-agent systems and distributed
architectures have been converted to a more open structure
with less restriction on the internal behavior of agents in
the system. Many systems in use by millions of users today
provide such features. P2P networks, online games, social
networks and e-commerce platforms are a kind of open
dynamic networks, where users could enter and leave the
system dynamically. With the evolution that knows the
area of those open distributed systems, a new kind of
malicious intelligent agents could be developed and used
in those systems. Malicious agents have the intention to
switch their behaviors and to act dishonestly. This kind of
intelligent agent raises a challenge of managing trust and
reputation within the system. To address the trust and
reputation challenge in such situation, researchers have

looked for a formalism of the trust management so that an
agent can apply formal strategies to decrease the risk of
delegating tasks to distrusted peers. Those researches led
to computational trust models, where their authors propose
metrics, and learning strategies for trust assessment that
could be applied by agents to manage and evaluate the
trustworthiness of their peers. Learning strategies proposed
by a trust model wrap the intelligence that an agent will use
while managing trust within the system. When using a
computational trust model within a distributed system,
agents that belong to this system will use one or more
learning strategies proposed by the model. Each of the trust
models, found in the literature, presents its main
components and its specific learning strategies to use for
managing trust. When introducing a trust model into an
implementation’s system, agents that belong to this system
become able to reason about trustworthy of their peers.
The diversity of computational trust models makes the user
confused while trying to select a model for a specific
system. Another difficulty that arises is that the proposed
models are experimented using limited scenarios and a set
of data proposed by their authors. To address this situation,
comparative tools called testbeds were proposed by
researchers to expose those computational trust models to
different scenarios, and also to compare the robustness of
each model with respect to different scenarios. Those
testbeds have shown their utilities of verifying the
perception level of trust models. But the lack in existing
testbeds is that some of them do not handle trust per
context, others do not handle diverse attack strategies. To
this end, the authors propose a testbed that presents two
advantages: on the one hand, the proposed testbed
manages trust assessment per context while handling
diverse services, and on the other hand it introduces
various attack strategies to evaluate the robustness of trust
models against those attacks.
The remainder of this paper is organized as follows.
Section 2 presents some of the known existing testbeds
proposed to evaluate computational trust models. Section 3
is an overview of a proposed Framework for Modeling
Multi-Agent Trust denoted for (GeFMMAT) and it’s
Meta-Model. Section 4 presents the implementation of
GeFMMAT using JADE. Section 5 introduces the
proposed testbed. It describes the architecture and also the
implementation of the testbed along with some

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.7, July 2017

274

experimentation. Finally, Section 6 concludes the paper
and presents perspectives for future work.

2. Trust Testbeds : Related Works

To handle the diversity of existing trust models, some
testbeds have been proposed to evaluate and compare trust
models. Four known testbeds could be found in the
literature namely the Agent Reputation and Trust (ART),
Trust and Reputation Experimentation and Evaluation
Testbed (TREET) [7] Alpha testbed [9] and Zhang
Testbed [10]. In ART, agents play the role of art appraisers.
Each agent appraises the value of paintings of a client by
either using its own knowledge or by asking other agents
for help. Agents can use trust models to evaluate their
peers and to evaluate their opinions. In ART, there is no
variety of attack strategies that dishonest agents could use;
there is also no collision attacks that a group of agents
could perform. The ART testbed is inspired from the work
of Kerr and Cohen [7] to create a more general and
focused testbed, called TREET. In TREET, the game
scenario is a simulation of a marketplace where sellers and
buyers exchange items. Buyers are motivated by the value
of items, while sellers are motivated by the profit they
make from sales. Sellers can cheat by not shipping the item
and so increasing their profits. With TREET, no specific
format of trust value is imposed, and the user can
implement new collision attacks easily. Both testbeds do
not evaluate the quality of trust model classification, but
just the quality of whether the selected partner is honest or
not.
Another testbed, called Alpha, was proposed by Jelen [9],
tries to distinct between the trust assessment phase where
the agent apply learning techniques to evaluate the
trustworthiness of their peers, and the decision making
phase. Jelen confirm in his research that the decision
making mechanism influences the performance of the trust
model. Yet other recent testbed has included many attacks
strategies to verify the robustness of evaluated trust models,
this recent testbed was proposed by Zhang [10]. However,
it still uses the scenario of buyers and sellers with a single
service. This presents a lack of flexibility and could cause
loss of information in the case where the evaluated trust
model uses a trust evaluation per context. This raises the
necessity of building a testbed that provides at the same
time the possibility of managing more than one service in
parallel to handle the management of trust in specific
context, and to evaluate trust models against many attack
strategies.

3. The GEFMMAT Framework

Several frameworks were proposed by researchers to
design multi-agent systems by capturing common concepts
used in such systems. Each of the proposed frameworks
uses a specific domain model that design agent systems
from different perspectives. Some of them are based on
organizational and hierarchical perspectives, and include
the notions of environment, hierarchy and role. Others
focus on the interactional aspects of agent systems. There
are also other works that combine between different
perspectives. However, the proposed frameworks did not
handle explicitly the concept of trust. To introduce the
concept of trust in multi-agent systems, we have proposed
a Generic Framework for Modeling Multi-Agent Systems
in Untrusted Environment. This Framework is based on a
meta-model that captures the semantics of concepts
involved in open dynamic multi-agent systems.
Each meta-class of GeFMMAT meta-model presented in
Fig.1 represents a common concept used in open dynamic
multi-agent systems.

Fig.1 GeFMMAT Meta-model

The meta-class Agent presents an autonomous entity that
communicates with others agents and provides one or more
services. There is no constraint on the internally
specification of the agent model. Features that characterize
an agent within the system are defined while designing a
system. An agent has a list of features values. For example,
in an ecommerce platform where some users could be
represented by agents, each user has a profile composed of
features (user name, country, registration time, experiences,
etc.). Those features constitute the agent’s profile, and they
reflect its instance within the system. The Service meta-
class presents an expertise that an agent can propose to
other agents to perform their tasks. An agent can provide
one or more services. The service concept uses some
communication knowledge, and it is associated to one or

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.7, July 2017

275

more activity contexts. The Communication Knowledge
presents the policy of communication. This policy could be
presented by an interaction protocol and knowledge used
during the communication process. It’s like how the deal
between the agent and his partner will be confirmed, what
requirements should be shared before performing the task,
and how results will be received. Those concepts would be
handled by this meta-class. The Activity Context meta-
class represents the boundary that group a set of common
services. The Task meta-class presents the delegated task
that agents exchange and delegate. It could present a
request for service, or for information. A task is related to
an activity context, which present the context of
application of this task. The Relationship meta-class
presents the information that characterizes the relationship
between two agents. It’s a directional relation between an
initiator agent and its partners. This relationship contains
also passed experiences between those agents, the trust
evaluation of the initiator about its partners, and the trust
metrics used. In general, if an initiator agent selects a
partner to process a task, then two new relationships will
be created between them, one for the initiator which
presents his relation to the partner, and another one for the
partner that presents his relation to the initiator. When the
partner accomplishes task processing, the initiator will
receive a result and use it with other parameters as an input
to the trust metric to evaluate the trustworthiness of the
partner. This evaluation is done using computational trust
learning techniques proposed by the used model. Then, he
updates the associated trust knowledge. The Trust
Knowledge meta-class is defined as the model that presents
the trust assessments that an agent uses and assesses while
interacting with his partners. Several works have been
done to setup a formal presentation for trust. Different
presentation of trust have been proposed such as a variable
that takes one value from a finite enumeration space ,
numeric variable that takes its value from a range , vector
in a multidimensional space where we can set to each
agent’s feature an evaluation value 25 and generic form of
trust using subjective logic 18. The approach of modeling
trust using the subjective logic gives more control on the
state of the unavailability of trust information (the case of a
newcomer agent) because of the integration of the concept
of uncertainty. The Trust Metric meta-class presents the
logic applied to evaluate an agent. Each agent could
associate a trust metric to one relationship with a partner
who has accepted a delegated task. For an autonomous
agent interacting with his peers, the agent could have a
choice between many trust metrics. A group forms an
aggregation of agents. Agents that are parts of a group
could share specific features, thus, belonging to a group is
helpful while identifying the nature of an agent. A group
could be specified by the designer statically while
designing the system, or by agents at runtime level. Those

groups are dynamic, which means that members could
change during the activities of the system, and at any time,
the group should have an agent designated as the leader of
the group. This form of aggregation would help agents to
evaluate the trustworthiness of group’s members more
efficiently, especially when trust knowledge about the
targeted agent is scarce or unavailable. The presented
meta-model reflects the structural part of the framework;
the behavioral part is represented by a workflow process
that defines steps applied by agents to assess trust and
improve the process of decision making. The framework
adopts a workflow of information for the management of
the trust as shown in Fig.2. This workflow captures and
presents in an abstract way how agents should manage
information about the environment during the decision
process, and how to use feedbacks after the decision
process. It defines where an intelligent agent will use the
learning strategy proposed by the computational trust
model, and when its trust knowledge will be updated.

Fig.2 GeFMMAT Workflow

4. JADE Based Framework Implementation

Many development platforms dedicated to implement
multi-agent systems exists in the literature. There are
platforms oriented middleware for implementing
interoperable agent systems, such as Agent Development
Kit (ADK) 12 and Java Agent DEvelopment Framework
(JADE). There are social platforms that handle the
organizational architecture and help expressing group
behaviors such as MadKit. There are also reasoning
platforms that focus on the internal processing of agents
within the systems like JASON [22] and SOAR [24].
Pokahr et al. established in a detailed research [23] a
classification of existing platforms. Each platform is based
on a set of standards and specifications such as FIPA [11],
JXTA [25], and web services. The advantage of the JADE
over other platforms is that it complies with the FIPA
specification for interoperable intelligent multi-agent
systems and represents an agent middleware. It uses also
an agent abstraction to design agent in the system. The

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.7, July 2017

276

JADE platform provides a set of graphical tools to be used
during the development process. The established
implementation of the proposed Framework is based on
JADE. We have extended the jade.core.Agent class to an
Agent class that presents an abstraction of the agent used
in our Framework. We have also introduced new classes
such as AgentExperience that presents the acquired
experience and TaskHandler that presents a listener for
task request. A trust model metric is presented by the
interface ITrustMetric where trust learning algorithms will
be implemented. The testbed description section discusses
how those classes and interfaces are used.

5. The Framework Testbed

In Section 2, we have presented some of the existing
testbeds used to evaluate trust models, we have presented
their features, advantages, and limitations. Our
contribution is a new testbed that takes a step forward to
provide a new way to evaluate trust models, and provide
some new features that do not exist in the existing testbeds.
Our testbed is based on an idea of a group of students.
Each student is qualified in one or more topics. For
example, we can find a student who is qualified in
arithmetic operations such as addition or multiplication
and also qualified in some physics operations. Each
student has a set of homeworks to do, but he is not
qualified in all of those homeworks. To simplify the
processing in our testbed, we ignore homeworks that could
be accomplished by the student itself and we just focus on
homeworks that do not fit their skills. In this situation, an
initiator student will seek help from his peers. Students will
respond by a refuse or a proposal as a feedback for the
request of the initiator student. Then, the initiator will use
his history and received proposals and apply the trust
metric strategy which present its social intelligence, then
generate an evaluation of trustworthiness of each of his
peers; such process will help the initiator choose the right
student that will process the homework. Here, the right
student does not mean the one who will certainly satisfy
the initiator, but the student who is more likely qualified to
satisfy the initiator from its point of view. The decision
takes into consideration the knowledge experience that he
acquires and the trust metric strategy that he is using to
evaluate each of his peers. Each student in this group is
simulated as an agent in the testbed, and he can play the
role of a requester or a proposer or both of them.

5.1 Testbed architecture

As presented before, our testbed is based on the idea of the
group students who try helping each other resolving their
homeworks. There are two principal categories of students

that we can distinguish: honest students and dishonest
students. An honest student represents a student that has no
intention to trick his peers, but it may sometime fail
achieving some tasks with a specific probability. A
dishonest student is a student with a bad intention while
communicating with his peers. Every dishonest student
follows an attack strategy. These attack strategies against
trust and reputation systems differ in their natures and
complexities from one to another. Some attacks are used
against reputation systems where agents would ask for
recommendation from other agents in the system such as
Constant and Sybil attack [13]. Others are used to directly
attack agents that acquired some positive/negative
experience with the attacker agent [10]. We configure our
testbed to handle the four known attacks: Constant or
always dishonest attack, Camouflage attack, and
Whitewashing attack. An agent that applies a constant
dishonest attack always acts unfairly. This means that at
each time the agent is selected by an initiator agent to
perform a task, he will return a result different than what is
expected by the initiator. This is the simplest attack
because there is no timing strategy to trick peers over time
or changing its identity. The second strategy that we
introduce is the camouflage strategy. The idea of this
attack is that the attacker gives fair result at the beginning
of building its experience with his peers. Such behavior
will initially give him a good reputation inside the system.
Then, he will alter his behavior to trick the initiator. The
third attack strategy introduced in our testbed is
Whitewashing attack. An attacker agent who applies this
strategy will leave and rejoin the system each time that he
builds a bad reputation with his peers. The fourth attack is
the random attack, where the agent randomly decides to
respond fairly or unfairly.
Recall that the purpose of evaluating a trust model is to
check whether or not the model has the capability of
assessing the trustworthiness for each agent. The process
of evaluating computational trust model refers to statistical
measure classifications. In statistics, we find methods that
help evaluating the quality of a model prediction [20].
Several works have been done to compare such methods
and to show their consistency and efficiency within
different scenarios [16]-[19]-[17]. Jurman shows that the
Matthews Correlation Coefficient (MCC) method is the
best suited method for evaluating the quality of binary
classifications [26], where we have to classify our dataset
into two groups. Trust evaluation models are an example
of a binary classification where agents are grouped by their
trustworthiness. In case that the trust evaluation values
belong to a range, we can first convert them to match a
binary repartition, and then use measure classifiers to
evaluate the model.
Fig.4 illustrates the high level architecture of our testbed.
The attack strategies and trust evaluation metrics are

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.7, July 2017

277

configured to be used by the students who are represented
by agents in the figure. The user will configure a test case
by setting the number of honest students, the number of
dishonest students, and will also specify the nature of each
one of them. Later, the user defines the trust evaluation
metrics that each agent requestor will use to evaluate his
peers. When a test case starts, the monitoring dashboard
could be used to preview the trust assessment values that
set each of the task requester agent about his peers. Model
evaluation metrics are used to evaluate the quality of the
prediction of the trust model being used. Our testbed
provide some features that are not available in existing
testbeds.

Fig.4 Testbed architecture

It can evaluates more than one trust models at the same
time in the same test case. It can also evaluate those
models against different attack strategies. Table 1
compares the characteristics of our testbed and some of the
existing ones

Table 1 : Comparison of GeFMMAT testbed and existing ones

Testbed Parallel
evaluation

Attacks
strategies

attacks
Extensibility

Our
testbed Yes

Constant attack,
Random attack
White washing,

Camouflage

Yes

ART No Random dishonest No
TREET No Random dishonest Yes

Lizi
Zhang et

al.
No

Constant attack,
Sybil attack,
Camouflage,

Composite attack

Yes

Testbed Model evaluation
metric

System
architecture

Differen
t

services

Our
testbed

Evaluates the quality
of prediction using

correlation functions
decentralized Yes

MCC

ART

evaluates the accuracy
and cooperation

achievable by the
system of appraiser

agents

decentralized No

TREET

-the ratio of sales
(profits) between

honest and cheating
sellers

centralized
decentralized No

Lizi
Zhang et

al.

Specific function
proposed by authors

decentralized No

5.2 Implementation and experimentation

The testbed was designed following the best practices
applied in object oriented programming such as separation
of concerns and design patterns. The importance of design
patterns is that they represent proven solutions to
commonly occurring problems in software design. They
also help developers to describe and understand design
solutions using well-known conventions. We will not
discuss the implementation details of each component
here; we will just give an overview of the design structure
and the role of each part. The source code of our testbed is
available online [27]. Our testbed is composed of five
distinct components: behaviors, operations, tasks, features
and trust models. Each part is implemented in a separated
package.

Fig.5 Testbed components

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.7, July 2017

278

 Fig.5 shows the relationships between those components.
The package of students contains available behaviors that
could be used by students. Those behaviors present the
possible attack strategies. A student could play the role of
a service requestor or a service provider or both of them at
the same time. Roles played by a student are independent
from his behavior nature; e.g., whether he is honest or
dishonest. The operation package groups operations
provided by students as services. Operations are
independent from each others, and each operation has a set
of features. For example, the addition operation has one
feature, which is MathFeature; the CalculateSpeed
operation has MathFeature and PhysicsFeature.
Each student could provide a set of operations to serve his
peers. The default implementation of an operation presents
the right implementation that results in correct answer, or
let’s say the honest implementation. A student who
provides an operation may alter the result depending on the
nature of his behavior. Honest students will use this
implementation without any changes. Dishonest students
alter the logic applied in those services. Each dishonest
student uses his own alteration strategy. Each of the
available operations is intended to process specific tasks.
To this end, a distinct task model is defined for each
operation. The package task groups task models. To
evaluate the result and manage the trustworthiness of an
agent’s peers, the agent needs a trust metric, which is the
implementation of a trust model. Those trust models are
intended to be evaluated by the testbed. We have
implemented four different trust models: Jonker trust
model [14], Beta Reputation System (BRS) [18], Forgive
Factor model [15], and an empty trust model called
NoModel. It is also possible to introduce new models by
implementing the interface ITrustMetric. The
communication between students could be monitored using
a sniffer tool provided by JADE platform. Fig.6 shows the
screenshot of the interaction result between the set of
students.

Fig.6 Interactions between agents

As shown in Fig.6, an initiator agent called
taskGeneratorStudent_0_B first requests the list of
registered students in the Directory Facilitator; then, it
sends call for proposals to all of those students. Each
student could respond with a proposal or a refuse. The
initiator agent handles those responses and selects the best
proposal depending on his trust knowledge. The selected
agent will receive an accept proposal with the task to be
performed, the rest will receive a reject proposal. When
the selected agent performs the delegated task, it will send
a result back to the initiator. The initiator will verify the
validity of the result and updates its trust knowledge about
the selected agent.
To evaluate the prediction quality and the robustness of
implemented trust models against dishonest agents, the
user needs to setup a configuration for an evaluation
scenario. The configuration used to experiment the testbed
in this paper is presented in Table 2.

Table 2 : An example of test case configuration
Category Instance Number

Honest agents 5
Camouflage agents 5

Random dishonest agents 5
Always dishonest agents 5

Whitewashing agents 5
Task requester agents 4

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.7, July 2017

279

It is possible to execute one or many task requester agents
that will send a call for proposals to delegate their tasks.
The testbed gives the possibility to evaluate more than one
trust models in the same test case. This is done by
configuring a task requester agent for each trust model.
This evaluation scenario uses four task requester agents to
evaluate the four implemented trust models at the same
time. We have launched two test cases using this
configuration. In the first test case, each task requester
agent prepares and delegates 25 tasks, which is the number
of task handler agents. In this case, the results will show
the initial acquired trust assessment obtained using each of
configured trust models. In the second test case, each task
requester agent prepares and delegates 500 tasks. This case
will show the convergence of trust assessments of those
trust models. Results are presented in tables 3 and 4 that
show the trust knowledge of a task requester about their
peers grouped by category. The value of trustworthiness
associated to an agent is in the form of
belief/disbelief/uncertainty (selection time). The belief
factor presents the degree of how an agent thinks that its
peer is trustworthy. The disbelief factor presents the degree
of untrustworthy that the agent thinks about his peer, and
the uncertainty value presents the doubt that an agent still
has about his peer. The selection time parameter shows
how many times the agent has selected a peer of the
category. Values within Tables 3 and 4 present means of
evaluation values acquired by trust models about each
category of students. For example, if the agent uses BRS as
a trust metric, and delegates some tasks to five agents with
the camouflage behavior (seven tasks in the case of 3),
then the value shown in the table presents the mean
evaluation of those five camouflage.

Table 3 : Case 1: 25 Tasks per requester
Trust
model Honest agent Camouflage Random

Junker 0,200/0,000
/0,800(6)

0,150/0,00
/0,850(5)

0,200/0,050
/0,750(5)

BRS 0,387/0,000
/0,613(10)

0,320/0,000
/0,680(7)

0,320/0,000
/0,680(7)

Forgive
Factor

0,330/0,000
/0,670(4)

0,480/0,000
/0,520(11)

0,000/0,480
/0,520(4)

No model 0,000/0,000
/1,000(3)

0,000/0,000
/1,000(5)

0,000/0,000
/1,000(8)

Trust
model

Constant
Dishonest Whitewashing

Junker 0,000/0,167
/0,833(3)

0,100/0,150
/0,750(6)

BRS 0,000/0,167
/0,833(3)

0,000/0,167
/0,833(3)

Forgive
Factor

0,000/0,480
/0,520(4)

0,240/0,120
/0,640(3)

No model 0,000/0,000
/1,000(5)

0,000/0,000
/1,000(4)

Table 4 : Case 2: 500 Tasks per requester
Trust
model Honest agent Camouflage Random

Junker 0,900/0,100
/0,000(306)

0,000/1,000
/0,000(46)

0,150/0,750
/0,150(75)

BRS 0,922/0,050
/0,028(428)

0,244/0,404
/0,351(23)

0,302/0,369
/0,329(23)

Forgive
Factor

0,371/0,229
/0,400(437)

0,255/0,345
/0,400(21)

0,171/0,429
/0,400(17)

No model ,000/0,000
/1,000(109)

00,000/0,000
/1,000(124)

0,000/0,000
/1,000(85)

Trust
model

Constant
Dishonest Whitewashing

Junker 0,000/1,000
/0,000(20)

0,200/0,800
/0,000(53)

BRS 0,302/0,369
/0,329(23)

0,213/0,393
/0,393(16)

Forgive
Factor

0,000/0,600
/0,400(7)

0,181/0,419
/0,400(18)

No model 0,000/0,000
/1,000(93)

0,000/0,000
/1,000(89)

Values used in Table 3 and Table 4 do not show the
prediction quality of the used trust models. They just give
a general idea about the defense of trust models against
different attacks. To infer the prediction quality of each
trust models, the results obtained by trust metrics (trust
knowledge acquired during the task delegation process)
need to be analyzed using measures discussed in Section 5
to extract the correlation between the prediction
trustworthiness calculated by metrics, and the real
trustworthiness. The MCC measure is used for this purpose.
Table 5 shows the results obtained using those measures,
and the number of satisfactions and dissatisfactions.

Table 5 : Trust model’s correlation coefficient
Trust model MCC Satisfaction Dissatisfaction

Junker 0.81 388 112
BRS 0,885 416 84

Forgive Factor 0,994 461 39
No model 0 218 282

MCC values are between -1 and 1; when its value is close
to 1, it means that the metric is positively correlated with
the expected values, which are the trustworthiness of
agents in the system, and therefore, it has a good prediction
quality. If its value is close to -1, it means that the metric is
negatively correlated with the expected values. For small
values close to 0, they means that there is no correlation
between the results obtained while using the metric and the
expected results.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.7, July 2017

280

6. Conclusion

In this paper we presented a JADE based testbed for
evaluating learning techniques proposed by computational
trust models. This testbed helps users compare the
performance and efficiency of learning techniques
proposed by existing trust and reputation models that uses
probabilistic methods and machines learning techniques to
evaluate trustworthiness of agents. In contrast to most of
the existing testbeds, our testbed provides more flexibility
while comparing those models within the system where
agents manage and request different services. It provides
also the possibility of testing many trust models at the
same time in the same test case. For future work, we will
study the impact of combination of different attacks
strategies used to compromise the decision of an initiator
agent. We will also try to introduce new possible attacks to
view their impacts on the trust models used in this study.
We also plan to improve the design of our testbed to
handle and evaluate new trust models at runtime level.

References
[1] Liu, X., Trédan, G. ,& Datta, A., (2014). A generic trust

framework for large-scale open systems using machine
learning. Computational Intelligence , 30(4), 700-721.

[2] Pinyol, I., & Sabater, J. (2013). Computational trust and
reputation models for open multi- agent systems: a review.
Artificial Intelligence Review. 40, 1-25.

[3] Mifrah, Y., En-Nouaary, A., & Dahchour, M. (2016). An
Abstract Framework for Introducing Computational Trust
Models in JADE-Based Multi-Agent Systems. In Advances
in Ubiquitous Networking (pp. 513-523). Springer
Singapore.

[4] Fullam, K. K., Klos, T. B., Muller, G., Sabater, J., Schlosser,
A., Topol, Z., Voss, M. (2005, July). A specification of the
agent reputation and trust (art) testbed: experimentation and
competition for trust in agent societies. In Proceedings of
the fourth international joint conference on Autonomous
agents and multiagent systems (pp. 512-518). ACM.

[5] Yu, B., & Singh, M. P. (2002, July). An evidential model of
distributed reputation management. In Proceedings of the
first international joint conference on Autonomous agents
and multiagent systems: part 1 (pp. 294-301). ACM.

[6] Youssef, M., Abdeslam, E. N., & Mohamed, D. (2015,
October). A JADE based testbed for evaluating
computational trust models. In 2015 10th International
Conference on Intelligent Systems: Theories and
Applications (SITA) (pp. 1-7). IEEE.

[7] Kerr, R., & Cohen, R. (2010). TREET: The trust and
reputation experimentation and evaluation
testbed. Electronic Commerce Research, 10(3-4), 271-290.

[8] Jelenc, D., Hermoso, R., Sabater-Mir, J., & Trček, D. (2013).
Decision making matters: A better way to evaluate trust
models. Knowledge-Based Systems,52, 147-164.

[9] Jelenc, D., Hermoso, R., Ossowski, S., & Trcek, D. (2012).
Alpha test-bed: A new approach for evaluating trust

models. Infrastructures And Tools For Multiagent Systems,
51.

[10] Zhang, L., Jiang, S., Zhang, J., & Ng, W. K. (2012, May).
Robustness of trust models and combinations for handling
unfair ratings. In IFIP International Conference on Trust
Management (pp. 36-51). Springer Berlin Heidelberg.

[11] The Foundation for Intelligent Physical Agents,
http://fipa.org. 2002.

[12] Tryllian’s Agent Development Kit,
http://www.tryllian.com/adk.html.

[13] Al-Mutaz, M., Malott, L., & Chellappan, S. (2014).
Detecting Sybil attacks in vehicular networks. Journal of
Trust Management, 1(1), 1-19.

[14] Jonker, C. M., & Treur, J. (1999, June). Formal analysis of
models for the dynamics of trust based on experiences.
In European Workshop on Modelling Autonomous Agents
in a Multi-Agent World (pp. 221-231). Springer Berlin
Heidelberg.

[15] Burete, R., Bădică, A., & Bădică, C. (2010, July).
Reputation model with forgiveness factor for semi-
competitive E-business agent societies. InInternational
Conference on Networked Digital Technologies (pp. 402-
416). Springer Berlin Heidelberg.

[16] Hernández-Orallo, J., Flach, P., & Ferri, C. (2012). A
unified view of performance metrics: Translating threshold
choice into expected classification loss. Journal of Machine
Learning Research, 13(Oct), 2813-2869.

[17] Huang, J., & Ling, C. X. (2007, January). Constructing New
and Better Evaluation Measures for Machine Learning.
In IJCAI (pp. 859-864).

[18] Commerce, B. E., Jøsang, A., & Ismail, R. (2002). The beta
reputation system. In In Proceedings of the 15th Bled
Electronic Commerce Conference.

[19] Parker, C. (2011, December). An analysis of performance
measures for binary classifiers. In 2011 IEEE 11th
International Conference on Data Mining (pp. 517-526).
IEEE.

[20] Kirn, S., Herzog, O., Lockemann, P., & Spaniol, O. (Eds.).
(2006). Multiagent engineering: theory and applications in
enterprises. Springer Science & Business Media.

[21] Sabater, J., & Sierra, C. (2001). Social regret, a reputation
model based on social relations. ACM SIGecom
Exchanges, 3(1), 44-56.

[22] Tofallis, C. (2015). A better measure of relative prediction
accuracy for model selection and model estimation. Journal
of the Operational Research Society,66(8), 1352-1362.

[23] Pokahr, A., & Braubach, L. (2009). A survey of agent-
oriented development tools. In Multi-Agent Programming:
(pp. 289-329). Springer US.

[24] http://soar.eecs.umich.edu/
[25] The Juxtapose Project, https://jxta.kenai.com/
[26] Jurman, G., Riccadonna, S., & Furlanello, C. (2012). A

 comparison of MCC and CEN error measures in multi-
 class prediction. PloS one, 7(8), e41882.

[27] https://github.com/mifmif/JADETrustTestbed

