
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.8, August 2017

28

Manuscript received August 5, 2017
Manuscript revised August 20, 2017

CloneCloud in Mobile Cloud Computing

Zulfiqar A. Memon1,*, Javed Ahmed2,+, Jawaid A. Siddiqui2,+
1Department of Computer Science National University of Computer and Emerging Sciences, Karachi, Pakistan

2Department of Computer Science, Sukkur IBA University, Airport Road, Sukkur, Sindh, Pakistan

Summary
Due to the advancements in computation technolo- gies, apparent
in small, faster, and parallel processing capabilities both in
hardware and software, there has been a paradigm shift to
ubiquitous computing. Most of the computing platforms exist in
the form of mobile computing, where portability and round- the-
clock accessibility is the main advantage. Mobile Cloud
Computing (MCC) helps bridging Cloud Computing seamlessly
into a mobile environment to elastically enhance resource
utilization in the on-demand requirements for the mobile users and
mobile applications providers. The main goal is the provision of a
better experience for mobile users by alleviating problems
concerning storage, computational power, and battery. This
removal of resource limitation occurs in the form of Task
offloading. Cloud has the capability to compute faster using the
numerous resources available, more storage performance and a
constant supply of power compared to mobile devices, hence
“heavy-lifting” the cloud is the optimal approach to mitigate
resource limitations. Many models have been proposed which take
certain parameters into consideration for offloading such as the
speed of the cloud versus the speed of mobile devices, and the
bandwidth available for transfer between the cloud and the mobile
device etc. More- over, before offloading decisions need to be
made on what are “offloadable ” elements of the code. This
annotation is done either manually by the developers of the
applications or automatically through appropriate partitioning
tools. CloneCloud, which is the focus of this paper, helps in
automatically marking the potential “offloadable ” blocks in
bytecode in a static fashion and then at runtime determines the
optimal offloading. CloneCloud uses virtual machine migration
(VMM) to transfer mobile application blocks to a cloud server
using either 3G or Wifi. This paper elaborates on the framework
details of the CloneCloud, the shortcomings found in this model
and our proposed solution.
Keywords
mobile cloud computing, clonecloud, remote procedure calls,
virtual machine, offloading.

1. Introduction

Relatively cloud computing is defined as the service which
provide the facilities to store and share resources,
information, and software to other computer and portable
devices. This service provided over the Internet. The basic
purpose is to facilitate the users to their resources without
having knowledge of physical location and provide
transparency from requesting resources to getting back their
response is the major deter- mination of cloud computing.

As Mobile cloud computing (MCC) is just belong to cloud
computing. It refers as the simple infrastructure where data
processing and storage are kept on the cloud. It provides a
broader range of user to facilitate this service. The main
objective of MCC is to deliver better experience to the users
who have limited data storage, processing, and battery
consumption in their mobile devices [1]. It provides ease to
mobile application because processing and storage of data
are moved to the cloud. Now the data storage and
processing are controlled by powerful computing and
accessed over the wireless network. This reduces the need
of users to have wide CPUs speed and memory to run dense
mobile applications as all the complicated processing are
now done in the clouds. Further, user can access their
resources and applications from anywhere as the cloud is
distributed over the world at different locations. For
instance, (Google, Amazon, etc) having their datacenters at
different geographical area. Private and local clouds have
limited scalability but high performance in terms of caching,
battery consumption, delays, and more important privacy
on the user’s devices.
In this paper, we provide a survey of the challenges that
exist in the mobile computing and cloud computing
architecture, its scope, and the future enhancements. We
also focus on CloneCloud model that provides an avenue to
bridge the gap between mobile devices and the efficient
processing on the cloud using cloning techniques. We
elaborate on the structure of CloneCloud that aids in
dynamic partitioning of mobile application in “offloading”
seamlessly into the cloud. We also show where limitation
CloneCloud lies and how we can manage to optimize it for
improving QoS of applications.
The rest of the paper is organized as follows. Section II
gives an overview of the MCC and its challenges. In Section
III CloneCloud has been described. We then elaborate on
the design of CloneCloud’s partitioning components in
Section IV. Section V delineates the Clone Cloud’s
limitations and the proposed improvements. Finally Section
VI concludes the paper.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.8, August 2017 29

2. Mobile Cloud Computing
As the need of mobile applications availability are increases.
The cloud is distributed to provide the processing of appli-
cations and accessibility at any time. However, in order to
achieve this, many issues are occurring. Integration
between MCC and mobile networks are also facing many
technical challenges. To approaches are used for system
architecture. Firstly Client-Server approach, which used
Remote Procedure Call mechanisms for inter-process
communication through machines, networks and address
space. Secondly Virtualization framework which is a core
mechanism for cloud computing. Figure 1 shows the
ecosystem of Mobile Cloud Computing.

Fig. 1. Ecosystem of MCC including its important components.

To increase battery lifetime and makes the performance
better of applications, offloading is the main mechanism of
MCC. But there several issues pertaining to dynamic and
efficient offloading under different situations.

A. Offloading in the static environment

As offloading is a main feature of MCC for improving
performance. But when we examine in static environment.
It has major issues. As Research shows in [2], offloading is
not always become efficient to save battery life. Offloading
sometime might consumes more energy for code
compilation than in local processing. It has also been
observed that offload- ing consumes more energy in small
size code. For instance, experiment evaluated that when a
code after compilation have
500KB in size. For communication offloading consumes
only
5% of energy in it and local processing consumes 10% of
the device battery. In this way offloading saved 50% of the
device energy. But when offloading compute small size of
code likes

200KB. It consumes 30% of energy for computation which
is more than local processing computation.
It is major problem to decide whether to offload or not and
which portion of the codes offload to improve the efficiency
for mobile applications. It is also considered that different
wireless devices consumes different amount of energy and
different data transfer rates while doing offloading.
To solve this problem, a solution was suggested [3]. A
program estimated and partitioning the code on the basis of
energy consumption before program execution. The best
way for offloading the program and code partitioning is
made on runtime with dynamism. This will be decided on
runtime and there is always a trade-off between the cost of
computation and communication.
As computation cost is based on time and communication
cost is based on data transmitted size and network
bandwidth.
This computation and communication cost trade-off change
in runtime execution.
Many solutions for portioning the program before execution
are proposed. In the paper by Li et al. [4], another portioning
scheme presented for offloading. This scheme was planned
for offloading computational mobile tasks. It is based on the
data sharing information and time at procedure call level. A
branch and bound algorithm is applied on cost graph. The
main purpose of this scheme is to minimize the
communication and computation cost of total energy
consumption. The main idea of this scheme is consider an
approximate solution for partitioning the program. This
scheme only work for partition procedure call tasks.
Another solution was presented [5], which take decisions
for the components of java programs to be offloaded. The
program first divided the program and then decided which
part of the java program is offloaded on the basis of size of
functions. Then calculate the computation cost. After that
local and remote execution time is compare by this
approach. The cost is also based on wireless transmission
for the execution time.
Hunt and Scott [6] proposed Coign, which is an auto- matic
system of distribution partitioning. It transforms in to
distributed applications and not accessing the codes. The
approach constructs a graph to search the best possible
distri- bution. This distribution is based on scenario
profiling. It uses lift-to-front minimum-cut graph-cutting
algorithm for finding the least communication time.
Many approaches uses the size of data, its network band-
width and execution time for finding the best solution of
partitioning the program before offloading. It is very
difficult to find the precise execution time for improving
performance by offloading because of computation and
communication time changes in dynamically runtime.
Incorrect execution time may result of inefficient
performance of applications.
A more efficient approach is presented by [7], it do not
require any execution time for computation of instance.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.8, August 2017 30

Online statistics are examining for computation time and
find out the optimal timeout. If the computation of programs
are not completed after timeout. Then the program will be
offloaded. This approach only evaluates the inaccuracy of
computation time. It is proved by experiments that the
approach also save
17% more energy than other approaches.

B. Offloading in the dynamic environment

The environment changes dynamically may also causes
many issues. For instance, a data may be lost on the server
when it is response to the client or the data convey may not
reach to the destination. Table I shows the suitable
offloading techniques relative to different environment.
In the paper by Ou et al. [9], investigate the offloading
systems performance working in wireless communication.
To evaluate the efficiency of offloading, researchers
consider into three situation of execution of an applications.
The cases are:

1) When the mobile application works fine locally
with offloading.

Table 1. Common mobile computing environmental factors [8].

2) When the application runs in offloading

environment without failures.
3) When the application operating on offloading with

presence of failure recoveries.
In the third case, when failures occur, the operation of
application re-offloaded. The portion in which the failure
occurs will be re-offload. This improves the execution time.
But there are some limitations of this approach. The mobile
connection is a wireless ad hoc local area network.
Disconnecting of wireless connection during offloading
execution will also result in failure.
Another research considers general behavior of environ-
mental changes [10]. They also provide solution of these
changes for offloading. For instance, disconnection at the
stage of program execution in case of connection status, the
server maintains the execution knowledge after checking
the connection status of the client for the running tasks.
When the connection recovered for the running tasks, server
sends the response to the client. In case of unavailability the
server waits for the predefined time period and then deleted.
One major drawback of this approach is that it only provides
general solution. The approach does not define how to
dynamically partitioning the application.

3. CloneCloud

CloneCloud enhances mobile applications by off-loading
part of the server from mobile devices on to clone’s devices.
It is designed to provide a service platform for mobile
devices. This service worked for generic mobile device
processing. As shown in Figure 2, the system transforms the
finest network connection of the relative mobile device,
application calculated patterns and cloud from single
execution of a mobile device in to distributed execution.
The perception of this type of system lies in following: The
execution of the program in the cloud is relatively more
secure, faster and efficient than the execution on the mobile
devices. The process paying the cost and may be worth it
for sending the execution code from the mobile to the cloud
and vice versa. The computation is required to find the
performance metric

Fig. 2. System Model of CloneCloud.

Between the existing application and the cloud partitioned
ap- plication. Cloud late-binds the partitioning if the
performance metric of the cloud partitioned code is better.
The decision of partitioning is finer grained. It’s partitioned
different amount of original application on the cloud.
Additionally the partitioning not only impacts the
application but also impact to the overall performance of the
execution. It impacts on the network connection, execution
workload, and CPU speed of mobile devices and cloud
devices.
The basic aim of Clone Cloud is to take decision about
where to run application, and which is more flexible. An-
other important goal of clonecloud is to take the quality
decisions itself without any programmer effort on
partitioning the applications. As programmers are also not
eager to do hand code job for all types of scenarios a user
can face. But also we can imagine the fact that unexpectedly
the automatic partitioning do not optimized the application
as the experienced programmer can do this hand code.
Moreover, the applications on store which gain more
popularity having very low motivation to optimize its
applications for effective performance and to run on
different architecture and networks, consume less battery
lives. So, as a result clonecloud goal is to partitioning the
applications flawlessly without need of the source code.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.8, August 2017 31

In this paper, the mechanism applies on application layer.

Fig. 3. Prototype Architecture of CloneCloud.

Application layers Virtual Machines (VM) are extensively
used on mobile platform. As VM is simpler to migrate and
manipulate applications on different sets of architectures.
The clone cloud prototype has shown all the design goals
on Figure 3. It rewrites the actual application, after modify
the application; automatically threads migrate from mobile
to cloud devices. The remaining functionality works on
mobile devices. It only gets blocks if it required accessing
the mi- grated partition code. This is showing opportunistic
but also a traditional concurrency. The thread which
migrated on cloud, accessing the cloud devices such as
accessing the fast CPU, storage, network connections. After
processing on the cloud devices the modified state return
back to the original process. The decision is taken by
partitioned component whether to migrate on the cloud or
not. The partitioned components have static analysis on the
application which define the constraints and also have
dynamic profiling which evaluates the cost for migrating
the execution thread. To optimize the calculated total
execution time, a mathematical optimize is used. It aims is
to optimize the energy consumption on mobile devices and
the total time taken by the process.
The model for efficiently use of ambient resources in not
new. As Balan et al. [11], also researched for partitioning
and executing the application. Further clone cloud is built
on exist- ing resources. But it enhance in a novel way.
Satyanarayanan et al. [12], research about the clone cloud
migration at thread level granularity. It also migrates the
code on the cloud except those which require on mobile
devices. For example camera and organizing the user
interface. Aridor et al. [13], and Zhu et al. [14] work shows
that the clone cloud allow migrating operation to execution
on mobile and cloud devices. It not only accessing raw
resources of cloud devices (i.e. CPU power) but also access
specialized resources when fundamental library and OS are
try to implement them. MAUI [15], also examine the total
cost by static analyzer and dynamic profiler with the help of
programmer. The scheme also used optimizer to solve the
partitioning issues. Beside these researches, this model can
accomplish the performance for mobile applications 20x
speed up and also 20x less energy consumption

3.1 Partitioning

Fig. 4. Workflow Diagram for Partitioning Analysis.

The main aim of partitioning is to decide which part of the
mobile application is partition and migrate on the cloud and
also decide which part retain on the mobile device for
execution. The mechanism of partitioning is made offline
on clone cloud. Those applications which have objective to
target on the application VM stage may also be partition.
The result of partitioning is partition the application part
where the execution takes place and migrates from mobile
to clone cloud. There is no need a programmer to write and
explain some standard rules for it. And there is no need for
having source code. Partitioning mechanism works for
following parameters: i.e. network connections, energy
consumption and CPU performance. It took these
parameters and optimizes the total energy an time taken by
the mobile device. The mechanism may be work multiple
times for different function and different conditions of
execution. Also at runtime, the distributed execution selects
a partition from the database. It implements the partition
using fast modification. In figure 4, the conceptual
workflow is shown. The partition made via static analysis
of program and dynamic profiling.

A.Static Analyzer
The mechanism of partitioning using static analysis for
evaluating the legal choices of partition the application. The
choice of placing migrating and reintegrating in the code.
According to the rule, the points of migration ad re-
integration may be place anywhere in the code. But the
process also reduces the legal choices and makes the
optimization issues tractable. Further, the mechanism also
restricts the migration from entry point and re-integration in
the code to the exits point. This paper also makes two
restrictions. Firstly the migration can only take place on the
boundaries of application not on the core system library
which also provides easiness on the implementation at
runtime. Secondly the migration can take at VM layer, not
on the native method boundaries. However this approach is
not allowing native methods for migration but it also
allowing the migrated methods to call up the native methods.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.8, August 2017 32

In Fig. 5, significant parts of the program are shown. Its
static control flow and partitioned graph are shown by an
example. It shows a class C which has three methods.
Firstly, function a() calls function b(), which carry out
expensive processing. The static graph estimate the overall
control flow. Exact flow is not determined because the
program accomplishment is not determined. The estimation
of the program is traditional because the program execution
follows many different paths than the path exists in the
graph but the communication does not hold. In figure 5(b),
the static flow graph represent the method entry exist nodes.
It is marked as <class name>.<method name>.<entry|
exist>. In figure 5(c), partitioned graph is represented, the
body of method c() works on the clone and the other part of
the program runs on the mobile device. As method c() is not
a native method but it can be call up the native methods.

Fig. 5. Static Analyzer program, control-flow graph, and a partition.

1) Constraints: The three following legal properties are
defined which require by the migration process. The
following properties explain the static analysis which
achieves these constraints.
Property 1: The methods that uses specific resources must
be retain on a machine.
The property explain that if a method accessing the mobile
features such as sensor, GPS location service and camera
in a machine then those method should retain and execute
on the mobile device. This property mainly concerned about
the native and main methods of the program. Such methods
are declared as (M) for mobile device. These methods
manually recognized in the VM’s API. For instance,
methods of VM API clearly refer to the camera. This will
not repeat for each application an it is handle by the
application platform once. The main methods are also
marked in the VM .
Property 2: Methods that have share native state must
retain on a same machine.
Applications have native methods that share the same state
below the VM. It share and access the native state. As this
mechanism does not migrate the native methods on the
clone. Such native method must be placed on the machine.
For instance, a class of image processing has initialize,

defect and fetch result methods that want to access native
state, so these methods must be placed on the machine.
Native state should be supposed automatically by avoid the
burden and it works well. All native are declared by NatC
in the class C for the set VNatC .
Property 3: Prevent nested migration.
The property implies that for one smart phone and clone, no
suspends and resumes should be nested. If a program is
migrated once at the entry point, there should be no
suspended until a resume occurs. The process of re-
integration and migration should be executed alternatively.
The static analysis creates a static control-flow graph to
implement this property. It captures the caller method. As
shown in figure 5, if method a() is the partitioning entry
points, then the entry points not shift to b() or c().

B. Dynamic Profiler

Fig. 6. An example of an execution trace and it’s corresponding profile
tree.

The function of profile is to build a cost model for the
program execution. This cost model used energy
consumption and execution time for the mobile devices.
Multiple executions invoked by the profile for the
applications. Each execution selected randomly input data
and execute on clone cloud and mobile devices. The set ‘S’
output by the profiler of execution and also profiler tree T
and T’ created.
The tree shown in Figure 6 represents a compressed execu-
tion process in one platform. The node on tree had shown
each method invocation. The root of the tree is the starting
point of the function such as main. This method is user-
defined method in the application. Further calls for methods
are presented as edges in the tree. These calls are from the
main root parent method to the child methods. The order of
method is not significant. Every node particularly explains
the cost metric representation in the tree. This cost metric is
defines execution time. Every method invocation from the
parent to its children, non leaves also have a leaf child,
which is called residual node. These nodes represent cost of
running execution body. It excludes the cost of those
methods which is called by it. So each node shows the child
node invocation state size and also the end invocation state
size. This amount of output is needed for the migratory to
view and transmit in different directions.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.8, August 2017 33

3.2 CloneCloud Optimization

CloneCloud has seamlessly allowed single-machine execu-
tion on a mobile device into a distributed computation using
cloud cloning technology. It has achieved this via
integrating thread granularity of application code migration.
The mobile application can operate in a halt-free manner
both on the local device as well as on the clone. This has
enabled optimum utilization of power in a resource-
constrained mobile device and in a high computational
environment of the cloud.However, while it allows
virtualization of most components of the executable code in
the cloud it has a limitation of not permitting virtual access
to native resources. In the case where the method of the
application requires access to truly local resource such as
the camera/GPS on the mobile phone, it makes the right
decision to keep that method pinned on the device.
Although, in cases where hardware facilities such as the
network or the OS component, which are present both on
the mobile device as well as on the clone in the cloud, the
non-virtualized access can be detrimental to performance. It
would be more optimal to allow migration of such methods
in conjunction with an RPC-like mechanism to enable
access to remote resources.
This virtualization can occur in the similar fashion to other
“offloadable” components. An image can be created of the
application and sent to the surrogate (on the cloud) for exe-
cution [16]. This can then incorporate migration of
previously un-virtualized parts which are then synchronized
periodically. This will increase efficiency and allow
powerful execution using resources unavailable locally on
the device. Similarly, the RPC-based approach can be
utilized more robustly to execute code reliant on the
device’s hardware. Dynamically offloading such
mechanism which increases parallelism can protect against
the bottleneck and thereby bring drastic im- provement to
the CloneCloud model.

4. Conclusion

This paper has shed some light into the existing problems in
Mobile Cloud Computing. The various technologies which
are present to tackle issues relating to efficient offloading
mechanisms which truly and cohesively bridge the gap
between mobile devices and cloud computing. The
architecture of CloneCloud has been elaborated in this
paper, and about how it offers an adaptable code
partitioning capabilities by taking in runtime parameters
based on storage capacity of the device, computational
power required and offered at the clone, and the network
cost in migrating the code. CloneCloud achieves the
challenges of providing basic augmented execution of
mobile application using resources of the cloud. As a step
further, this paper has also suggested optimization by

virtualization of methods that are reliant on local hardware
but can be executed efficiently both on the cloud and by
cultivating the RPC-based mechanism for local mobile
device components.

References
[1] M. R. Rahimi, J. Ren, C. H. Liu, A. V. Vasilakos, and N.

Venkatasub- ramanian, “Mobile cloud computing: A survey,
state of art and future directions,” Mobile Networks and
Applications, vol. 19, no. 2, pp. 133–143, 2014.

[2] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning,
“Saving portable computer battery power through remote
process execution,” ACM SIGMOBILE Mobile Computing
and Communications Review` vol. 2, no. 1, pp. 19–26, 1998.

[3] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users:
Can offloading computation save energy?” Computer, vol. 43,
no. 4, pp. 51–56, 2010.

[4] Z. Li, C. Wang, and R. Xu, “Computation offloading to save
energy on handheld devices: a partition scheme,” in
Proceedings of the 2001 international conference on
Compilers, architecture, and synthesis for embedded systems.
ACM, 2001, pp. 238–246.

[5] G. Chen, B.-T. Kang, M. Kandemir, N. Vijaykrishnan, M. J.
Irwin, and R. Chandramouli, “Studying energy trade offs in
offloading computa- tion/compilation in java-enabled mobile
devices,” IEEE Transactions on Parallel and Distributed
Systems, vol. 15, no. 9, pp. 795–809, 2004.

[6] G. C. Hunt, M. L. Scott et al., “The coign automatic
distributed partitioning system,” in OSDI, vol. 99, 1999, pp.
187–200.

[7] C. Xian, Y.-H. Lu, and Z. Li, “Adaptive computation
offloading for energy conservation on battery-powered
systems,” in Parallel and Dis- tributed Systems, 2007
International Conference on, vol. 2. IEEE, 2007, pp. 1–8.

[8] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of
mobile cloud computing: architecture, applications, and
approaches,” Wireless communications and mobile
computing, vol. 13, no. 18, pp. 1587–1611,2013.

[9] S. Ou, K. Yang, A. Liotta, and L. Hu, “Performance analysis
of of- floading systems in mobile wireless environments,” in
Communications,2007. ICC’07. IEEE International
Conference on. IEEE, 2007, pp.1821–1826.

[10] M. Tang and J. Cao, “A dynamic mechanism for handling
mobile com- puting environmental changes,” in Proceedings
of the 1st international conference on Scalable information
systems. ACM, 2006, p. 7.

[11] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen,
and H.- I. Yang, “The case for cyber foraging,” in
Proceedings of the 10th workshop on ACM SIGOPS
European workshop. ACM, 2002, pp.87–92.

[12] M. Satyanarayanan, M. A. Kozuch, C. J. Helfrich, and D. R.
OâA˘ Z´ Hal- laron, “Towards seamless mobility on
pervasive hardware,” Pervasive and Mobile Computing, vol.
1, no. 2, pp. 157–189, 2005.

[13] Y. Aridor, M. Factor, and A. Teperman, “cjvm: a single
system image of a jvm on a cluster,” in Parallel Processing,
1999. Proceedings. 1999 International Conference on. IEEE,
1999, pp. 4–11.

[14] W. Zhu, C.-L. Wang, and F. C. Lau, “Jessica2: A distributed
java virtual machine with transparent thread migration

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.8, August 2017 34

support,” in Cluster Computing, 2002. Proceedings. 2002
IEEE International Conference on. IEEE, 2002, pp. 381–388.

[15] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S.
Saroiu, R. Chandra, and P. Bahl, “Maui: making smartphones
last longer with code offload,” in Proceedings of the 8th
international conference on Mobile systems, applications,
and services. ACM, 2010, pp. 49–62.

[16] D. Lima, H. Miranda, and F. Taïani, “A new system model
for cloud offloading.”

Zulfiqar Memon is an Associate Professor
at National University of Computer and
Emerging Sciences (FAST – NUCES),
Department of Computer Science, Karachi,
Sindh, Pakistan. Previously he has worked
as Director Research (Office of Research,
Innovation and Commercialization (ORIC),
at Sukkur IBA. Dr. Zulfiqar has obtained
various funded projects from many

reputable international and national organizations that includes,
Asian Development Bank (ADB), USAID, World Bank, Higher
Education Commission (HEC) Pakistan, National ICT R&D Fund
Pakistan and many national and international Non-Governmental
Organizations (NGO) as well that includes Institute of Rural
Management (IRM) & National Rural Support Organization
Pakistan (NRSP).

 Javed Ahmed is an Assistant Professor at
Sukkur IBA University in Computer
Science Department. He has vast teaching
experience in prestigious higher education
institutions of Pakistan which include
FAST-NU, IBA Karachi, Sukkur IBA, and
ICMAP Karachi. He also has vast research
experience in Semantic Web, Privacy &
Data Protection, and Multi Agent Systems

Jawaid Ahmed Siddiqui recieved the BCS,
MCS, MS(SPM) degrees from SALU in
1998, University of Sindh in 2001 and from
NU-FAST Karachi 2009. After working as
Lecturer (from 2002) to dec-2010 and as
Assistant Professor from 2011 to date in
Sukkur IBA University. His research
interest in Software Engineering, knowledge
Engineering, Intelligent Systems and HCI.

