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Summary 
High performance computing (HPC) presents a technology that 
allows solving high intensive problems in a reasonable period of 
time, and can offer many advantages for large applications in 
various fields of science and industry. Current multi-core 
processors, especially graphic processing units (GPUs), have 
quickly evolved to become efficient accelerators for data parallel 
computing. They can maintain parallel programmability and 
provide high computing throughput. In this paper, the authors 
present an implementation and performance analysis of sparse 
iterative linear solver on heterogeneous multi-CPUs/multi-GPUs 
architectures using PARALUTION and StarPU libraries. More 
particularly, the authors compare the performance of parallel 
preconditioned conjugate gradient (PCG) solver on different 
platforms. Experimental results have been conducted using GPU 
platforms and show a significant speed up compared to central 
processing units CPUs implementations. In order to provide the 
highest performance, the system supports Multi-CPU/Multi-GPU 
architectures, where it scales up very high. 
Key words: 
HPC, Multi-GPUs/Multi-CPUs architectures, Sparse linear 
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1. Introduction 

Accelerating HPC applications is currently under 
extensive research within new hardware technologies such 
as the recent CPUs that dispose of multiple processor cores 
for parallel computing [1], [2] or, GPUs that can process 
huge data blocks in parallel [3]. Hybrid computation 
(using CPUs and GPUs) is a common solution for 
supercomputers, desktop computers [4] and field-
programmable gate arrays (FPGAs). This heterogeneous 
computation allows exploiting the full power of new 
hardware, required form several applications [5], [6]. 

GPUs are getting more attention than other HPC 
accelerators [7] due to their high computational power, 
strong performance, functionality and low price. The 
modern GPU is a highly parallel programmable processor 
featuring peak arithmetic and memory bandwidth [8]. 
GPUs are used to accelerate 2D/3D graphic rendering and 
general applications with high data parallelism known as 
general purpose graphic processing unit (GPGPU). GPU 

programming has been easier within the application 
programming interfaces (APIs) such as compute unified 
device architecture (CUDA) and open computing language 
(OpenCL) [9]. 

In this context, the authors evaluate the performance of an 
iterative algorithm for solving sparse symmetric positive 
definite linear systems, the conjugate gradient (CG) 
method, on heterogeneous platforms (multi-CPUs/multi-
GPUs). In conjunction with an appropriate preconditioner 
(PCG), the method has proven its efficiency in a wide 
spectrum of applications [10]. The goal of CG algorithm 
[11] is to solve large sparse linear systems of equations 
that have the form of  

Ax = b 
where A is a sparse matrix and b is the unit vector.  

The authors investigate the influence of employing GPUs 
to accelerate PCG using PARALUTION library [12] with 
CUDA and OpenCL APIs [9]. This allows us to confirm 
that the GPU implementation of PCG is more efficient and 
the CUDA platform is more suitable. Moreover, the 
StarPU runtime [13] is used for exploiting heterogeneous 
architectures (multi-GPUs/multi-CPUs) within different 
schedulers [13]. 

To sum up, the objective of this study is to exploit 
effectively hybrid platforms in order to improve the 
performance of PCG solver. 

The rest of the paper is organized as follows. Section II, 
reviews some related literature works. Section III gives a 
brief introduction of GPU architectures and CUDA 
programming model. Section IV describes the conjugate 
gradient method with its most costly operation, the sparse 
matrix vector product (SpMV). In Section V, the authors 
present the evaluation of SpMV and PCG computing 
performance obtained with CPU, Multi-CPU and GPU 
platforms using PARALUTION and StarPU. Then, the 
overall results and performances are discussed within the 
analysis of influence of the applied optimizations. Finally, 
authors draw conclusion in section VI. 
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2. Related Works 

The Conjugate Gradient method (CG) [14] is an iterative 
algorithm for solving a system as shown in equation (1)  

Ax = b  (1) 

Where x, b ∈ Rn  and A  is symmetric, positive define 
matrix.  

CG solver involves recurrence relationships, so it is 
convenient to use x1, x2, …, to denote successive iterates. 
The authors denote the unique solution of this system 
by x∗, Starting with x0 they search for the solution and in 
each iteration authors need a metric to tell whether they 
are closer to the solution x∗. This metric comes from the 
fact that the solution x∗  is also the unique minimizer of 
the quadratic function (2): 

f(x) = 1
2

 xTA x −  xTb            x ϵ Rn     (2) 

It is also convenient to define a residual r(x) = b − Ax to 
calculate the unknown  x1, x2, …. . The algorithm is 
described in detail by Hestenes and Stiefel [15] and its 
principal steps are drawn in Algorithm 1. 

Algorithm 1 Conjugate Gradient  
 
𝑟𝑟0 = 𝑏𝑏 − 𝐴𝐴𝑥𝑥0;  
𝑝𝑝0 = 𝑟𝑟0;  
𝑘𝑘 = 0; 
Repeat 
      𝛼𝛼𝑘𝑘 = 𝑟𝑟𝑘𝑘

𝑇𝑇 𝑟𝑟𝑘𝑘 𝑝𝑝𝑘𝑘
𝑇𝑇𝐴𝐴 𝑝𝑝𝑘𝑘;⁄  

      𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑝𝑝𝑘𝑘 ; 
      𝑟𝑟𝑘𝑘+1 = 𝑟𝑟𝑘𝑘 − 𝛼𝛼𝑘𝑘𝐴𝐴 𝑝𝑝𝑘𝑘 ; 
     if  𝑟𝑟𝑘𝑘+1 is small then exit loop  
         𝛽𝛽𝑘𝑘 = 𝑟𝑟𝑘𝑘+1

𝑇𝑇 𝑟𝑟𝑘𝑘/𝑟𝑟𝑘𝑘
𝑇𝑇𝑟𝑟𝑘𝑘 

     𝑝𝑝𝑘𝑘+1 = 𝑟𝑟𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑝𝑝𝑘𝑘;     
end repeat  
The result is 𝑥𝑥𝑘𝑘+1 
 

Where, the input vector 𝑥𝑥0 can be an approximate initial 
solution or 0.  

A variant of the PCG algorithm on CPU platform is 
presented by Demmel and al. in [16] in order to facilitate 
data transfers overlapping with computation  

Another variant is proposed by Chronopoulos and Gear in 
[17], that improves data locality and parallelism in PCG 
solver. 

Different implementations of the CG method for GPUs 
have been published in the last years. With the advent of 
CUDA studies on iterative solvers, new implementations 
of PCG on GPU architecture have been presented in [18] 
using different preconditioners, such as squared 

polynomials, incomplete Cholesky factorizations or 
symmetric successive over relaxation smothers which 
allows to decrease the number of iterations and improve 
the resolution of PCG solver.  

Authors in [19] improved the performance of the SpMV 
kernel on an Nvidia Tesla GPU (C1060) by a factor of up 
to 25% on average by using a methodology to choose the 
right data structures to represent sparse matrices then they 
exploited their SpMV in the conjugate gradient method 
and showed an average of 20% improvement of CG 
performance compared to using a standard SpMV. 

GPU implementation of the CG sparse solver is presented 
also by Bolz and al [20]. This method relies on the 
programmable graphics pipeline of modern GPUs and was 
implemented using fragment shaders. Authors show that 
reduction operators would benefit greatly from a few 
globally writable registers. Limiting such registers to 
commutative operators would avoid troublesome order 
dependencies. They noticed that the authors could simplify 
reductions by allowing borders on floating point textures. 
Their results show that the performance of PCG solver 
could be boosted with use of texture memory by 20%. 

 A CG implementation comparison between CPU and 
GPU platforms is made in [21], where the CG method is 
implemented on Woodcrest CPUs architecture, on the one 
hand, and NVidia 8800GTX GPUs architecture, on the 
other hand. In this work authors propose a stream model 
for arithmetic operations on vectors and matrices that 
exploits the intrinsic parallelism and efficient 
communication on modern GPUs. The authors report a 
speedup of about 3 times when using their model on the 
8800GTX GPU.   

The use of multi-GPU platforms on the CG can be found 
in [22], where the main work is focused on minimizing the 
communication overhead through overlapping techniques. 
The authors propose an online auto tuning approach which 
does not only take into account characteristics of the 
machine and the input data, but also considers influences 
that are changing during the simulation which allows 
minimizing total execution time of the CG solver. 

In order to well distribute the workload between CPU and 
GPU nodes in an optimal way, an “execution time and 
energy model” is developed in [23].  This model allows 
improving the performance of PCG solver on the 
heterogeneous CPU/GPU platform with respect to the 
execution time or the energy consumption. 

Another work, which is similar to this one, is presented in 
[24] where the authors use StarPU runtime system to 
perform the CG solver in heterogeneous CPU-GPU 
architecture. The difference is that the authors of this work 
have integrated an ILU preconditioner and they take 
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advantages of texture and shared memories of GPU in 
order to have better performance. Authors compare with 
PARALUTION [25], library that is a recent one for 
solving sparse systems of linear equations. 

According to the works mentioned above the contributions 
are offering another perspective of PCG implementation 
on CPU, GPU and CPU/GPU architecture. The authors are 
proceeding as follows:   

 Evaluation of PCG performance on GPU using 
PARALUTION library within CUDA and 
OpenCL. Indeed, the authors analyzed in detail 
the execution time of conjugate gradient 
algorithm for three storages formats CSR, ELL 
and HYB. This benchmarking allowed us to note 
that CUDA platform is more efficient, and that 
the CSR storage format is the most adapted for 
the testbed.  

 Heterogeneous implementation of PCG solver 
using StarPU runtime system. Within this 
implementation, the authors take advantage of 
the hybrid system (Multi-CPUs/Multi-GPUs) in 
order to boost the performance of PCG algorithm. 
The best combination (that offers better 
performance) of GPUs and CPUs cores is chosen 
automatically.  

3. GPU Architecture and CUDA 
Programming 

This section describes GPU architecture and CUDA 
programming model. Authors explain the management of 
threads and memories on GPUs and present examples of 
CUDA functions. 

3.1 GPU Architecture 
GPU is considered as an extensible array, which consists 
of multi-threaded Streaming Multiprocessors (SMs) [26], 
composed of multiple Scalar Processor (SP) cores. To 
manage the distribution of threads, the multiprocessors use 
a Single Instruction Multiple Threads (SIMT) model [27], 
[28]. Each thread is mapped into one SP core and executes 
independently with its own instruction address and register 
state [26].  

The NVIDIA GPU memory can be classified as follows: 
Global memory, Texture memory, Constant memory, 
Shared memory, Local memory and Registers (Figure 1). 
Global memory corresponds to the mass memory of the 
graphic processor accessible by the CPU. The capacity of 
the memory varies from a few hundred MB to a few GB 
(depending on the graphic card) and has a much higher 

latency (100 to 300 clock cycles for the NVIDIA GPUs) 
compared to the shared memory (4 clock cycles). Global 
memory is not cached, so it is important to follow the right 
access pattern to achieve good memory bandwidth [29]. 

All modern CUDA cards (Fermi architecture and later) 
have a coherent L2 Cache. The GPU’s L2 cache memory 
is smaller than L2 and L3 cache memory of CPU, but has 
higher bandwidth available [26]. The L1 cache onboard a 
GPU is smaller than L1 cache in a CPU, but also has much 
higher bandwidth. High-end NVIDIA graphic cards have 
several streaming multiprocessors, or SMs, each is 
equipped with its own L1 cache [29].  

The threads are organized in warps. A warp is defined as a 
group of 32 threads of consecutive thread IDs. A half-warp 
is either the first or second half of a warp [30]. The most 
efficient way to use the global memory bandwidth is to 
coalesce the simultaneous memory accesses by threads in 
a half-warp into a single memory transaction. 

 

Fig. 1: GPU memory architecture 

3.2 CUDA Programming  
Compute unified device architecture (CUDA) is a parallel 
programming model and computing platform invented by 
NVIDIA [26]. A program on the host (CPU) can call a 
GPU to execute CUDA functions called kernels. See 
example in Table 1. 

The authors define a kernel using the __global__ 
declaration specifier with the number of CUDA threads 
that execute the kernel. This kernel is specified by using a 
new <<<numBlock, threadsPerBlock>>> execution 
configuration syntax [31]. 

Table 1: CUDA Function Declarations 

Function Executed on 
Only callable from 
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__device__  float 
DeviceFunc () Device Host 

__global__ void 
KernelFunc () Device Host 

__host__float 
HostFunc () Host Host 

The same parallel kernel is executed by many threads, 
which are organized into thread blocks, and distributed to 
SMs and split into warps scheduled by SIMT units. All 
threads in the same thread block share the same shared 
memory of size 32 KB (or 96 KB) [32] and can 
synchronize themselves with a barrier. Threads in a warp 
execute one common instruction at a time. This is 
specified as warp-level synchronization [26]. Full 
efficiency is achieved when all 32 threads of a warp follow 
the same execution path. Branch divergence causes serial 
execution. 

4. Conjugate Gradient Method And 
Assiciated Libraries 

In this section, the authors first present the Preconditioned 
Conjugate Gradient (PCG) algorithm then they introduce 
PARALUTION library and StarPU runtime system with 
different scheduling techniques. 

4.1 Conjugate gradient method 

The conjugate gradient method was initially developed by 
Hestenes and Stiefel [14]. It is one of the well-known 
iterative methods to solve large sparse linear systems. In 
addition, it can be adapted to solve nonlinear equations 
and optimization problems. However, it can only be 
applied to problems dealing with positive definite 
symmetric matrices.  

The main idea of the CG method is the computation of a 
sequence of approximate solutions {xk}k≥0 in a Krylov 
subspace of order k shown in equation (3): 

𝑥𝑥𝑘𝑘 ∈ 𝑥𝑥0 + 𝐾𝐾𝑘𝑘(𝐴𝐴, 𝑟𝑟0)      (3) 

In such a way that the Galerkin condition (4) must be 
satisfied: 

𝑟𝑟𝑘𝑘   ⊥   𝐾𝐾𝑘𝑘(𝐴𝐴, 𝑟𝑟0)       (4) 

Where 𝑥𝑥0 is the initial guess, 𝑟𝑟𝑘𝑘 = 𝑏𝑏 − 𝐴𝐴𝑥𝑥𝑘𝑘 the residual of 
the computed solution 𝑥𝑥𝑘𝑘 , and 𝐾𝐾𝑘𝑘 the Krylov subspace of 
order k which is defined in (5):  

𝐾𝐾𝑘𝑘(𝐴𝐴, 𝑟𝑟0) ≡ 𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠{𝑟𝑟0, 𝐴𝐴𝑟𝑟0, 𝐴𝐴2𝑟𝑟0, … , 𝐴𝐴𝑘𝑘−1𝑟𝑟0}      (5) 

In fact, CG is based on the construction of a sequence 
{pk}k∊ N of direction vectors in 𝐾𝐾𝑘𝑘  wich are pairwise A-
conjugate (A-orthogonal) as noted in (6): 

𝑝𝑝𝑖𝑖
𝑇𝑇𝐴𝐴𝑝𝑝𝑗𝑗 = 0,     𝑖𝑖 ≠ 𝑗𝑗   (6) 

At each iteration k, an approximate solution 𝑥𝑥𝑘𝑘  is 
computed by recurrence as shown in equation (7): 

𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘−1 + 𝛼𝛼𝑘𝑘𝑝𝑝𝑘𝑘 ,    𝛼𝛼𝑘𝑘 ∈ ℝ     (7) 

Consequently, the residuals rk are computed in the same 
way as noted in (8): 

𝑟𝑟𝑘𝑘 = 𝑟𝑟𝑘𝑘−1 − 𝛼𝛼𝑘𝑘𝐴𝐴𝑝𝑝𝑘𝑘  (8) 

In the case where all residuals are nonzero, the direction 
vectors pk can be determined so that the following 
recurrence holds as shown in equation (9): 

𝑝𝑝0 = 𝑟𝑟0,    𝑝𝑝𝑘𝑘 = 𝑟𝑟𝑘𝑘 + 𝛽𝛽𝑘𝑘𝑝𝑝𝑘𝑘−1,     𝛽𝛽𝑘𝑘 ∈  ℝ  (9) 

Moreover, the scalars {𝛼𝛼𝑘𝑘>0} are chosen to minimize the 
A-norm error ǁ  𝑥𝑥∗ − 𝑥𝑥𝑘𝑘  ǁ𝐴𝐴  over the Krylov subspace 𝐾𝐾𝑘𝑘,  
and the scalars {𝛽𝛽𝑘𝑘>0}  are chosen to ensure that the 
direction vectors are pairwise A-conjugate. The 
assumption that matrix A is symmetric and the recurrences 
allow the deduction of (10): 

𝛼𝛼𝑘𝑘 = 𝑟𝑟𝑘𝑘−1
𝑇𝑇 𝑟𝑟𝑘𝑘−1
𝑝𝑝𝑘𝑘

𝑇𝑇𝐴𝐴𝑝𝑝𝑘𝑘
,               𝛽𝛽𝑘𝑘 = 𝑟𝑟𝑘𝑘

𝑇𝑇𝑟𝑟𝑘𝑘
𝑟𝑟𝑘𝑘−1

𝑇𝑇 𝑟𝑟𝑘𝑘−1
           (10) 

The CG method’s convergence rate relies on the 
distribution of eigenvalues of a coefficient matrix A or a 
preconditioned matrix A˜. The condition number of a 
matrix is a simpler indicator that allows having the 
complete information of eigenvalues that enables 
prediction of the exact convergence behaviour. This 
number is defined by equation (11): 
 

cond(A) = ∥A∥∥A-1∥    (11) 

There are various definitions of the norm ‖‖. ‖‖, which 
allows defining various condition numbers. These two 
formulas (12) and (13) are commonly used. 

‖A‖ = 𝑚𝑚𝑠𝑠𝑥𝑥𝑗𝑗 � �ai,j�
𝑛𝑛

𝑖𝑖=1
     (12) 

Or 

‖A‖ = ��𝑚𝑚𝑠𝑠𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝐴𝐴𝑇𝑇𝐴𝐴�   (13) 
 
Moreover, if the matrix A is symmetric positive define 
(SPD), then the condition number given by the second 
norm can be giving by equation (14): 

cond(A)=𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒 𝑜𝑜𝑜𝑜 𝐴𝐴
𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒 𝑜𝑜𝑜𝑜 𝐴𝐴

        (14) 

Preconditioning is an important technique used to develop 
an efficient conjugate gradient method solver for 
challenging problems in scientific computing [33]. The 
technique comes in the picture when the authors try to 
solve a linear system with a very large condition number 
[34]. The idea behind preconditioning is using the CG on 
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an equivalent system. Thus, instead of solving Ax=b the 
authors solve a related problem for which A is chosen such 
that its condition number is closer to one. Note that "very 
large condition number (C)" means roughly log (c) ≥ the 
precision of matrix entries  

Algorithm 2 shows the key points of the preconditioned 
CG method [35]. 𝜀𝜀 is the convergence tolerance threshold, 
maxiter is the maximum number of iterations, and an ( _;_ ) 
defines the dot product between two vectors in ℝP

n. At each 
iteration, a direction vector 𝑝𝑝𝑘𝑘 is determined, so that it is 
orthogonal to the preconditioned residual 𝑧𝑧𝑘𝑘  and to the 
direction vectors {𝑝𝑝𝑖𝑖}𝑖𝑖<𝑘𝑘 previously determined (from line 
8 to line 13). Then, at lines 16 and 17, the iterate  𝑥𝑥𝑘𝑘  and 
the residual 𝑟𝑟𝑘𝑘  are computed using formulas (7) and (8), 
respectively. The CG method converges after, at most, n 
iterations. In practice, the CG algorithm stops when the 
tolerance threshold 𝜀𝜀  and/or the maximum number of 
iterations maxiter is reached. 

Algorithm 2 Parallel preconditioned CG method [35]  
 
1. Choose an initial guess 𝑥𝑥0; 
2. 𝑟𝑟0 = 𝑏𝑏 − 𝐴𝐴𝑥𝑥0;  
3. convergence = false; 
4. 𝑘𝑘 = 1; 
5.    repeat 
6.    𝑧𝑧𝑘𝑘 = 𝑀𝑀−1𝑟𝑟𝑘𝑘−1; 
7.       𝜌𝜌𝑘𝑘 = (𝑟𝑟𝑘𝑘−1, 𝑧𝑧𝑘𝑘);    
8.          if  𝑘𝑘 = 1 then 
9.            𝑝𝑝𝑘𝑘 = 𝑧𝑧𝑘𝑘;   
10.      else 
11.                 𝛽𝛽𝑘𝑘 = 𝜌𝜌𝑘𝑘 𝜌𝜌𝑘𝑘−1;�  
12.           𝑝𝑝𝑘𝑘 = 𝑧𝑧𝑘𝑘 + 𝛽𝛽𝑘𝑘𝑝𝑝𝑘𝑘−1;     
13.       end if 
14.   𝑞𝑞𝑘𝑘 = 𝐴𝐴𝑝𝑝𝑘𝑘; 
15.   𝛼𝛼𝑘𝑘 = 𝜌𝜌𝑘𝑘 (𝑝𝑝𝑘𝑘 , 𝑞𝑞𝑘𝑘);⁄  
16.   𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘−1 + 𝛼𝛼𝑘𝑘𝑝𝑝𝑘𝑘; 
17.   𝑟𝑟𝑘𝑘 = 𝑟𝑟𝑘𝑘−1 − 𝛼𝛼𝑘𝑘𝑞𝑞𝑘𝑘; 
18.       if (𝜌𝜌𝑘𝑘 < 𝜀𝜀 ) or (𝑘𝑘 ≥ 𝑚𝑚𝑠𝑠𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑟𝑟) then  
19.          convergence = true; 
20.       else 
21.          𝑘𝑘 = 𝑘𝑘 + 1;    
22.       end if 
23.    until convergence 
 
4.2 Associated Libraries and schedulers 

4.2.1 StarPU Runtime System 

StarPU [13] proposes a task-based programming paradigm 
where the algorithm is expressed as a Directed Acyclic 
Graph (DAG), vertices representing tasks and edges 
representing dependencies between them. The DAG does 
not need to be entirely provided, but the sequence of tasks 
to be executed is provided dynamically as well as the set 

of data and the access mode (read, write, read-write modes) 
onto which those tasks operate. Based on this information, 
the dependencies are implicitly computed by the runtime 
system. In this study, tasks are performed on a different 
processing unit (GPUs and CPUs). The submission of a 
task is a non-blocking operation so that multiple tasks may 
be processed concurrently. The runtime system then 
performs the actual execution of that task only once the 
related dependencies are satisfied and that the appropriate 
data has been transferred on the required processing unit 
[24]. StarPU thus ensures both data consistency and 
transfers between processing units.  

4.2.2 PARALUTION Library 

PARALUTION [25] is an open source C++ library used to 
solve sparse systems of linear equations, developed at 
Uppsala University in Sweden. It offers a variety of 
iterative solvers such as the CG, BiCGStab and GMRES 
Krylov method [36], [14] and preconditioners based on 
additive (Jacobi, Gauss - Seidel) and multiplicative (ILUp, 
ILUT, enhanced multi-colored ILUmethod) [21] splitting 
schemes as well as approximate inverse preconditioning 
approaches (Figure 2). It also features different matrix 
storage formats, which are crucial for GPU internal 
bandwidth exploitation. Furthermore, PARALUTION 
offers several hardware backends for execution on 
multi/manycore CPU and GPU devices [25]. Currently, 
multi-core CPUs and GPUs are supported by 
PARALUTION, this offers the possibility to switch 
between different architectures without modifying any line 
of existing code and thus to exploit the available 
computational power of many computer systems [37]. This 
is achieved within PARALUTION by hiding all hardware 
relevant details from the user while maintaining optimal 
usage of the resources.  

 

Fig. 2: Detail of the PARALUTION library architecture [25] 

During the past years, a variety of different libraries for 
solving large sparse linear systems have been developed 
[25]. While most of them support highly parallel 
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architectures multi- GPUs or multi-CPUs, they are 
restrictive in terms of portability [25], [38]. However, past 
evolution showed that hardware architectures have a very 
limited life cycle. Therefore, it is very important to 
maintain good flexibility of solution techniques and 
software in the current computing landscape [39]. 
PARALUTION, as one of those frameworks [25], offers 
the addressed flexibility while fully exploiting all available 
resources. It is under constant development and features 
most of the latest hardware backends. Therefore the 
authors choose to work with this library in order to 
implement and evaluate the conjugate gradient solver. 

5. Experimental Results and Discussion 

In this section, the authors describe briefly the hardware 
setup used for the experiments, and then they evaluate the 
performance of Preconditioned Conjugate Gradient 
algorithm with MultiColoredILU preconditioner on GPU 
using PARALLUTION library and on heterogeneous 
architecture (Multi GPUs/Multi CPUs), using StarPU 
runtime system. Finally, the authors present the result of 
their comparisons with discussion.  

5.1 Hardware and software setup  
The implementation environment is based on three 
NVIDIA GTX580 GPUs with 3GB memory and 512 
CUDA Fermi cores 780 MHz. This platform is equipped 
with Intel(R) Core i7 CPU (12-core, 3,33 GHz) and 24 Go 
RAM, running on Ubuntu Linux.  PARALUTION library 
and StarPU runtime system has been compiled using 
CUDA 7.5 version. 

5.2 Experiment results  
The authors use a set of matrices from MATRIX 
MARKET1 cited in Table 2 where Row is the number of 
row elements and entries are the number of non zero 
elements. They selected sparse matrices with variable 
dimensions, to perform a fair and comprehensive 
evaluation of the results. 

The authors implement the preconditioned conjugate 
gradient algorithm with MultiColoredILU preconditioner 
on GPU using CUDA and OpenCL platforms and on CPU 
using OpenMP, then they evaluate the related performance 
using PARALLUTION library. The authors use StarPU 
runtime system for the same implementation with the same 
preconditioner to compare the execution time between 
PCG on hybrid architecture (Multi GPUs/Multi CPUs) on 
the one hand, and over a multiple cores or a GPU on the 
other hand. 

                                                           
1  http://math.nist.gov/ MatrixMarket / 
 

Table 2: Storage matrix format from the Matrix Market repository  
Matrix Entries Row (n) 

G2_circuit 726 674 150 102 
apache2 4 817 870 715 176 
tmt_sym 5 080 961 726 713 
ecology2 4 995 991 999 999 
thermal2 8 580 313 1 228 045 
G3_circuit 7 660 826 1 585 478 

 

 

Fig. 3 GPU and CPU performance of CG using CUDA and OpenMP 
platforms 

The authors can notice that the efficiency of GPU is 
related to the storage format. HYB format, a combination 
of ELL and COO sparse matrix data structures, 
outperforms in a majority of cases. 
In figure 3, they compare the performance of PCG solver 
in term of execution time between CPU and GPU versions 
using OpenMP and CUDA platforms. Figure 4 shows the 
performance evaluation of CG algorithm on GPU using 
two different platforms CUDA and OpenCL. 

 

Fig. 4 GPU and CPU performance of PCG using CUDA and OpenCL 
platforms 

The result shows that the execution time of PCG solver on 
GPU using CUDA platform is 5x faster than the execution 
time on CPU using OpenMP especially for thermal2 
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matrix due to the high level of density. This result 
confirms what Cevahir and Nukada found in [40]; the 
Matrix structure greatly affects performance. For denser 
matrices the algorithm is slower than the average. While 
for the tests on GPU using CUDA and OpenCL platforms, 
CUDA performed 1.2 x better, so it seems to be a better 
choice for applications where achieving as high a 
performance as possible is important. Otherwise the choice 
between CUDA and OpenCL can be made by considering 
factors such as prior familiarity with either system, or 
available development tools for the target GPU hardware.  

Figure 5 represents a performance comparison in term of 
execution time of PARALUTION and StarPU libraries on 
a platform containing one GPU using PCG solver. The 
result shows that a better performance obtained with 
StarPU. For the reason that PARALUTION 
implementation is based on a static distribution of tasks 
and data, whereas StarPU use scheduling policies that 
allows a dynamic one.  

 

Fig. 5 PCG performance on one GPU platform using StarPU and 
PARALUTION libraries 

In the heterogeneous case, Figure 6 and 7 show the PCG 
performance with different schedulers of StarPU.  In figure 
6, the authors fix the number of GPUs on 3 and we make 
CPUs vary from 0 to 12. In figure 7, they fix the number 
of CPUs on 4 and vary the number of GPUs from 1 to 3. 
The results demonstrate that the authors don’t have to 
increase the number of processors to have better 
performance. In fact they have to choose the best 
combination of CPUs and GPUs, which is combination of 
3 GPUs and 4 CPUs in this case.  
This choice is based on three parameters; the size of 
matrix, scalability and schedulers.  

To benefit from multi-GPU acceleration, large-size 
matrices are required because with smaller matrices the 
use of multiple GPUs does not accelerate the processing. 

From 3 CPU the gain becomes negligible (in this case) this 
is due to the distribution of tasks according to the 
scheduling strategy for example dmda scheduler that takes 
into account the data transfer assigns the task to the worker 

who will do the processing as soon as possible respecting 
the minimization of the transfer time. If the number of 
workers is increased, the transfer time increases and thus 
the total execution time increases. 

Comparing with state-of-the-art method, the parallel 
Preconditioned Conjugate Gradient (PCG) solver 
computation in [41] the authors confirm that PCG 
algorithm is more efficient on Multi-GPU, beside the 
Multi-CPU implementation and that the performance 
cannot scale arbitrarily [42]. 
Furthermore, they can see that the random scheduler 
performs poorly because it assigns tasks randomly to the 
worker without knowing the already assigned workload of 
workers, which limits the number of ready tasks in the 
system, and introduces significant idle time on the critical 
resource (GPUs). The other schedulers which are based on 
data aware and early finish time strategies like WS, dmda 
and dmdar perform much better than the random scheduler.  

 

Fig. 6 PCG performance on Multi-GPUs/Multi-CPUs architecture using 
G3-circuit matrix with StarPU schedulers and by setting the number of 

GPUs 

 

Fig. 7 PCG performance on Multi-GPUs/Multi-CPUs architecture using 
G3-circuit matrix with StarPU schedulers and by setting the number of 

CPU 
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The authors investigated the generated trace files with 
different schedulers using ViTE profiler 1  in order to 
determine the reasons of this behaviour. Figure 8 and 9 
show traces with WS and dmda schedulers using a 
combination of 3 GPUs and 4 CPUs. 

 
Fig. 8 CPU/GPU trace with WS scheduler   

 
 

Fig. 9 CPU/GPU trace with dmda scheduler   

 

Figure 8 shows traces with WS scheduler. The authors can 
see better load balancing than dmda that is illustrated in 
figure 9. This is due to strategy of each scheduler. WS 
schedules by default a task on the processor. When a 
worker becomes idle, it steals a task from the most loaded 

                                                           
1  http://vite.gforge.inria.fr/documentation.php 

worker so it allows better distribution of tasks comparing 
with dmda scheduler. 

In figure 9 authors see traces with dmda scheduler, they 
note that GPU2 and GPU3 are idle, and GPU1 is the one 
who process the majority of tasks with the other 2 CPUs. 
The scheduling strategy of dmda takes into account the 
data transfer time. It assigns the task to the worker who 
will do the processing respecting the minimization of the 
transfer time. If the number of processors is increased, the 
transfer time increases and thus the total execution time 
increases. Therefore dmda scheduler does not have the 
best load balancing but it is the most efficient because it 
allows minimizing the transfer time and thus the total 
execution time. 

However, the authors found that dmda puts emphasis on 
critical path rather than parallelism, since it selects some 
tasks in the beginning that are critical but are not 
generating enough level of parallelism. This introduces 
some idle time on the critical resource (GPUs) and 
degrades the overall performance of the system, which is a 
known defect of the HEFT scheduler in general. The 
heterogeneity of performance between different processing 
units leads to a load imbalance that have been avoided 
with The WS scheduler as the authors knew that task 
completion takes so much time on CPUs. 

6. Conclusion 
In this paper, we presented a performance evaluation of the 
preconditioned conjugate gradient solver on heterogeneous 
platform, using StarPU runtime system. The authors also 
evaluated the performance of PCG on GPU platform with a 
recent library for solving sparse linear systems 
PARALUTION.  

For the PCG kernel, the authors employed PARALUTION 
library to compare between two different platforms, CUDA 
and OpenCL. Furthermore, within the scope of this work, it 
has been proven that CUDA presents the best choice for 
applications willing to achieve high and important 
performances. Moreover, the authors considered the 
multiple advantages of heterogeneous architecture (Multi-
CPUs/Multi-GPUs) to boost the performance of PCG 
solver using StarPU runtime system. First, they compared 
the execution time of PCG with PARALUTION and 
StarPU on one GPU platform then they used different 
schedulers to achieve a better performance with Multi-
CPU/Multi-GPU platforms. The authors concluded that we 
could run the algorithm on a heterogeneous node composed 
of all available computational resources but that each GPU 
has a CPU core dedicated to handle it. As a result, the 
authors need to choose the best combination of GPUs and 
CPUs cores.  

For future work, authors plan to improve these results by a 
balanced and synchronized distribution of tasks, efficient 
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management of CPU and GPU memories and an 
overlapping of data transfer and computation in order to 
hide the CPU-GPU communications. 
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