
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.8, August 2017

206

Manuscript received August 5, 2017
Manuscript revised August 20, 2017

Performance Evaluation and Analysis for Conjugate Gradient
Solver on Heterogeneous (Multi-GPUs/Multi-CPUs) platforms

Najlae Kasmi†* , Mostapha Zbakh†, Sidi Ahmed Mahmoudi†† and Pierre Manneback††

†ENSIAS, Mohammed V University of Rabat, Morocco, ††University of MONS, Faculty of engineering

20, Place du Parc, Mons, Belgium

Summary
High performance computing (HPC) presents a technology that
allows solving high intensive problems in a reasonable period of
time, and can offer many advantages for large applications in
various fields of science and industry. Current multi-core
processors, especially graphic processing units (GPUs), have
quickly evolved to become efficient accelerators for data parallel
computing. They can maintain parallel programmability and
provide high computing throughput. In this paper, the authors
present an implementation and performance analysis of sparse
iterative linear solver on heterogeneous multi-CPUs/multi-GPUs
architectures using PARALUTION and StarPU libraries. More
particularly, the authors compare the performance of parallel
preconditioned conjugate gradient (PCG) solver on different
platforms. Experimental results have been conducted using GPU
platforms and show a significant speed up compared to central
processing units CPUs implementations. In order to provide the
highest performance, the system supports Multi-CPU/Multi-GPU
architectures, where it scales up very high.
Key words:
HPC, Multi-GPUs/Multi-CPUs architectures, Sparse linear
systems, PARALUTION, StarPU

1. Introduction

Accelerating HPC applications is currently under
extensive research within new hardware technologies such
as the recent CPUs that dispose of multiple processor cores
for parallel computing [1], [2] or, GPUs that can process
huge data blocks in parallel [3]. Hybrid computation
(using CPUs and GPUs) is a common solution for
supercomputers, desktop computers [4] and field-
programmable gate arrays (FPGAs). This heterogeneous
computation allows exploiting the full power of new
hardware, required form several applications [5], [6].

GPUs are getting more attention than other HPC
accelerators [7] due to their high computational power,
strong performance, functionality and low price. The
modern GPU is a highly parallel programmable processor
featuring peak arithmetic and memory bandwidth [8].
GPUs are used to accelerate 2D/3D graphic rendering and
general applications with high data parallelism known as
general purpose graphic processing unit (GPGPU). GPU

programming has been easier within the application
programming interfaces (APIs) such as compute unified
device architecture (CUDA) and open computing language
(OpenCL) [9].

In this context, the authors evaluate the performance of an
iterative algorithm for solving sparse symmetric positive
definite linear systems, the conjugate gradient (CG)
method, on heterogeneous platforms (multi-CPUs/multi-
GPUs). In conjunction with an appropriate preconditioner
(PCG), the method has proven its efficiency in a wide
spectrum of applications [10]. The goal of CG algorithm
[11] is to solve large sparse linear systems of equations
that have the form of

Ax = b
where A is a sparse matrix and b is the unit vector.

The authors investigate the influence of employing GPUs
to accelerate PCG using PARALUTION library [12] with
CUDA and OpenCL APIs [9]. This allows us to confirm
that the GPU implementation of PCG is more efficient and
the CUDA platform is more suitable. Moreover, the
StarPU runtime [13] is used for exploiting heterogeneous
architectures (multi-GPUs/multi-CPUs) within different
schedulers [13].

To sum up, the objective of this study is to exploit
effectively hybrid platforms in order to improve the
performance of PCG solver.

The rest of the paper is organized as follows. Section II,
reviews some related literature works. Section III gives a
brief introduction of GPU architectures and CUDA
programming model. Section IV describes the conjugate
gradient method with its most costly operation, the sparse
matrix vector product (SpMV). In Section V, the authors
present the evaluation of SpMV and PCG computing
performance obtained with CPU, Multi-CPU and GPU
platforms using PARALUTION and StarPU. Then, the
overall results and performances are discussed within the
analysis of influence of the applied optimizations. Finally,
authors draw conclusion in section VI.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.8, August 2017

207

2. Related Works

The Conjugate Gradient method (CG) [14] is an iterative
algorithm for solving a system as shown in equation (1)

Ax = b (1)

Where x, b ∈ Rn and A is symmetric, positive define
matrix.

CG solver involves recurrence relationships, so it is
convenient to use x1, x2, …, to denote successive iterates.
The authors denote the unique solution of this system
by x∗, Starting with x0 they search for the solution and in
each iteration authors need a metric to tell whether they
are closer to the solution x∗. This metric comes from the
fact that the solution x∗ is also the unique minimizer of
the quadratic function (2):

f(x) = 1
2

 xTA x − xTb x ϵ Rn (2)

It is also convenient to define a residual r(x) = b − Ax to
calculate the unknown x1, x2, …. . The algorithm is
described in detail by Hestenes and Stiefel [15] and its
principal steps are drawn in Algorithm 1.

Algorithm 1 Conjugate Gradient

𝑟𝑟0 = 𝑏𝑏 − 𝐴𝐴𝑥𝑥0;
𝑝𝑝0 = 𝑟𝑟0;
𝑘𝑘 = 0;
Repeat
 𝛼𝛼𝑘𝑘 = 𝑟𝑟𝑘𝑘

𝑇𝑇 𝑟𝑟𝑘𝑘 𝑝𝑝𝑘𝑘
𝑇𝑇𝐴𝐴 𝑝𝑝𝑘𝑘;⁄

 𝑥𝑥𝑘𝑘+1 = 𝑥𝑥𝑘𝑘 + 𝛼𝛼𝑘𝑘𝑝𝑝𝑘𝑘 ;
 𝑟𝑟𝑘𝑘+1 = 𝑟𝑟𝑘𝑘 − 𝛼𝛼𝑘𝑘𝐴𝐴 𝑝𝑝𝑘𝑘 ;
 if 𝑟𝑟𝑘𝑘+1 is small then exit loop
 𝛽𝛽𝑘𝑘 = 𝑟𝑟𝑘𝑘+1

𝑇𝑇 𝑟𝑟𝑘𝑘/𝑟𝑟𝑘𝑘
𝑇𝑇𝑟𝑟𝑘𝑘

 𝑝𝑝𝑘𝑘+1 = 𝑟𝑟𝑘𝑘+1 + 𝛽𝛽𝑘𝑘𝑝𝑝𝑘𝑘;
end repeat
The result is 𝑥𝑥𝑘𝑘+1

Where, the input vector 𝑥𝑥0 can be an approximate initial
solution or 0.

A variant of the PCG algorithm on CPU platform is
presented by Demmel and al. in [16] in order to facilitate
data transfers overlapping with computation

Another variant is proposed by Chronopoulos and Gear in
[17], that improves data locality and parallelism in PCG
solver.

Different implementations of the CG method for GPUs
have been published in the last years. With the advent of
CUDA studies on iterative solvers, new implementations
of PCG on GPU architecture have been presented in [18]
using different preconditioners, such as squared

polynomials, incomplete Cholesky factorizations or
symmetric successive over relaxation smothers which
allows to decrease the number of iterations and improve
the resolution of PCG solver.

Authors in [19] improved the performance of the SpMV
kernel on an Nvidia Tesla GPU (C1060) by a factor of up
to 25% on average by using a methodology to choose the
right data structures to represent sparse matrices then they
exploited their SpMV in the conjugate gradient method
and showed an average of 20% improvement of CG
performance compared to using a standard SpMV.

GPU implementation of the CG sparse solver is presented
also by Bolz and al [20]. This method relies on the
programmable graphics pipeline of modern GPUs and was
implemented using fragment shaders. Authors show that
reduction operators would benefit greatly from a few
globally writable registers. Limiting such registers to
commutative operators would avoid troublesome order
dependencies. They noticed that the authors could simplify
reductions by allowing borders on floating point textures.
Their results show that the performance of PCG solver
could be boosted with use of texture memory by 20%.

 A CG implementation comparison between CPU and
GPU platforms is made in [21], where the CG method is
implemented on Woodcrest CPUs architecture, on the one
hand, and NVidia 8800GTX GPUs architecture, on the
other hand. In this work authors propose a stream model
for arithmetic operations on vectors and matrices that
exploits the intrinsic parallelism and efficient
communication on modern GPUs. The authors report a
speedup of about 3 times when using their model on the
8800GTX GPU.

The use of multi-GPU platforms on the CG can be found
in [22], where the main work is focused on minimizing the
communication overhead through overlapping techniques.
The authors propose an online auto tuning approach which
does not only take into account characteristics of the
machine and the input data, but also considers influences
that are changing during the simulation which allows
minimizing total execution time of the CG solver.

In order to well distribute the workload between CPU and
GPU nodes in an optimal way, an “execution time and
energy model” is developed in [23]. This model allows
improving the performance of PCG solver on the
heterogeneous CPU/GPU platform with respect to the
execution time or the energy consumption.

Another work, which is similar to this one, is presented in
[24] where the authors use StarPU runtime system to
perform the CG solver in heterogeneous CPU-GPU
architecture. The difference is that the authors of this work
have integrated an ILU preconditioner and they take

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.8, August 2017

208

advantages of texture and shared memories of GPU in
order to have better performance. Authors compare with
PARALUTION [25], library that is a recent one for
solving sparse systems of linear equations.

According to the works mentioned above the contributions
are offering another perspective of PCG implementation
on CPU, GPU and CPU/GPU architecture. The authors are
proceeding as follows:

 Evaluation of PCG performance on GPU using
PARALUTION library within CUDA and
OpenCL. Indeed, the authors analyzed in detail
the execution time of conjugate gradient
algorithm for three storages formats CSR, ELL
and HYB. This benchmarking allowed us to note
that CUDA platform is more efficient, and that
the CSR storage format is the most adapted for
the testbed.

 Heterogeneous implementation of PCG solver
using StarPU runtime system. Within this
implementation, the authors take advantage of
the hybrid system (Multi-CPUs/Multi-GPUs) in
order to boost the performance of PCG algorithm.
The best combination (that offers better
performance) of GPUs and CPUs cores is chosen
automatically.

3. GPU Architecture and CUDA
Programming

This section describes GPU architecture and CUDA
programming model. Authors explain the management of
threads and memories on GPUs and present examples of
CUDA functions.

3.1 GPU Architecture
GPU is considered as an extensible array, which consists
of multi-threaded Streaming Multiprocessors (SMs) [26],
composed of multiple Scalar Processor (SP) cores. To
manage the distribution of threads, the multiprocessors use
a Single Instruction Multiple Threads (SIMT) model [27],
[28]. Each thread is mapped into one SP core and executes
independently with its own instruction address and register
state [26].

The NVIDIA GPU memory can be classified as follows:
Global memory, Texture memory, Constant memory,
Shared memory, Local memory and Registers (Figure 1).
Global memory corresponds to the mass memory of the
graphic processor accessible by the CPU. The capacity of
the memory varies from a few hundred MB to a few GB
(depending on the graphic card) and has a much higher

latency (100 to 300 clock cycles for the NVIDIA GPUs)
compared to the shared memory (4 clock cycles). Global
memory is not cached, so it is important to follow the right
access pattern to achieve good memory bandwidth [29].

All modern CUDA cards (Fermi architecture and later)
have a coherent L2 Cache. The GPU’s L2 cache memory
is smaller than L2 and L3 cache memory of CPU, but has
higher bandwidth available [26]. The L1 cache onboard a
GPU is smaller than L1 cache in a CPU, but also has much
higher bandwidth. High-end NVIDIA graphic cards have
several streaming multiprocessors, or SMs, each is
equipped with its own L1 cache [29].

The threads are organized in warps. A warp is defined as a
group of 32 threads of consecutive thread IDs. A half-warp
is either the first or second half of a warp [30]. The most
efficient way to use the global memory bandwidth is to
coalesce the simultaneous memory accesses by threads in
a half-warp into a single memory transaction.

Fig. 1: GPU memory architecture

3.2 CUDA Programming
Compute unified device architecture (CUDA) is a parallel
programming model and computing platform invented by
NVIDIA [26]. A program on the host (CPU) can call a
GPU to execute CUDA functions called kernels. See
example in Table 1.

The authors define a kernel using the __global__
declaration specifier with the number of CUDA threads
that execute the kernel. This kernel is specified by using a
new <<<numBlock, threadsPerBlock>>> execution
configuration syntax [31].

Table 1: CUDA Function Declarations

Function Executed on
Only callable from

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.8, August 2017

209

__device__ float
DeviceFunc () Device Host

__global__ void
KernelFunc () Device Host

__host__float
HostFunc () Host Host

The same parallel kernel is executed by many threads,
which are organized into thread blocks, and distributed to
SMs and split into warps scheduled by SIMT units. All
threads in the same thread block share the same shared
memory of size 32 KB (or 96 KB) [32] and can
synchronize themselves with a barrier. Threads in a warp
execute one common instruction at a time. This is
specified as warp-level synchronization [26]. Full
efficiency is achieved when all 32 threads of a warp follow
the same execution path. Branch divergence causes serial
execution.

4. Conjugate Gradient Method And
Assiciated Libraries

In this section, the authors first present the Preconditioned
Conjugate Gradient (PCG) algorithm then they introduce
PARALUTION library and StarPU runtime system with
different scheduling techniques.

4.1 Conjugate gradient method

The conjugate gradient method was initially developed by
Hestenes and Stiefel [14]. It is one of the well-known
iterative methods to solve large sparse linear systems. In
addition, it can be adapted to solve nonlinear equations
and optimization problems. However, it can only be
applied to problems dealing with positive definite
symmetric matrices.

The main idea of the CG method is the computation of a
sequence of approximate solutions {xk}k≥0 in a Krylov
subspace of order k shown in equation (3):

𝑥𝑥𝑘𝑘 ∈ 𝑥𝑥0 + 𝐾𝐾𝑘𝑘(𝐴𝐴, 𝑟𝑟0) (3)

In such a way that the Galerkin condition (4) must be
satisfied:

𝑟𝑟𝑘𝑘 ⊥ 𝐾𝐾𝑘𝑘(𝐴𝐴, 𝑟𝑟0) (4)

Where 𝑥𝑥0 is the initial guess, 𝑟𝑟𝑘𝑘 = 𝑏𝑏 − 𝐴𝐴𝑥𝑥𝑘𝑘 the residual of
the computed solution 𝑥𝑥𝑘𝑘 , and 𝐾𝐾𝑘𝑘 the Krylov subspace of
order k which is defined in (5):

𝐾𝐾𝑘𝑘(𝐴𝐴, 𝑟𝑟0) ≡ 𝑠𝑠𝑝𝑝𝑠𝑠𝑠𝑠{𝑟𝑟0, 𝐴𝐴𝑟𝑟0, 𝐴𝐴2𝑟𝑟0, … , 𝐴𝐴𝑘𝑘−1𝑟𝑟0} (5)

In fact, CG is based on the construction of a sequence
{pk}k∊ N of direction vectors in 𝐾𝐾𝑘𝑘 wich are pairwise A-
conjugate (A-orthogonal) as noted in (6):

𝑝𝑝𝑖𝑖
𝑇𝑇𝐴𝐴𝑝𝑝𝑗𝑗 = 0, 𝑖𝑖 ≠ 𝑗𝑗 (6)

At each iteration k, an approximate solution 𝑥𝑥𝑘𝑘 is
computed by recurrence as shown in equation (7):

𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘−1 + 𝛼𝛼𝑘𝑘𝑝𝑝𝑘𝑘 , 𝛼𝛼𝑘𝑘 ∈ ℝ (7)

Consequently, the residuals rk are computed in the same
way as noted in (8):

𝑟𝑟𝑘𝑘 = 𝑟𝑟𝑘𝑘−1 − 𝛼𝛼𝑘𝑘𝐴𝐴𝑝𝑝𝑘𝑘 (8)

In the case where all residuals are nonzero, the direction
vectors pk can be determined so that the following
recurrence holds as shown in equation (9):

𝑝𝑝0 = 𝑟𝑟0, 𝑝𝑝𝑘𝑘 = 𝑟𝑟𝑘𝑘 + 𝛽𝛽𝑘𝑘𝑝𝑝𝑘𝑘−1, 𝛽𝛽𝑘𝑘 ∈ ℝ (9)

Moreover, the scalars {𝛼𝛼𝑘𝑘>0} are chosen to minimize the
A-norm error ǁ 𝑥𝑥∗ − 𝑥𝑥𝑘𝑘 ǁ𝐴𝐴 over the Krylov subspace 𝐾𝐾𝑘𝑘,
and the scalars {𝛽𝛽𝑘𝑘>0} are chosen to ensure that the
direction vectors are pairwise A-conjugate. The
assumption that matrix A is symmetric and the recurrences
allow the deduction of (10):

𝛼𝛼𝑘𝑘 = 𝑟𝑟𝑘𝑘−1
𝑇𝑇 𝑟𝑟𝑘𝑘−1
𝑝𝑝𝑘𝑘

𝑇𝑇𝐴𝐴𝑝𝑝𝑘𝑘
, 𝛽𝛽𝑘𝑘 = 𝑟𝑟𝑘𝑘

𝑇𝑇𝑟𝑟𝑘𝑘
𝑟𝑟𝑘𝑘−1

𝑇𝑇 𝑟𝑟𝑘𝑘−1
 (10)

The CG method’s convergence rate relies on the
distribution of eigenvalues of a coefficient matrix A or a
preconditioned matrix A˜. The condition number of a
matrix is a simpler indicator that allows having the
complete information of eigenvalues that enables
prediction of the exact convergence behaviour. This
number is defined by equation (11):

cond(A) = ∥A∥∥A-1∥ (11)

There are various definitions of the norm ‖‖. ‖‖, which
allows defining various condition numbers. These two
formulas (12) and (13) are commonly used.

‖A‖ = 𝑚𝑚𝑠𝑠𝑥𝑥𝑗𝑗 � �ai,j�
𝑛𝑛

𝑖𝑖=1
 (12)

Or

‖A‖ = ��𝑚𝑚𝑠𝑠𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 𝑜𝑜𝑜𝑜 𝐴𝐴𝑇𝑇𝐴𝐴� (13)

Moreover, if the matrix A is symmetric positive define
(SPD), then the condition number given by the second
norm can be giving by equation (14):

cond(A)=𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒 𝑜𝑜𝑜𝑜 𝐴𝐴
𝑚𝑚𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒𝑛𝑛𝑒𝑒𝑚𝑚𝑒𝑒𝑚𝑚𝑒𝑒 𝑜𝑜𝑜𝑜 𝐴𝐴

 (14)

Preconditioning is an important technique used to develop
an efficient conjugate gradient method solver for
challenging problems in scientific computing [33]. The
technique comes in the picture when the authors try to
solve a linear system with a very large condition number
[34]. The idea behind preconditioning is using the CG on

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.8, August 2017

210

an equivalent system. Thus, instead of solving Ax=b the
authors solve a related problem for which A is chosen such
that its condition number is closer to one. Note that "very
large condition number (C)" means roughly log (c) ≥ the
precision of matrix entries

Algorithm 2 shows the key points of the preconditioned
CG method [35]. 𝜀𝜀 is the convergence tolerance threshold,
maxiter is the maximum number of iterations, and an (_;_)
defines the dot product between two vectors in ℝP

n. At each
iteration, a direction vector 𝑝𝑝𝑘𝑘 is determined, so that it is
orthogonal to the preconditioned residual 𝑧𝑧𝑘𝑘 and to the
direction vectors {𝑝𝑝𝑖𝑖}𝑖𝑖<𝑘𝑘 previously determined (from line
8 to line 13). Then, at lines 16 and 17, the iterate 𝑥𝑥𝑘𝑘 and
the residual 𝑟𝑟𝑘𝑘 are computed using formulas (7) and (8),
respectively. The CG method converges after, at most, n
iterations. In practice, the CG algorithm stops when the
tolerance threshold 𝜀𝜀 and/or the maximum number of
iterations maxiter is reached.

Algorithm 2 Parallel preconditioned CG method [35]

1. Choose an initial guess 𝑥𝑥0;
2. 𝑟𝑟0 = 𝑏𝑏 − 𝐴𝐴𝑥𝑥0;
3. convergence = false;
4. 𝑘𝑘 = 1;
5. repeat
6. 𝑧𝑧𝑘𝑘 = 𝑀𝑀−1𝑟𝑟𝑘𝑘−1;
7. 𝜌𝜌𝑘𝑘 = (𝑟𝑟𝑘𝑘−1, 𝑧𝑧𝑘𝑘);
8. if 𝑘𝑘 = 1 then
9. 𝑝𝑝𝑘𝑘 = 𝑧𝑧𝑘𝑘;
10. else
11. 𝛽𝛽𝑘𝑘 = 𝜌𝜌𝑘𝑘 𝜌𝜌𝑘𝑘−1;�
12. 𝑝𝑝𝑘𝑘 = 𝑧𝑧𝑘𝑘 + 𝛽𝛽𝑘𝑘𝑝𝑝𝑘𝑘−1;
13. end if
14. 𝑞𝑞𝑘𝑘 = 𝐴𝐴𝑝𝑝𝑘𝑘;
15. 𝛼𝛼𝑘𝑘 = 𝜌𝜌𝑘𝑘 (𝑝𝑝𝑘𝑘 , 𝑞𝑞𝑘𝑘);⁄
16. 𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘−1 + 𝛼𝛼𝑘𝑘𝑝𝑝𝑘𝑘;
17. 𝑟𝑟𝑘𝑘 = 𝑟𝑟𝑘𝑘−1 − 𝛼𝛼𝑘𝑘𝑞𝑞𝑘𝑘;
18. if (𝜌𝜌𝑘𝑘 < 𝜀𝜀) or (𝑘𝑘 ≥ 𝑚𝑚𝑠𝑠𝑥𝑥𝑖𝑖𝑚𝑚𝑚𝑚𝑟𝑟) then
19. convergence = true;
20. else
21. 𝑘𝑘 = 𝑘𝑘 + 1;
22. end if
23. until convergence

4.2 Associated Libraries and schedulers

4.2.1 StarPU Runtime System

StarPU [13] proposes a task-based programming paradigm
where the algorithm is expressed as a Directed Acyclic
Graph (DAG), vertices representing tasks and edges
representing dependencies between them. The DAG does
not need to be entirely provided, but the sequence of tasks
to be executed is provided dynamically as well as the set

of data and the access mode (read, write, read-write modes)
onto which those tasks operate. Based on this information,
the dependencies are implicitly computed by the runtime
system. In this study, tasks are performed on a different
processing unit (GPUs and CPUs). The submission of a
task is a non-blocking operation so that multiple tasks may
be processed concurrently. The runtime system then
performs the actual execution of that task only once the
related dependencies are satisfied and that the appropriate
data has been transferred on the required processing unit
[24]. StarPU thus ensures both data consistency and
transfers between processing units.

4.2.2 PARALUTION Library

PARALUTION [25] is an open source C++ library used to
solve sparse systems of linear equations, developed at
Uppsala University in Sweden. It offers a variety of
iterative solvers such as the CG, BiCGStab and GMRES
Krylov method [36], [14] and preconditioners based on
additive (Jacobi, Gauss - Seidel) and multiplicative (ILUp,
ILUT, enhanced multi-colored ILUmethod) [21] splitting
schemes as well as approximate inverse preconditioning
approaches (Figure 2). It also features different matrix
storage formats, which are crucial for GPU internal
bandwidth exploitation. Furthermore, PARALUTION
offers several hardware backends for execution on
multi/manycore CPU and GPU devices [25]. Currently,
multi-core CPUs and GPUs are supported by
PARALUTION, this offers the possibility to switch
between different architectures without modifying any line
of existing code and thus to exploit the available
computational power of many computer systems [37]. This
is achieved within PARALUTION by hiding all hardware
relevant details from the user while maintaining optimal
usage of the resources.

Fig. 2: Detail of the PARALUTION library architecture [25]

During the past years, a variety of different libraries for
solving large sparse linear systems have been developed
[25]. While most of them support highly parallel

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.8, August 2017

211

architectures multi- GPUs or multi-CPUs, they are
restrictive in terms of portability [25], [38]. However, past
evolution showed that hardware architectures have a very
limited life cycle. Therefore, it is very important to
maintain good flexibility of solution techniques and
software in the current computing landscape [39].
PARALUTION, as one of those frameworks [25], offers
the addressed flexibility while fully exploiting all available
resources. It is under constant development and features
most of the latest hardware backends. Therefore the
authors choose to work with this library in order to
implement and evaluate the conjugate gradient solver.

5. Experimental Results and Discussion

In this section, the authors describe briefly the hardware
setup used for the experiments, and then they evaluate the
performance of Preconditioned Conjugate Gradient
algorithm with MultiColoredILU preconditioner on GPU
using PARALLUTION library and on heterogeneous
architecture (Multi GPUs/Multi CPUs), using StarPU
runtime system. Finally, the authors present the result of
their comparisons with discussion.

5.1 Hardware and software setup
The implementation environment is based on three
NVIDIA GTX580 GPUs with 3GB memory and 512
CUDA Fermi cores 780 MHz. This platform is equipped
with Intel(R) Core i7 CPU (12-core, 3,33 GHz) and 24 Go
RAM, running on Ubuntu Linux. PARALUTION library
and StarPU runtime system has been compiled using
CUDA 7.5 version.

5.2 Experiment results
The authors use a set of matrices from MATRIX
MARKET1 cited in Table 2 where Row is the number of
row elements and entries are the number of non zero
elements. They selected sparse matrices with variable
dimensions, to perform a fair and comprehensive
evaluation of the results.

The authors implement the preconditioned conjugate
gradient algorithm with MultiColoredILU preconditioner
on GPU using CUDA and OpenCL platforms and on CPU
using OpenMP, then they evaluate the related performance
using PARALLUTION library. The authors use StarPU
runtime system for the same implementation with the same
preconditioner to compare the execution time between
PCG on hybrid architecture (Multi GPUs/Multi CPUs) on
the one hand, and over a multiple cores or a GPU on the
other hand.

1 http://math.nist.gov/ MatrixMarket /

Table 2: Storage matrix format from the Matrix Market repository
Matrix Entries Row (n)

G2_circuit 726 674 150 102
apache2 4 817 870 715 176
tmt_sym 5 080 961 726 713
ecology2 4 995 991 999 999
thermal2 8 580 313 1 228 045
G3_circuit 7 660 826 1 585 478

Fig. 3 GPU and CPU performance of CG using CUDA and OpenMP
platforms

The authors can notice that the efficiency of GPU is
related to the storage format. HYB format, a combination
of ELL and COO sparse matrix data structures,
outperforms in a majority of cases.
In figure 3, they compare the performance of PCG solver
in term of execution time between CPU and GPU versions
using OpenMP and CUDA platforms. Figure 4 shows the
performance evaluation of CG algorithm on GPU using
two different platforms CUDA and OpenCL.

Fig. 4 GPU and CPU performance of PCG using CUDA and OpenCL
platforms

The result shows that the execution time of PCG solver on
GPU using CUDA platform is 5x faster than the execution
time on CPU using OpenMP especially for thermal2

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.8, August 2017

212

matrix due to the high level of density. This result
confirms what Cevahir and Nukada found in [40]; the
Matrix structure greatly affects performance. For denser
matrices the algorithm is slower than the average. While
for the tests on GPU using CUDA and OpenCL platforms,
CUDA performed 1.2 x better, so it seems to be a better
choice for applications where achieving as high a
performance as possible is important. Otherwise the choice
between CUDA and OpenCL can be made by considering
factors such as prior familiarity with either system, or
available development tools for the target GPU hardware.

Figure 5 represents a performance comparison in term of
execution time of PARALUTION and StarPU libraries on
a platform containing one GPU using PCG solver. The
result shows that a better performance obtained with
StarPU. For the reason that PARALUTION
implementation is based on a static distribution of tasks
and data, whereas StarPU use scheduling policies that
allows a dynamic one.

Fig. 5 PCG performance on one GPU platform using StarPU and
PARALUTION libraries

In the heterogeneous case, Figure 6 and 7 show the PCG
performance with different schedulers of StarPU. In figure
6, the authors fix the number of GPUs on 3 and we make
CPUs vary from 0 to 12. In figure 7, they fix the number
of CPUs on 4 and vary the number of GPUs from 1 to 3.
The results demonstrate that the authors don’t have to
increase the number of processors to have better
performance. In fact they have to choose the best
combination of CPUs and GPUs, which is combination of
3 GPUs and 4 CPUs in this case.
This choice is based on three parameters; the size of
matrix, scalability and schedulers.

To benefit from multi-GPU acceleration, large-size
matrices are required because with smaller matrices the
use of multiple GPUs does not accelerate the processing.

From 3 CPU the gain becomes negligible (in this case) this
is due to the distribution of tasks according to the
scheduling strategy for example dmda scheduler that takes
into account the data transfer assigns the task to the worker

who will do the processing as soon as possible respecting
the minimization of the transfer time. If the number of
workers is increased, the transfer time increases and thus
the total execution time increases.

Comparing with state-of-the-art method, the parallel
Preconditioned Conjugate Gradient (PCG) solver
computation in [41] the authors confirm that PCG
algorithm is more efficient on Multi-GPU, beside the
Multi-CPU implementation and that the performance
cannot scale arbitrarily [42].
Furthermore, they can see that the random scheduler
performs poorly because it assigns tasks randomly to the
worker without knowing the already assigned workload of
workers, which limits the number of ready tasks in the
system, and introduces significant idle time on the critical
resource (GPUs). The other schedulers which are based on
data aware and early finish time strategies like WS, dmda
and dmdar perform much better than the random scheduler.

Fig. 6 PCG performance on Multi-GPUs/Multi-CPUs architecture using
G3-circuit matrix with StarPU schedulers and by setting the number of

GPUs

Fig. 7 PCG performance on Multi-GPUs/Multi-CPUs architecture using
G3-circuit matrix with StarPU schedulers and by setting the number of

CPU

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.8, August 2017

213

The authors investigated the generated trace files with
different schedulers using ViTE profiler 1 in order to
determine the reasons of this behaviour. Figure 8 and 9
show traces with WS and dmda schedulers using a
combination of 3 GPUs and 4 CPUs.

Fig. 8 CPU/GPU trace with WS scheduler

Fig. 9 CPU/GPU trace with dmda scheduler

Figure 8 shows traces with WS scheduler. The authors can
see better load balancing than dmda that is illustrated in
figure 9. This is due to strategy of each scheduler. WS
schedules by default a task on the processor. When a
worker becomes idle, it steals a task from the most loaded

1 http://vite.gforge.inria.fr/documentation.php

worker so it allows better distribution of tasks comparing
with dmda scheduler.

In figure 9 authors see traces with dmda scheduler, they
note that GPU2 and GPU3 are idle, and GPU1 is the one
who process the majority of tasks with the other 2 CPUs.
The scheduling strategy of dmda takes into account the
data transfer time. It assigns the task to the worker who
will do the processing respecting the minimization of the
transfer time. If the number of processors is increased, the
transfer time increases and thus the total execution time
increases. Therefore dmda scheduler does not have the
best load balancing but it is the most efficient because it
allows minimizing the transfer time and thus the total
execution time.

However, the authors found that dmda puts emphasis on
critical path rather than parallelism, since it selects some
tasks in the beginning that are critical but are not
generating enough level of parallelism. This introduces
some idle time on the critical resource (GPUs) and
degrades the overall performance of the system, which is a
known defect of the HEFT scheduler in general. The
heterogeneity of performance between different processing
units leads to a load imbalance that have been avoided
with The WS scheduler as the authors knew that task
completion takes so much time on CPUs.

6. Conclusion
In this paper, we presented a performance evaluation of the
preconditioned conjugate gradient solver on heterogeneous
platform, using StarPU runtime system. The authors also
evaluated the performance of PCG on GPU platform with a
recent library for solving sparse linear systems
PARALUTION.

For the PCG kernel, the authors employed PARALUTION
library to compare between two different platforms, CUDA
and OpenCL. Furthermore, within the scope of this work, it
has been proven that CUDA presents the best choice for
applications willing to achieve high and important
performances. Moreover, the authors considered the
multiple advantages of heterogeneous architecture (Multi-
CPUs/Multi-GPUs) to boost the performance of PCG
solver using StarPU runtime system. First, they compared
the execution time of PCG with PARALUTION and
StarPU on one GPU platform then they used different
schedulers to achieve a better performance with Multi-
CPU/Multi-GPU platforms. The authors concluded that we
could run the algorithm on a heterogeneous node composed
of all available computational resources but that each GPU
has a CPU core dedicated to handle it. As a result, the
authors need to choose the best combination of GPUs and
CPUs cores.

For future work, authors plan to improve these results by a
balanced and synchronized distribution of tasks, efficient

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.8, August 2017

214

management of CPU and GPU memories and an
overlapping of data transfer and computation in order to
hide the CPU-GPU communications.

References
[1] D. Zydek and H. Selvaraj, "Hardware implementation of

processor allocation schemes for mesh-based chip
multiprocessors," Microprocessors and Microsystem, pp.
39-48, 2010.

[2] R. E. Duran, D. Chen, R. Saraswat, and A. Hallmark, "A
framework for comparing high performance computing
technologies," International Journal of Computational
Science and Engineering, pp. 119-129, 2014.

[3] D. D’Ambrosio, G. Filippone, R. Rongo, W. Spataro, and
G. A. Trunfio, "Cellular automata and GPGPU: an
application to lava flow modeling," International Journal of
Grid and High Performance Computing (IJGHPC), pp. 30-
47, 2012.

[4] B. Liu, D. Zydek, H. Selvaraj, and L. Gewali, "Accelerating
high performance computing applications: Using cpus,
gpus, hybrid cpu/gpu, and fpgas," Parallel and Distributed
Computing, Applications and Technologies (PDCAT), pp.
337-342, 2012.

[5] R. Dimond, S. Racaniere, and O. Pell, "Accelerating large-
scale HPC applications using FPGAs," Computer
Arithmetic (ARITH), pp. 191-192, 2011.

[6] P. da Cunha Possa, S. A. Mahmoudi, N. Harb, and C.
Valderrama, "A new self-adapting architecture for feature
detection," Field Programmable Logic and Applications
(FPL), IEEE, pp. 643-646, 2012.

[7] Y. Jararweh and S. Hariri, "Power and performance
management of gpus based cluster," International Journal of
Cloud Applications and Computing (IJCAC), pp. 16-31,
2012.

[8] John D. Owens and al., "GPU computing," Proceedings of
the IEEE 96.5, pp. 879-899, 2008.

[9] F. Vazquez, E. M. Garzon, and J. J. Fernandez, "A matrix
approach to tomographic reconstruction and its
implementation on GPUs," Journal of Structural Biology,
pp. 146-151, 2010.

[10] E. Müller, X. Guo, R. Scheichl, and S. Shi, "Matrix-free
GPU implementation of a preconditioned conjugate gradient
solver for anisotropic elliptic PDEs," Computing and
Visualization in Science, pp. 41-58, 2013.

[11] N. Bell and M. Garland, CUSP library v0. 2: Generic
parallel algorithms for sparse matrix and graph
computations. Version 0.3. 0, 35., 2012.

[12] N. Trost, J. Jiménez, D. Lukarski, and V. Sanchez,
"Accelerating COBAYA3 on multi-core CPU and GPU
systems using PARALUTION," Annals of Nuclear Energy,
pp. 252-259, 2015.

[13] C. Augonnet, S. Thibault, R. Namyst, and P. A. Wacrenier,
"StarPU: a unified platform for task scheduling on
heterogeneous multicore architectures," Concurrency and
Computation: Practice and Experience, pp. 187-198, 2011.

[14] M. R. Hestenes and E. Stiefel, "Methods of conjugate
gradients for solving linear systems," NBS, p. 1, 1952.

[15] M. R. Hestenes and E. Stiefel, "Methods of conjugate
gradients for solving linear systems," NBS, p. 1, 1952.

[16] J. W. Demmel, M. T. Heath, and H. A. Van Der Vorst,
"Parallel numerical linear algebra," Acta numerica, pp. 111-
197, 1993.

[17] A. T. Chronopoulos and C. W. Gear, "s-Step iterative
methods for symmetric linear systems," Journal of
Computational and Applied Mathematics, pp. 153-168,
1989.

[18] Y. Gui and G Zhang, "An Improved Implementation of
Preconditioned Conjugate Gradient Method on GPU," JSW,
pp. 2695-2702, 2012.

[19] J. W. Choi, A. Singh, and R. W. Vuduc, "Model-driven
autotuning of sparse matrix-vector multiply on GPUs,"
ACM sigplan notices, pp. 115-126, 2010.

[20] J. Bolz, I. Farmer, E. Grinspun, and P. Schröoder, "Sparse
matrix solvers on the GPU: conjugate gradients and
multigrid.," ACM Transactions on Graphics, pp. 917-924,
2003.

[21] J. Krüger and R. Westermann, "Linear algebra operators for
GPU implementation of numerical algorithms," ACM
Transactions on Graphics (TOG), pp. 908-916, 2003.

[22] A. W. O. Rodrigues, F. Guyomarc'h, J. L. Dekeyser, and Y.
Le Menach, "Automatic multi-GPU code generation applied
to simulation of electrical machines," IEEE Transactions on
Magnetics, pp. 831-834, 2012.

[23] A. Corrigan, F. F. Camelli, R. Löhner, and J. Wallin,
"Running unstructured grid‐based CFD solvers on modern
graphics hardware," International Journal for Numerical
Methods in Fluids, pp. 221-229, 2011.

[24] E. Agullo, L. Giraud, A. Guermouche, S. Nakov, and J.
Roman, "Task-based Conjugate-Gradient for multi-GPUs
platforms," INRIA, 2012.

[25] N. Trost, J. Jiménez, D. Lukarski, and V. Sanchez,
"Accelerating COBAYA3 on multi-core CPU and GPU
systems using PARALUTION," Annals of Nuclear Energy,
pp. 252-259, 2015.

[26] Documentation NVIDIA, Cuda C programming guide.
Version 5.5: NVIDIA, 2014.

[27] R. Li and Y. Saad, "GPU-accelerated preconditioned
iterative linear solvers," The Journal of Supercomputing, pp.
443-466, 2013.

[28] N. Kasmi, S. A. Mahmoudi, M. Zbakh, and P. Manneback,
"Performance evaluation of sparse matrix-vector product
(SpMV) computation on GPU architecture," Complex
Systems (WCCS), IEEE, pp. 23-27, 2014.

[29] M. D. Marino and K. C. Li, "Insights on memory controller
scaling in multi-core embedded systems," International
Journal of Embedded Systems, pp. 351-361, 2014.

[30] M. Bauer, H. Cook, and B. Khailany, "CudaDMA:
optimizing GPU memory bandwidth via warp
specialization," Proceedings of 2011 international
conference for high performance computing, networking,
storage and analysis, p. 12, 2011.

[31] S. Cook, "CUDA programming: a developer's guide to
parallel computing with GPUs," Newnes, 2012.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.8, August 2017

215

[32] Armstrong and Derek Elswick, "CUDA GPU Programming
Applied to HSI Exploitation," Los Alamos National
Laboratory (LANL), 2017.

[33] S. F. Ashby and R. D. Falgout, "A parallel multigrid
preconditioned conjugate gradient algorithm for
groundwater flow simulations," Nuclear Science and
Engineering, pp. 145-159, 1996.

[34] S. Zhong and S. Chen, "An improved unsharp masking
model for intensive care unit chest radiograph
enhancement," Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD),
pp. 655-661, 2016.

[35] C. Guyeux, R. Couturier, P. C. Héam, and J. M. Bahi,
"Efficient and cryptographically secure generation of
chaotic pseudorandom numbers on GPU," The journal of
Supercomputing, pp. 3877-3903, 2015.

[36] Jesse D. Hall, Nathan A. Carr, and John C. Hart, "Cache and
bandwidth aware matrix multiplication on the GPU," 2003.

[37] S. Mittal, "A study of successive over-relaxation method
parallelisation over modern HPC languages," International
journal of high performance computing and networking, pp.
292-298, 2014.

[38] J. C. Ikuno, M. Wrulich, and M. Rupp, "System level
simulation of LTE networks," Vehicular Technology
Conference (VTC 2010-Spring), IEEE, pp. 1-5, 2010.

[39] A. Van der Sluis and H. A. van der Vorst, "The rate of
convergence of conjugate gradients," Numerische
Mathematik, pp. 543-560, 1986.

[40] A. Cevahir, A. Nukada, and S. Matsuoka, "Fast conjugate
gradients with multiple GPUs," , Berlin Heidelberg, 2009,
pp. 893-903.

[41] R. Helfenstein and J. Koko, "Parallel preconditioned
conjugate gradient algorithm on GPU," Journal of
Computational and Applied Mathematics, pp. 3584-3590,
2012.

[42] M. Ament, G. Knittel, D. Weiskopf, and W. Strasser, "A
parallel preconditioned conjugate gradient solver for the
poisson problem on a multi-gpu platform," Parallel,
Distributed and Network-Based Processing (PDP), IEEE,
pp. 583-592, 2010.

[43] C. Augonnet, S. Thibault, R. Namyst, and P. A. Wacrenier,
"StarPU: a unified platform for task scheduling on
heterogeneous multicore architectures," Concurrency and
Computation: Practice and Experience, pp. 187-198, 2011.

[44] StarPU handbook, version 1.02 Orc5., 2016.
[45] H. Topcuoglu, S. Hariri, and M. Y. Wu, "Performance-

effective and low-complexity task scheduling for
heterogeneous computing," IEEE transactions on parallel
and distributed systems, pp. 260-274, 2002.

[46] Hestenes, Magnus Rudolph, and Eduard Stiefel, "Methods
of conjugate gradients for solving linear systems," NBS, p.
49, 1952.

[47] A. Munshi, "The opencl specification," Hot Chips 21
Symposium (HCS), IEEE, pp. 1-314, 2009.

[48] K. K. Matam and K. Kothapalli, "Accelerating sparse matrix
vector multiplication in iterative methods using GPU,"
Parallel Processing (ICPP), IEEE, pp. 612-621, 2011.

[49] G. Chen, G. Li, S. Pei, and B. Wu, "High performance
computing via a GPU," Information Science and
Engineering (ICISE), pp. 238-241, 2009.

	3.1 GPU Architecture
	3.2 CUDA Programming
	Executed on Only
	callable from
	Function
	5.1 Hardware and software setup
	5.2 Experiment results
	6. Conclusion
	In this paper, we presented a performance evaluation of the preconditioned conjugate gradient solver on heterogeneous platform, using StarPU runtime system. The authors also evaluated the performance of PCG on GPU platform with a recent library for so...
	For the PCG kernel, the authors employed PARALUTION library to compare between two different platforms, CUDA and OpenCL. Furthermore, within the scope of this work, it has been proven that CUDA presents the best choice for applications willing to achi...
	For future work, authors plan to improve these results by a balanced and synchronized distribution of tasks, efficient management of CPU and GPU memories and an overlapping of data transfer and computation in order to hide the CPU-GPU communications.

