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Summary 
Topological groups are objects that combine two separate 
structures; the structure of a topological space and the algebraic 
structure of a group—linked by the requirement that the group 
operations are continuous with respect to the underlying 
topology. Many of the natural infinite groups one encounters in 
mathematics are in fact topological. With regard to this 
definition, it is easy to see that oddly enough, if a set is not open, 
it does not mean that it is necessarily closed. It is possible for a 
set to be neither closed nor open, or both closed and open at the 
same time. In fact, we are guaranteed two such sets in the 
definition of a topology τ. Both X and the empty set are 
guaranteed to be open, and because they are each other’s 
complements, they are both guaranteed to be closed as well.  
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1. Introduction 

New procedures can be created by gluing edges of the 
flexible square. For example, by gluing the up and down 
edges, cylinder is obtained and a tube will be created by 
gluing the edges of cylinder together. The construction is 
called unification or quotient. Creating a quotient is a 
procedure for simplification. Content begins with an 
equivalence relation and each equivalent level specifies a 
one point. Mathematics is full of quotient structures. If the 
field set is topological space, there is always the 
possibility that the topological quotient set be induced, so 
that, the mapping of natural image will be successive. 
However, if the area is eligible the manifold structure will 
be formed, but it often happens that the quotient space 
does not form the manifold structure.  

Topology is an umbrella term that includes several fields 
of study. These include pointset topology, algebraic 
topology, and differential topology. Because of this it is 
difficult to credit a single mathematician with introducing 
topology. The following mathematicians all made key 
contributions to the subject: Georg Cantor, David Hilbert, 
Felix Hausdorff, Maurice Fr´echet, and Henri Poincar´e. 
In general, topology is a special kind of geometry, a 
geometry that doesn’t include a notion of distance. 
Topology has many roots in graph theory. When Leonhard 
Euler was working on the famous K¨onigsberg bridge 
problem he was developing a type of geometry that did 
not rely on distance, but rather how different points are 

connected. This idea is at the heart of topology. A 
topological group is a set that has both a topological 
structure and an algebraic structure. 

The aim of this paper is to create the conditions in which a 
space of quotient function applies to the groups of 
topology.  

2. Theoretical Foundations 

Definitions and basic concepts: 

Definition: 

The ≤ is a Partial Order on set X if it is reflexive, 
transitive and asymmetrical.  

If ≤ is a partial order on X, then X with ≤ is called partial 
ordered set.   

The partial order set (x, ≤) is called lattice, when for each 
subset (with two members) upper bound and lower bound 
of the set is available.  

Definition: assume that x is a set and τ is a collection of 
subsets x. If τ applies to the following circumstance, it is 
called a topology on x. Therefore, (x,  τ ) is a topological 
space.  

(1) X T∈  and T∅∈  

 (2) If 1U T∈  and 2U T∈ then  ℵ  1 2U U T∩ ∈  

(3) If /T T⊆ then  /UT ,ا T∈  

Definition: the feature of a topological space X in x point 
is as follow:  

χ(𝑋𝑋, 𝑥𝑥) = ℵ0 + min {|𝐵𝐵𝑥𝑥|:  𝐵𝐵𝑥𝑥  𝑖𝑖𝑖𝑖 𝑎𝑎 𝑏𝑏𝑎𝑎𝑖𝑖𝑏𝑏 𝑓𝑓𝑓𝑓𝑓𝑓 𝑥𝑥 𝑖𝑖𝑖𝑖 𝑋𝑋}  

χ(𝑋𝑋) = sup {χ(𝑋𝑋, 𝑥𝑥)، 𝑥𝑥 ∈ 𝑋𝑋} 

Feature of space X: 

- X is First-countable if and only if χ(𝑋𝑋) = ℵ0  
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Proof: assume that X is first countable. So, it has base 
countable in x∈X. Therefore: 

min {|𝐵𝐵𝑥𝑥| :   𝑥𝑥 ∈ X  } ≤ ℵ0 , So, ℵ0 + ℵ0  ≤  χ(𝑋𝑋, 𝑥𝑥)   ≤ ℵ0 . 
Therefore:  

( ) ( ){ }sup , ;x X x X x x X NO= ∈ =  

In contrast: if  ℵ0 =  χ(𝑋𝑋)  then, 1U T∈  

( ){ }sup , ;x X x x X NO∈ ≤  

It means in each x∈X, due to  ℵ0  ≤  χ(𝑋𝑋,𝑥𝑥)≤ℵ0, therefore: 

{ }min :XNO B x X NO+ ∈ ≤  

Then min {|𝐵𝐵𝑥𝑥| :   𝑥𝑥 ∈ X  } ≤ ℵ0  so for each 𝑥𝑥 ∈ X , base 
countable is in𝑥𝑥 ∈ X , therefore, X is a first countable. 
Each member of τ is called opened set and complementary 
opened set of closed set in the space x. If {x}∈  τ , then x 
will be the single point of apace x.  

Definition: A topological space is a set X together with a 
collection τ of subsets of X that satisfy the following 
conditions: (1) X, {} ∈ τ (2) The union of any sets in τ is 
in τ (3) The finite intersection of any sets in τ is in τ We 
will refer to the elements of X as points. We will also call 
τ a topology on X and we will refer to any element of τ as 
an open set [4]. 

Theorem: Let G be a topological group, the following 
statements are equivalent: (1) G is a T0 − space (2) G is a 
T1 − space (3) G is a Hausdorff space 

Theorem: Let G be a topological group. The following 
maps are homeomorphisms from G to G for all a ∈ G. (1) 
the translation maps ra and la (2) the inverse map: x → 
x −1 (3) the inner automorphism map x → axa−1 

Proof: The proof for the translation maps is the same as it 
was for semi-topological groups; we proved this in 
Proposition 3.6. For the inverse mapping: we know it is a 
bijection since G is a group (every element has a unique 
inverse), it is continuous by definition of a topological 
group. The inverse map of the inverse map is itself, so it 
has a continuous inverse. Thus the inverse map is a 
topological group. Lastly, we have the automorphism map. 
This is a composition of two homeomorphisms, x → ax 
and x → xa−1, and is thus a homeomorphism [14]. 

Definition of quotient space: 

Let x be a topological space and ~ be an equivalence 
relation on X. x⃰ is defined to be the set of equivalence 

classes of elements of X. the definition of topological 
space on x⃰ is called the quotient space. Therefore: 

π: X → X ∗ 

π(x) = [x] 

That is, π(x) = the equivalence class containing x. This can 
be confusing, so say it over to yourself a few times: π is a 
function from X into the power set of X; it assigns to each 
point x ∈ X a certain subset of X, namely the equivalence 
class containing the point x. Since each x ∈ X is contained 
in exactly one equivalence class, the function x → [x] is 
well-defined. At the risk of belaboring the obvious, since 
each equivalence class has at least one member, the 
function π is surjective [12]. 

Theorem: assume that {Xα}αεr is a family of subsets of set 
X which X=∪ α ∈ Γ Xα. For each α ∈ Γ assume that ℐ is a 
topology on Xα. for each pair (α,β) ∈Γ × Γ the following 
condition should be provided: 

1) Xα ∩ Xβ  in both topology ℐRα Rand ℐRβR should be open 
(close). 

2) Induction Topologies should be equal for Xα ∩ Xβ , ℐRα 

Rand ℐRβR.  

In tis topology ℐ exist on the X, and for each α we have 
ℐ|𝑥𝑥α = ℐRα.  

Proof: we announce a subset U from X as an open subset 
when for each α, Xα ∩U is open in XRαR. Thus, a topology 
on X can be defined. This topology is called ℐ. It is 
obvious that ℐ|𝑥𝑥αR ⊆ ℐRαR. Assume that u∈ ℐRαR, therefore for 
each β ∈ Γ: 

U ∩ Xβ = U ∩ (Xα ∩ Xβ) 

Since Xβ ∩ Xα is open in Xα, therefore, Xβ ∩ U is open in 
Xα, and because the induction topology of Xα and Xβ is 
equal on Xα ∩ Xβ, so U ∩ Xβ is open on Xβ. ℐ ∈ U and ℐα 
⊆ ℐ |X α therefore ℐ |Xα = ℐα.  

Theorem: Let G be a group and let H be a normal 
subgroup. Then the left cosets of H in G form a group 
denoted G/H. G/H is called the quotient of G modulo H. 
The rule of multiplication in G is defined as (aH)(bH) = 
abH. Furthermore, there is a natural surjective 
homomorphism φ: G −→ G/H, defined as φ(g) = gH. 
Moreover the kernel of φ is H. Proof. We have already 
checked that this rule of multiplication is welldefined. 

Definition: Let G be a topological group acting on the left 
on a set X. A symmetric neighbourhood U of 1G gives 
rise to an entourage (x, y) ∈ X2 : x ∈ U · y , and these 
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generate the right G-uniformity on X. When X is a 
topological space, the collection of bounded complex 
functions on X that are continuous with respect to the 
topology on X and right uniformly continuous with 
respect to the group action is denoted RUCBG(X) [2] . 

Definition: We say that a point x of a topological space X 
has a local G-base if there exists a base of neighbourhoods 
at x of the form U(x) = {Uα(x) : α ∈ N N}, where Uβ(x) ⊆ 
Uα(x) whenever α ≤ β for all α, β ∈ N N. The space X is 
said to have a local G-base if it has a G-base at each point 
[7]. 

Definition: Let G be a topological group and let H be a 
normal subgroup of G. From Definition 2.67 we know that 
G/H is a group. Let φ be the mapping from G to H by φ(x) 
= xH, we will refer to this function as the canonical 
mapping from G to G/H. We can define a topology on 
G/H as follows: U is open in G/H if and only if φ −1 (U) is 
open in G, we call this the quotient topology [12]. 

Theorem: Let G/H be a topological group with the 
quotient topology and φ as above. The following three 
statements hold: (1) φ is onto (2) φ is continuous (3) φ is 
open 

Proof: Let gH ∈ G/H. It follows that φ maps g to gH, thus 
φ is onto. Proposition 2.20 tells us that φ : G → G/H is 
continuous when U is open if and only if φ −1 is open. 
This condition follows directly from the definition of the 
quotient topology. Let U be open in G. We need to show 
that φ(U) is open. We know that φ(U) = UH. By 
Proposition 3.7 we get that UH is open [8]. 

Definition: Let G be a topological group. A family B ⊆ 
V(1) is said to be a base of neighborhoods of 1 (or briefly, 
a base at 1) if for every U ∈ V(1) there exists a V ∈ B 
contained in U (such a family will necessarily be a 
filterbase).      

Definition (Linear topologies) = Let V = {Ni: i ∈ I} be a 
filter base consisting of normal subgroups of a group G. 
Then V satisfies (a)–(c), hence generates a group topology 
on G having as basic neighborhoods of a point g ∈ G the 
family of cosets {gNi : i ∈ I}. Group topologies of this 
type will be called linear topologies. Let us see now 
various examples of linear topologies [8]    

Example: let G be a group and let p be a prime: 

 • The pro-finite topology, with {Ni: i ∈ I} all normal 
subgroups of finite index of G 

 • The pro-p-finite topology, with {Ni: i ∈ I} all normal 
subgroups of G of finite index that is a power of p 

 • The p-adic topology, with I = N and for n ∈ N, Nn is the 
subgroup (necessarily normal) of G generated by all 
powers {g p n: g ∈ G} 

• The natural topology (or Z-topology), with I = N and for 
n ∈ N, Nn is the subgroup (necessarily normal) of G 
generated by all powers {g n: g ∈ G} 

 • The pro-countable topology, with {Ni: i ∈ I} all normal 
subgroups of at most countable index [G: Ni]. The next 
simple construction belongs to Taimanov. Now 
neighborhoods of 1 are subgroups which are not 
necessarily normal.  

Exercise 3.8: Let G be a group with trivial center. Then G 
can be considered as a subgroup of Aut (G) making use of 
the internal automorphisms. Identify Aut (G) with a 
subgroup of the power GG and equip Aut (G) with the 
group topology τ induced by the product topology of GG, 
where G carries the discrete topology. Prove that: 

 • The filter of all τ -neighborhoods of 1 has as base the 
family of centralizers {cG(F)}, where F runs over all finite 
subsets of G 

 • τ is Hausdorff; • τ is discrete iff there exists a finite 
subset of G with trivial centralizer. 

Theorem: Let G be a topological group and let H be 
normal in G. The following statements hold: 

 (1) The canonical mapping φ(x) = xH is a continuous and 
open homomorphism. 

 (2) G/H with the quotient topology is a topological group 

Proof: By Theorem 4.14 we have that φ is continuous and 
open. To show that φ is a homomorphism, let x, y ∈ G. To 
start, we have φ(xy) = xyH. From the properties of cosets 
we get xyH = xHyH. We can simplify to get φ(x)φ(y). 
Thus φ(xy) = φ(x)φ(y) and φ is a homomorphism 

Definition: The quotient G\X is equipped with the quotient 
topology, so, that the quotient map π : X → G\X is 
continuous: a subset V ⊆ G\X is open if and only if π −1 
(V ) ⊆ X is open. The projection π is an open map, which 
is to say if U ⊆ X is open then π(U) = GU ⊆ G\X is open: 
indeed, if U is open then π −1 (π(U)) = S g∈G gU is open, 
so π(U) is open by definition of the topology  [10]  

Lemma: Let G be a topological group. Let A(G) be a C ∗ -
subalgebra of `∞(G) with 1 ∈ A(G) and T ⊆ G 

(i) T is an A(G)-interpolation set if and only if A is 
injective on T and there is a homeomorphism between T A 
and βTd, the StoneCech-compactification of ˇ T equipped 
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with the discrete topology, that leaves the points of T 
fixed. 

 (ii) T is an A(G)-interpolation set if and only if for every 
pair of subsets T1, T2 ⊂ T, T1 ∩ T2 = ∅ implies T1 A ∩ 
T2 A = ∅. 

 (iii) If T is an A(G)-interpolation set and f : T → C is a 
bounded function, then f has an extension f ∈ A(G) with 
kfk∞ = kfkT . 

 (iv) If T is an approximable A(G)-interpolation set, then 
for every bounded function h: T → C and every 
neighbourhood U of the identity, there is f ∈ A(G) such 
that f   T = h, f(G \ UT) = {0} and kfk∞ = khkT . 

Proof: First observe that A is injective on every A(G)-
interpolation set 

 T: if t1 6= t2 ∈ T, there is f ∈ `∞(T) with f(t1) 6= f(t2). 
Take ¯f ∈ A(G) extending f.  

By (1) ¯f = ¯f A ◦ A, hence A(t1) 6= A(t2). 

 Assertion (i) follows then from the universal property 
defining the StoneCech compactification of a discrete 
space. In fact, the restriction of the ˇ evaluation map A to 
T gives a homeomorphism of the discrete set Td onto its 
image in GA. So T A is a (topological) compactification 
of Td, and we may apply. 

 Assertion (ii) follows also directly from a well-known 
characterization of the Stone-Cech compactification of a 
discrete space, see for instance.  

To prove (iii), let f: T → C with kfkT = M be given. If 
BM is the closed disc of radius M centered at 0 (in C), we 
can use (i) and the universal property of βTd to find a 
continuous function f β: T A → BM with f β   T = f.  

Then, by Tietze’s extension theorem, f β can be extended 
to a continuous function f A: GA → BM, the restriction f 
A   G is then the desired extension. To prove (iv), let T be 
an approximable A(G)-interpolation set. First, we find, 
using (iii), f1 ∈ A with f1   T = h and kf1k∞ = khkT . The 
definition of approximable A(G)-interpolation sets 
provides two neighbourhoods V1, V2 with V1 ⊆ V2 ⊆ U 
and f2 ∈ A such that f2(V1T) = {1} and f2(G \ V2T) = {0} 
[8] 

Proposition 1: Let H be an open subgroup of a topological 
group G. The uniform structure Ul(G/H) is discrete 

Proof: Since H is a neighborhood of the identity of G, the 
image of the entourage Hl of the diagonal under (π × π) is 
the set {(fH, gH):f, g ∈ G, f −1g ∈ H}={(fH, gH) : f, g ∈ 
G, g ∈ fH} = {(fH, fH) : f ∈ G}. The latter set is the 

diagonal of G/H ×G/H. Hence, Ul(G/H) is just the discrete 
uniform structure 

Assume that X be a set. Let SX denote the symmetric 
group on X, consisting of all self-bijections of the set X 
and equipped with the composition of bijections as the 
group law. Let γ be a partition of X. Define St γ = {f ∈ SX: 
∀B ∈ γ, f(B) = B}. Plainly, St γ is a subgroup of SX [1]. 

Proposition: The subgroups St γ, as γ runs over all 
partitions of X with |γ| ≤ c, form a neighborhood basis for 
a Hausdorff group topology on SX, which we will denote 
by τc. 

 Proof: Let Γ = {γ: γ is a partition of X with |γ| ≤ c}. Since, 
for any γ ∈ Γ, St γ is a group, St 2 γ = St γ = St −1 γ . Let γ 
∈ Γ and g ∈ St X. Define a cover β of X as follows: B ∈ β 
if and only if B = g(A), for some A in γ. Evidently β is in 
Γ and g −1St βg ⊆ St γ. If γ, β ∈ Γ, then define a cover α 
of X as follows: A set D is in α if and only if D = A ∩ B 
for some A ∈ γ and B ∈ β. Clearly, α is in Γ and St α ⊆ St 
γ ∩ St β. Now the topology can be defined by taking the 
set Ω = {St γ: γ is a partition of X, |γ| ≤ c}, as a basis of 
open neighborhoods of the identity. If ι is the identity of 
SX and f ∈ SX not equal to ι, then there exists x ∈ X such 
that f(x) 6= x. Put γ = {{x}, {f(x)}, X\{x, f(x)}}. Then 
clearly, γ ∈ Γ and f 6∈ St γ. This implies T γ∈Γ St γ = ι. 
Hence, SX is Hausdorf [5]. 

Lemma: Let G be a topological group, A1(G) ⊆ A2(G) ⊆ 
`∞(G) be two C ∗ -subalgebras with 1 ∈ A1(G), and let 
(Tη)η< κ and every φ ∈ A1(G) 

Proof: Let T = S η< κ, a function hη : G → [−1, 1] 
supported on Tη with hη(T1,η) = {1} and hη(T2,η) = {−1}. 
Then consider the function h: G → [−1, 1] supported on T 
and given by h(t) = hη(t) if t ∈ Tη for some η < κ.  

By Statement (iv) of Lemma 2.3, there is a a function f ∈ 
A2(G) such that f(G \ UT) = 0, f   T = h and kfk∞ = khkT 
= 1. Let now φ be any function in A1(G), and take ε > 0. 
Given η < κ, we are going to prove that kf − φkTη ≥ 1 − ε. 
Take pη ∈ T1,η A1 ∩ T2,η A1 and pick t1,η ∈ T1,η and 
t2,η ∈ T2,η with |φ(t1,η) − φ A1 (pη)| < ε and |φ(t2,η) − φ 
A1 (pη)| < ε, where φ A1 denotes the extension of φ to 
GA1 . Then (2) 2 = |hη(t1,η) − hη(t2,η)| = |h(t1,η) − 
h(t2,η)| = |f(t1,η) − f(t2,η)| ≤ |f(t1,η) − φ(t1,η)| + |φ(t1,η) − 
φ A1 (pη)| + |φ A1 (pη) − φ(t2,η)| + |φ(t2,η) − f(t2,η)|. 

It follows that either |f(t1,η) − φ(t1,η)| ≥ 1 − ε or |f(t2,η) − 
φ(t2,η)| ≥ 1 − ε. Since ε > 0 was arbitrary, we find that kf 
− φkTη ≥ 1. Since kfk∞ = 1 and f(G \ UT) = {0}, we see 
that f is the required function [3]  .  

Proposition: Let M be a closed subspace of a normed 
linear space X. Then the following statements hold.  
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(a) π is continuous, with kπ(f)k = kf + Mk ≤ kfk for each f 
∈ X. 

 (b) Let BX r (f) denote the open ball of radius r in X 
centered at f, and let B X/M r (f +M) denote the open ball 
of radius r in X/M centered at f + M. Then for any f ∈ X 
and r > 0 we have π B X r (f) = B X/M r (f + M).  

(c) W ⊆ X/M is open in X/M if and only if π −1 (W) = {f 
∈ X : f + M ∈ W} is open in X. 

 (d) π is an open mapping, i.e., if U is open in X then π(U) 
is open in X/M. Proof. 

 (a) Choose any f ∈ X. Since 0 is one of the elements of M, 
we have kπ(f)k = kf + Mk = inf m∈M kf − mk ≤ kf − 0k = 
kfk 

(b) First consider the case f = 0 and r > 0. Suppose that g + 
M ∈ π BX r (0) . Then g + M = h + M for some h ∈ BX r 
(0), i.e., khk < r. Hence kg + Mk = kh + Mk ≤ khk < r, so 
g + M ∈ B X/M r (0 + M). Now suppose that g + M ∈ B 
X/M r (0 + M). Then infm∈M kg − mk = kg + Mk < r. 
Hence there exists m ∈ M such that kg − mk < r. Thus g − 
m ∈ BX r (0), so g + M = g − m + M = π(g − m) ∈ π B X r 
(0) [5]. 

3. Conclusion 

Lemma: Every two separated compact set in a Hausdorff 
space have separate neighborhoods.  

Proof: Consider two compressed and distinct sets A and B. 
According to aforementioned Lemma, for each X∈B, there 
are neighborhoods with distinct VX and UX from X and A. 
As aforementioned proof, we can find finite cover like 
{VX1… VXn} for compressed set B due to the 
neighborhoods V = ⋃ vxi

n
I=1 and U = ∏ uxi

n
i=1  are distinct 

from A and B. Therefore, it is proved. 

Lemma: in Hausdorff space X, each compressed set has a 
distinct open neighborhood with each point in 
complementary set. Specially, when in a Hausdorff space, 
each compressed set is close.  

Proof: consider the compressed set F and point P which P 
is not P∈ F. Since the space is Hausdorff, for each x∈X, 
VX and UX distinct open neighborhoods are exist from X 
and P, respectively. Since {VRXR}R x∈XR is a open cover for the 
compressed set F, there is a finite sub-cover like {VRX1R… 
VRXnR} for it. V = ⋃ vxi

n
I=1 and U = ∏ uxi

n
i=1  are distinct 

open neighborhoods of P and F. Therefore, it is proved. 
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