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Abstract 
Network virtualization is one of the key components for the multi-
tenancy services in the datacenter environment, where overlay 
layer 2-in-layer 3 tunneling protocols have gained wide traction. 
These overlay tunneling protocols assist in overcoming the 
scalability challenges associated with the traditional network 
virtualization primitives such as VLAN, and they enable tenants 
to use their own IP/MAC addresses while ensuring traffic isolation. 
However, the tunneling protocols have introduced compatibility 
and performance issues. This paper discusses the issues of the 
tunneling protocols and proposes a scalable edge-overlay solution 
for network virtualization in multi-tenant datacenters. The 
proposed solution leverages OpenFlow to control and forward the 
tenants’ traffic without using additional encapsulation. Also, it 
allows the tenants to use their IP/MAC addressing scheme. We 
have implemented and evaluated the proposed solution, and the 
results from the experiments demonstrate that our solution 
provides higher performance than the tunneling protocols. 
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1.  Introduction 

The increasing demand for computing resources as utility 
services has driven the growth of large datacenters, which 
form the backbone of cloud computing infrastructures. The 
evolution of datacenter virtualization has enabled the cloud 
operators to efficiently utilize the resources of their 
datacenters in serving a large number of clients and 
deploying a wide range of online applications, which is also 
reflected in their revenues growth [1]. While the 
virtualization in the datacenters has become mature in 
providing a sufficient abstraction layer for the computing 
resources, the virtualization of the network infrastructure is 
still behind [2]. A multi-tenant datacenter is considered one 
of the most challenging networking environments since 
network configurations change rapidly to accelerate 
application deployment, optimise traffic routing, and satisfy 
tenants’ requirements. The network architecture for large-
scale, multi-tenant datacenters should meet the following 
fundamental requirements to accommodate a large number 
of clients and effectively manage the shared networking 
environment: 
Mobility of virtual machine: The datacenter network 
architecture should enable Virtual Machine (VM) live 
migration to any physical server in the datacenter without 

changing the addresses of the migrated VM. VM migration 
can be essential for rebalancing the workload on the host 
servers and optimising the provision of computing 
resources. In such case, the migrated VM should keep its 
IP/MAC addresses to preserve the running applications’ 
state at the VM. Therefore, the VM addresses should be 
independent of its location in the datacenter network.  

Decoupling of physical and virtual networks: The 
address spaces of the tenants’ virtual networks should be 
independent of the physical addressing scheme of the host 
servers in the datacenter for two reasons. First, changing the 
physical network topology (i.e., adding/removing switches) 
should not interfere with the configurations of the tenant 
virtual networks. Even changing the IP/MAC addresses of 
host server should not affect VMs that are hosted on the 
server. Second, the tenant address spaces may overlap as 
they are isolated and managed independently. This 
fundamental requirement allows the tenants to configure the 
addresses of their VMs conveniently as they like.   

Scaling of virtual network segments: Datacenters are 
growing in size as a result of the increasing demand for 
computing resources under the pay-as-you-go business 
model. In such large-scale networks, proper planning is 
critical for achieving the benefits of resource sharing and 
accommodating the increasing number of tenants. 
Therefore, scaling the virtual network segments has become 
important as a considerable number of tenants subscribe to 
the datacenter services on a daily basis. Any adopted 
network virtualization technique in a large multi-tenant 
datacenter should be able to serve millions of tenants [3]. 

Routing/forwarding tables of the switches: Although 
some modular switches have large tables to handle 
thousands of forwarding entries, it is still limited for large-
scale datacenters [4]. If the traffic forwarding in the 
datacenter is determined based on the addresses of VMs, 
then each switch in the underlying physical network needs 
to handle a large number of forwarding entries in its table, 
which significantly consumes the switch resources (i.e., 
TCAM memory). Therefore, the forwarding scheme that 
will be deployed should assist in reducing the forwarding 
tables for the entire network fabric (i.e., Rack, Aggregate, 
and Core switches in the network topology) while enabling 
any VMs to communicate with one another when access is 
granted. 
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      Satisfying the above requirements for large-scale 
datacenter networks raises the importance of utilizing a 
scalable network virtualization technique that can 
accommodate a large number of tenants while reducing the 
traffic forwarding/routing overhead on the core network. 
Note that datacenter networks are often structured and 
managed as a single logical network fabric that 
interconnects all the datacenter resources together through 
multi-rooted tree-like topology with multiple core switches 
[5, 6]. Typically, datacenter networks have multiple paths 
between each end pair of nodes to mitigate link failures and 
load balance the traffic (e.g., using ECMP). Therefore, the 
traditional Layer-2 (L2) switching is not suitable for large 
virtualized datacenters due to the following reasons: First, 
relying on the flat L2 addressing for forwarding traffic will 
result in large and overlapping MAC-learning tables among 
the intermediate L2 switches since the virtualized 
infrastructure further increases the density of L2 addresses. 
Second, L2 switching forwards traffic through spanning 
tree(s) to control forwarding loops in the network (i.e., the 
nature of L2 broadcast traffic), which consequently restricts 
multi-path routing as redundant links that are not present in 
the tree will not be used to carry traffic [7]. This would 
result in wasting considerable proportion of network 
capacity in load balancing the network traffic.  
      On the other hand, the hierarchical routing based on 
Layer-3 (L3) addresses is easier to manage, but it also 
introduces limitations when deployed in datacenters. First, 
IP adopts the location-aware addressing scheme, so the VM 
mobility is bounded to its IP prefix (e.g., subnet). If the IP 
address of the VM is determined by the location of its host 
server or the Top-of-Rack switch, it will be difficult to 
perform VM live migration across IP prefix boundaries [8, 
9] as the IP address of the migrated VM will be changed 
according to its new location; inevitably invalidating 
existing network sessions. Second, in such restricted 
routing schemes, the tenant has limited choices for the 
network configurations of his VMs. 
      Since using the traditional routing/forwarding in 
modern datacenters would limit the network scalability, 
flexibility, and manageability, the networking industry has 
been seeking ways to virtualize the datacenter network 
infrastructure and segregate the configuration of the tenant 
virtual network from the datacenter physical network. Thus, 
there has been a growing interest in overlay (L2-in-L3) 
tunneling protocols such as VXLAN (Virtual eXtensible 
Local Area Network, RFC 7348) [10], NVGRE (Network 
Virtualization using Generic Routing Encapsulation, RFC 
7637) [11], and STT (Stateless Transport Tunneling) [12], 
which are well-known tunneling protocols for network 
virtualization in large datacenters. However, these 
tunneling protocols have introduced an additional overhead 
on the underlying network and some performance issues 
that we highlighted in the next section as motivations for 
this research.  

 

Fig. 1   The encapsulation formats for VXLAN, NVGRE and STT. 

The rest of the paper is structured as follows. The design of 
our solution, which avoids the limitations associated with 
overlay tunneling protocols, is described in Section 3. 
Section 4 introduces the implementation details. Section 5 
presents the evaluation results of our solution, compared to 
the tunneling protocols, and we discuss the merits and 
broader aspects of our approach in Section 6. Section 7 
elaborates on the related work. Finally, Section 8 concludes 
this research.   

2.  Background and Motivations   

Since the traditional network virtualization primitives such 
as VLAN suffers scalability problems, including being 
limited to 4096 virtual networks due to its 12-bit VLAN ID, 
configuration overhead, and forwarding traffic through 
spanning tree [6], the datacenter networking industry has 
alternatively adopted overlay (L2-in-L3) tunneling 
protocols. These protocols are based on NVO3 (Network 
Virtualization Over Layer 3) framework (RFC 7365), which 
defines a reference model capable of isolating not only 
virtual networks from each other, but also separating them 
from the underlying physical network. These tunneling 
protocols encapsulate the whole Ethernet frame sent from 
the VM in an IP packet in order to transmit the VM frame 
to its destination over the physical datacenter network (i.e., 
the tunnel endpoints, which can be virtual switches in the 
host servers, perform the frame encapsulation and 
decapsulation). After the encapsulation, the new packet has 
outer (encapsulation) headers, which carry the addresses of 
the physical hosts where the sender/receiver VMs are 
located. Thus, the addresses in the outer headers belong to 
the datacenter physical network, while the addresses in the 
inner headers (i.e., in the payload of the encapsulated 
packet) belong to the tenant virtual network (i.e., virtual 
addresses).  
The encapsulation formats of the tunneling protocols are 
shown in Figure 1. When the encapsulated VM frame 
reaches the physical server that is hosting the destination 
VM, the virtual switch will remove the encapsulation 
headers and forward the frame to its destination based on 
inner header and the virtual network identifier, which 
specifies the virtual network the packet belongs to.   
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Fig. 2   Network virtualization via overlay tunnelling protocols.  

Unlike VLAN, these tunneling protocols support a large 
number of virtual networks. The Virtual Network Identifier 
(VNI) field in VXLAN header is 24-bit, so it supports over 
16 million virtual networks. Similarly, the Virtual Subnet 
Identifier (VSID) in NVGRE is 24-bit, while the context ID 
field in STT header is 64-bit. Note that this overlay 
tunneling technique extends the tenant virtual networks 
across the physical host servers as shown in Figure 2, while 
it reduces the routing information in the underlying physical 
network (i.e., the VMs addresses are hidden from the 
physical network). The datacenter underlying network is 
unaware of the overlay tunneling process as it only routes 
packets between the host servers based on the outer 
encapsulation headers (e.g., destination IP). Also, this 
tunneling process is transparent to the tenants’ virtual 
networks, and effectively allows the tenants to have their 
own IP/MAC address spaces. 

2.1 Issues of Tunneling Protocols  

While the overlay tunneling protocols discussed above can 
reduce the need for switches in the network to learn all 
addresses (i.e., VM addresses), they introduce another 
overhead on the network. This section highlights the 
overhead and the limitations of utilizing the aforementioned 
tunneling protocols for forwarding and isolating the tenants’ 
traffic in datacenter networks. 

Multicast overhead: VXLAN and NVGRE depend on 
multicast-enabled networks for forwarding the tenants’ 
traffic (i.e., broadcast and unknown unicast destination), 
which adds more complexity for troubleshooting the 
network problems, after all, the underlying network has to 
handle a large number of multicast trees [16]. Using IP 
multicast as an approach for destination discovery will form 
a large number of multicast trees in the datacenter network, 
where each multicast group requires a state to be held in the 
network layer. In addition, the edge of tunnels (e.g., 
VXLAN Tunnel End Point (VTEP) in the physical server) 
has to handle a considerable number of multicast messages. 

Nakagawa et al. [16] studied the multicast traffic in overlay 
networks, and highlighted that relying on IGMP as a 
dynamic registration protocol for managing the multicast 
traffic in a multi-tenant datacenter will result in millions of 
membership reports every second. Therefore, datacenter 
network vendors start encouraging the usage of a 
centralized control plane to manage the tunnels instead of 
relying on multicasting for destination discovery [2, 17]. 

Fragmentation: VXLAN and NVGRE encapsulate the 
VM Ethernet frame into UDP and GRE respectively. Such 
encapsulation causes further fragmentations that are 
processed by the end-hosts (i.e., most network cards support 
TCP offloading). Usually, the VM fragments the packet into 
standard MTU-size without considering the additional 
encapsulation headers since the tunneling process is 
transparent to VMs. Consequently, the frame is fragmented 
again after the tunneling encapsulation, which affects the 
network performance [18]. As this is a well-known issue 
associated with the encapsulation protocols [20], the 
VXLAN (RFC 7348) and NVGRE (RFC 7637) 
specifications recommend setting the MTU (Maximum 
Transmission Unit) size to a value that can accommodate 
the outer encapsulation headers and avoid fragmentation 
(e.g., reducing the standard MTU-size at the NICv of VM). 
Consequently, the encapsulation headers impose additional 
overhead in the traffic tunneling process. 

Compatibility: The Stateless Transport Tunneling (STT) 
protocol for network virtualization utilizes the standard 
offloading capabilities in the network interface cards (i.e., 
TSO) to improve performance. However, since it uses a 
TCP-like header in L4 of the outer headers (i.e., it does not 
engage in the usual TCP 3-way handshake), it is treated as 
an invalid packet by the traditional network security 
appliances. 

Load balancing: NVGRE uses GRE protocol for 
encapsulation. As it does not have a standard transport layer 
(TCP/UDP) header, it cannot provide ECMP hash naturally 
for flow-level granularity distribution among multiple paths. 
Therefore, it cannot utilize the standard ECMP-based load 
balancing. The updated NVGRE (RFC 7637) specifications 
suggested using customized ECMP that its hash is 
calculated based on the outer IP fields and the entire Key 
field (32 bits) in GRE header. The Key field is composed of 
two parts: The first 24 bits are assigned to the Virtual Subnet 
ID (VSID), and the second part is an 8-bit value, named 
FlowID in the NVGRE specification, which can be used to 
provide per-flow entropy for flows in the same VSID. 
However, this requires a special load balancing technique 
that understands the NVGRE header format, which should 
be installed in the core network. Supporting such a special 
load balancing technique in the industry is limited. 

In this paper, we propose a fixable edge-overlay solution for 
network virtualization in multi-tenant datacenters. Our 
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network virtualization technique leverages OpenFlow/SDN 
(Software-Defined Networking) to isolate the tenants’ 
traffic and rewrite the addresses of the VM frames before 
transmitting them through the datacenter physical network; 
instead of encapsulating every VM frame. Thus, it 
eliminates the limitations of tunneling protocols. The 
proposed technique employs a centralized SDN controller 
for mapping the tenant virtual networks to the physical 
network and making decisions on traffic forwarding in the 
datacenter network. The network state and intelligence are 
(logically) centralized in SDN, and in turn facilities the 
traffic control and forwarding for dynamic networking 
environments, where the configurations of the end nodes 
(i.e., virtual switches in host servers) frequently change as 
users/applications come and go.  

3.  Network System Design 

Before describing the design of our proposed edge-overlay 
solution, we first outline the OpenFlow, which is a leading 
SDN protocol in the networking industry and has been used 
in large production datacenters [2, 21]. Under the SDN 
paradigm, network operators/applications can specify high-
level network policies, which are automatically translated 
into low-level rules/instructions and installed in network 
switches by a logically centralized controller. Thus, the 
SDN controller serves traffic routing applications in SDN-
enabled datacenters, besides observing and controlling the 
network forwarding state.  
The controller communicates with the switches via 
OpenFlow, a standardized SDN protocol [13], which allows 
the controller to instruct the switches and control the 
network forwarding states in either a proactive or reactive 
mode. In the latter, when an ingress OpenFlow switch 
receives a new flow, it performs lookup for a matching flow 
entry in its flow table (e.g., based on the headers of the 
received packet and the ingress port) to forward that packet 
to one or more egress port(s). If it does not find the matching 
flow entry, it will forward the first packet of the flow (or 
just its headers) to the controller via OFPT_PACKET_IN 
message in seeking instructions on how to handle the 
packets of such flow. Typically, there is a special flow entry 
in the switch table called table-miss, which specifies how to 
process packets unmatched by other flow entries in the table. 
The controller, upon receiving the OFPT_PACKET_IN 
message, will instruct the ingress switch and other related 
switches that reside in the packet’s path on how to handle 
the packets of such flow by adding a new flow entry in the 
switches’ tables using OFPT_FLOW_MOD message. These 
forwarding instructions are cached by the switches for some 
period of time to handle upcoming packets at line rate. 
      This reactive mode, also known as a reactive flow setup, 
provides a fine-grained flow visibility and control for the 
SDN controller since the controller decides the path for each 
flow in this operational mode. On the other hand, the flow 

rules can be installed proactively in the switches when the 
routing application in the controller has computed all the 
traffic routes in the network. The proactive mode can reduce 
the overhead on the controller, but it basically resembles the 
traditional networking, where the traffic is forwarded based 
on the destination addresses since the specific flows are not 
known in advance. Consequently, it limits the controller 
capability of observing and controlling the traffic 
dynamically in the network. Unlike the reactive flow setup; 
which usually installs micro-flow rules (i.e., exact-match 
flow rules) [22], the proactive approach installs mega-flow 
rules for traffic forwarding. The mega-flow rule only 
matches one or more fields of the packet headers with other 
fields being wildcarded. Note that many micro-flow rules 
can be covered by one mega-flow rule as the latter allows 
rules aggregation by wildcard matching.  For instance, flow 
rules that forward TCP packets from host A, port:66, to 
different destination ports in host B are micro-flow rules of 
the mega-flow rule that forwards any packet from host A to 
host B. Assume that H={h1, h2,..., hi} is the set of match 
fields for the packet headers that are present in the flow 
rule f

1
 . The flow rule  f2  is considered a strict subset of  f1 

when the condition in Eqn. (1) is satisfied, where hi
1
∈ f1 , 

hi
2
∈ f2, and i ≠j. 

f2⊂ f1 𝑖𝑖𝑖𝑖 (∃ j | hj
2⊂hj

1) ⋀ [∀i | hi
2⊆ hi

1]    (1) 

First, note that the wildcard match field (i.e., means any 
value) in a flow rule is considered a superset of any defined 
values in the corresponding field of the other flow rules. 
Also, some match fields can be partially wildcarded (i.e., 
the address is associated with a bitmask to specify which 
bits are wildcard). Therefore, if at least one matching field j 
in f2 is a strict subset of the corresponding field in  f1 while 
the other fields i in f2  are equal (or subsets) of the 
corresponding fields in f1, then f2⊂ f1 because every packet 
that matches f2 will also match  f1 . Therefore, mega-flow 
rules can be used to reduce the number of flow entries in the 
switch’s table, but they cripple many SDN applications that 
depend on the reactive, fine-grained flow rule installation 
for monitoring or correction operations such as traffic 
engineering [24] and intrusion detection/prevention [23]. 
3.1 Hybrid Flow Setup 

As discussed above, the reactive flow setup empowers the 
SDN controller to observe and control the network traffic, 
but it increases the workload on the controller (i.e., the 
number of exchanged control messages between the 
controller and network switches). For example, for each bi-
directional flow setup, there will be: 2NFLOW_MOD + 
2PACKET_IN + 2PACKET_OUT transmitted control messages 
between the controller and N number of switches along the 
flow path 
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Fig. 3   Overview of the proposed OpenFlow based edge-overlay. 

Consequently, the flow latency is increased along with the 
increase of network diameter as we have presented in our 
previous study [31], since each switch in the flow path has 
to process the OFPT_FLOW_MOD message and install the flow 
rules. Therefore, our proposed OpenFlow edge-overlay 
technique emphasizes limiting the reactive control 
messages while also reducing the entries in the switches’ 
tables. We achieved this by using hybrid flow setup. In the 
hybrid approach, whenever a VM is migrated to another 
location in the virtualized datacenter and connected to a 
virtual switch, which is running on the physical host server, 
the controller proactively installs flow rules in the virtual 
switch for the incoming packets to that VM. Thus, the 
reactive flow setup is used only for the outgoing traffic in 
order to instruct the virtual switch to rewrite the headers of 
the outgoing packets before transmitting them to their 
destinations through the datacenter physical network (see 
Section 3.2.1 for packet headers rewriting).  
Moreover, since the physical topology of the datacenter 
network changes occasionally, but far less frequently than 
the tenants’ virtual networks, the controller can proactively 
install flow rules in the intermediate switches of the 
datacenter network for routing the traffic (i.e., in 
virtualized datacenter, the first and last switches in the flow 
path are the virtual switches that are running in the host 
servers). These routing rules are installed based on routing 
application in the controller, and they are only updated 
when the datacenter physical topology has changed. Thus, 
hybrid flow setup reduces the control messages to 
2PACKET_IN + 2FLOW_MOD+PACKET_OUT for each bi-directional 
flow. Also, the flow latency is reduced in this approach 
since only the ingress virtual switch processes the 
OFPT_FLOW_MOD message for each new flow. Note, the 
OpenFlow controller knows the location of every VM in 

the datacenter (i.e., virtual switch DPID, and the port 
number where the VM is connected) as follows:  
• When the datacenter controller (e.g., OpenStack) 

configures and adds a new VM to the virtual switch, the 
switch sends an OFPT_PORT_STATUS message to notify 
the OpenFlow controller of the change. Also, when VM 
is migrated to another host server, it sends gratuitous 
ARP, which is intercepted and sent by the virtual switch 
to the OpenFlow controller. Hence, the controller can 
obtain MAC/IP and location of the migrated VM (i.e., 
Sender Protocol Address (SPA) field in ARP has the IP 
address of the ARP sender).  

• In addition, the OpenFlow controller can utilize the 
Neutron plug-in of OpenStack to obtain information 
about the VMs and their locations directly. 

3.2 OpenFlow Based Edge-Overlay 

This section presents the proposed edge-overlay for 
network virtualization in a multi-tenant datacenter, and 
elaborates on the rewriting techniques of the packets’ 
headers using OpenFlow. Also, the fundamental 
forwarding components in the multi-tenant datacenter are 
highlighted in our discussion. 

 

Fig. 4   Hierarchical addressing scheme. 
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Figure 3 presents an example for the deployment of our 
solution. Our proposed edge-overlay technique only 
requires that the datacenter physical switches should be 
OpenFlow-enabled, which is easily attainable as OpenFlow 
has been widely supported in the networking industry. Our 
solution builds upon two observations. First, using Layer-
3 instead of Layer-2 of the packet headers for forwarding 
traffic is commonly used in datacenter networks [24, 26]. 
Second, unlike the traditional routers, OpenFlow-enabled 
devices forward packets without changing any fields of the 
packet headers (e.g., source/destination MAC addresses 
and TTL) unless explicitly instructed by the controller to 
do so. 

3.2.1 Rewriting the Packet Headers 

In our edge-overlay solution, we utilize OpenFlow to 
stretch the virtual network segments across the physical 
servers in the datacenter instead of relying on the packet 
encapsulation. Note that in virtualized datacenter, the first 
and last switches that receive the VM packets are the virtual 
switches in the physical host servers, e.g., OVS (Open 
vSwitch) [28]. Hence, we can use OpenFlow to rewrite the 
MAC/IP addresses of the tenant’s packet before sending it 
to its destination through the physical datacenter network, 
and restore the original addresses when this packet reaches 
the virtual switch at the other end of the communication, 
where the destination VM is connected. Here is the 
workflow as shown in Figure 3:  

(1) VM5 in physical server 2 sends a packet to VM2 in 
physical server 1 (both VMs belong to Tenant B).  

(2) The virtual switch in physical server 2 receives the 
outgoing packet to VM2. As the virtual switch does 
not know where the destination is located in the 
datacenter network, it sends OFPT_PACKET_IN 

message to the controller.  
(3) As the controller keeps tracks of the location, 

MAC/IP addresses, and VNID of each VM in the 
datacenter, it replies to the virtual switch and installs 
the reactive flow rule for forwarding the packet. The 
flow rule instructs the virtual switch to replace the 
destination IP address of the VM packet with IP 
address of the physical server 1 that hosts VM2 and 
replace the destination MAC address with Virtual 
MAC (VMAC) address. This VMAC address is 
used to tell the virtual switch in the destination 
physical server 1 how to forward the received packet 
(see Section 3.2.2 for more details).  

(4) After rewriting the destination MAC and IP 
addresses, the virtual switch transmits the packet to 
the physical network through the trunk port.  

(5) When the virtual switch in the physical server 1 
receives the incoming packet, it knows that the 

packet should be forwarded to VM2 based on the 
VMAC in the destination MAC field. 

(6) The virtual switch in physical server 1 replaces the 
destination MAC and IP addresses in the received 
packet with the original MAC and IP of the VM2, 
and then it forwards the packet to the destination 
VM2.  

3.2.2 Addressing Scheme 

As it is highlighted earlier, OpenFlow has been adopted by 
a long list of vendors, and using Layer-3 (L3) instead of L2 
for forwarding traffic in the datacenter is common. 
Therefore, our solution can efficiently reduce the 
forwarding tables in the intermediate switches (i.e., Core, 
Aggregate, and ToR switches) of the datacenter physical 
network. In a fat-tree, which is the prevailing topology in 
datacenter networks, you can easily aggregate the 
forwarding entries in the switch table and reduce them to 
the number of output ports. For example, in a fat-tree 
topology with k = 4 such as the topology in Figure 3 (i.e., 
k is the switch port density in a fat-tree topology), the Core 
switch can have only four forwarding entries in its table, 
which is equal to the number of pods in the topology. Note 
that the Core switch receives/sends packets from/to one of 
the Aggregate switches in each pod, so it can forward the 
traffic based on a specific byte in the destination IP address 
according to a hierarchical addressing scheme as discussed 
below, which assists in reducing the forwarding entries in 
the switches’ tables. 

Traffic forwarding in datacenter networks: The 
proposed solution utilizes L3 for forwarding VMs traffic in 
the datacenter network. As discussed in Section 3.2.1, 
when VM sent a packet to another VM that is located in a 
different physical server, the destination IP address is 
replaced with the IP address of the physical server where 
the destination VM is running. Therefore, the proposed 
solution can exploit the characteristics of the fat-tree 
topology and leverage L3 hierarchical addressing scheme 
(see Figure 4). The fourth byte of the IP can be used to 
identify the datacenter Di while the third byte for the pod 
PD located in Di . The second byte is assigned to the ToR 
switch (i.e., the physical access switch) Sp that is located in 
pod PD , and the first byte for the physical server that is 
connected to Sp . For example, the IP address 10.1.2.1 is 
assigned to physical server 1 that is connected to ToR 
switch number 2, and the ToR switch 2 is located in the pod 
number 1 within datacenter number 10. 

This addressing scheme helps to reduce the size of the 
forwarding tables by aggregating the forwarding entries in 
a hierarchical fashion since it assigns certain bits of the IP 
as a location identifier in the multi-rooted tree with 
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multiple core switches, which in turn supports the load 
balancing techniques such as ECMP. Second, this scheme 
scales up to 16M physical host servers and 65K ToR 
switches in each datacenter. Note, the proposed addressing 
scheme is adjustable as the datacenter operators can assign 
more bits for the hosts or switches by reducing the bits of 
the datacenter or pod. 

 

Fig. 5 An example of flow rules for incoming packets to OVS in 
physical server 1 (port 1: trunk, port 2 and 3 for VMs). 

Virtual MAC address (VMAC): VMAC is a simplified 
method to instruct the virtual switch in the destination on 
how to forward the received packet from the trunk port. For 
example, in step 3 of Figure 3, the controller knows that the 
destination VM2 is connected to port 3 of OVS in physical 
server 1. Consequently, it installs a flow rule in the OVS of 
physical server 2 that rewrites the original destination 
MAC address of the outgoing frame with VMAC = 
“00.00.00. 00.00.03”. We used only the first byte of the 
VMAC to encode the switch port number where the 
destination VM is connected. Now, when the OVS in 
physical server 1 receives that packet, it replaces the 
destination MAC and IP fields in the incoming packet with 
the original MAC and IP addresses of VM2, and then it 
forwards the packet out of port 3. Thus, the header 
rewriting is transparent to VMs in the datacenter. Figure 5 
shows an example of flow rules for incoming packets into 
OVS of the physical server 1, which are installed 
proactively by the controller when VMs connected to the 
virtual switch as discussed earlier in Section 3.1 (i.e., in the 
hybrid approach, the virtual switch does not need to consult 
the controller for the incoming traffic). In this example, the 
port number one of the OVS is a trunk port while VM1 and 
VM2 are connected to ports two and three respectively. 
When the OVS receives a packet with VMAC = 
“00.00.00.00.00.03” in the destination MAC field, the 
second flow rule in Figure 5 instructs the OVS to change 
the destination MAC address to 52:54:00:af:87:2a, IP 
address to 192.168.0.1, and forward the packet out of port 
3 where the destination VM2 is connected. Note, in the 
hybrid flow setup, the controller deletes the proactive flow 
rules for the disconnected VMs to save the switch memory 
and keep the flow tables updated. 

3.2.3 ARP Processing 

The VMs in each virtual network need to learn the 
destination MAC addresses for their communications. In 
traditional networks, this would be achieved by the ARP 

(Address Resolution Protocol) broadcasts. In case the host 
does not have the MAC address that is associated with a 
certain IP address in its ARP cache, it will send ARP 
broadcast, which usually controlled by STP (Spanning Tree 
Protocol) to prevent loops and broadcast storm. However, 
in large datacenter networks where multipath routing is 
used for traffic load balancing, STP is discouraged as 
discussed in Section 1 since it eliminates forwarding over 
redundant links, and thus imposes restrictions on traffic 
engineering. In OpenFlow-enabled networks, ARP 
broadcasts can be processed differently. Since the network 
controller knows the MAC/IP addresses of each VM in the 
datacenter, the controller can reply to the ARP requests on 
behalf of the target VM. When the VM broadcasts an ARP 
request, the virtual switch, where the VM is connected, will 
intercept and send the ARP request to the controller via 
OFPT_PACKET_IN message. Then, the controller will 
generate an ARP reply and send it to the virtual switch via 
OFPT_PACKET_OUT message. This message instructs the 
switch to forward the ARP reply out of the same port that 
has received the ARP request, so the VM will receive the 
ARP reply.  

4. Implementation 

The proposed OpenFlow based edge-overlay solution is 
implemented as SDN application running on the Floodlight 
controller [27], which is an open source OpenFlow 
controller enhanced and supported by a large community 
of contributors from academia and industry. 

 

Fig. 6   Machine specifications. 

It is also compatible with a large number of OpenFlow 
physical and virtual switches.  Our application utilizes 
both StaticFlowPusher and the reactive Forwarding 
modules in the Floodlight controller to implement the 
aforementioned hybrid flow setup. 
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Fig. 7   UDP throughput. 

 

Fig. 8   UDP loss rate. 

The StaticFlowPusher module is used to proactively 
install and update the flow rules for incoming traffic into 
the virtual edge switches, which is Open vSwitch (OVS) in 
our experiments discussed below (i.e., the incoming traffic 
in our discussion denotes the traffic received through the 
trunk port in the virtual switch). These proactive flow rules 
are installed based on the information that is collected from 
TopologyManager and DeviceManager modules in the 
Floodlight controller. Also, the IOFMessageListener 
module of the Floodlight is used to create the VM profile, 
which maps each VM to its location in the datacenter (i.e., 
switch ID and the port number, where the VM is connected) 
and the MAC/IP addresses of the physical host server. This 
mapping information is used to supply the Forwarding 
module with the required data during the reactive flow 
setup for the outgoing traffic from the virtual switches.  
In our implementation, we modified the Forwarding 
module of the Floodlight to reactively install flow rules for 
the outgoing traffic only in the virtual ingress switch when 
the switch sends an OFPT_PACKET_IN message seeking 

forwarding instructions. Also, we eliminated the ARP 
request flooding methods that are embedded in the 
Forwarding module as ARP is handled directly by the 
modified controller, which generates ARP reply using 
OVS-specific instructions for ARP processing. The 
LinkDiscoveryManager module in the Floodlight 
controller was utilized to notify our SDN application of the 
changes in the network topology (i.e., added/removed links 
between switches). 

5.  Experimental Evaluation 

This section presents and discusses the performance 
evaluation results of the proposed OpenFlow edge-overlay 
solution, and it compares the solution performance to the 
tunneling protocols VXLAN, GRE, and STT.  

5.1 Experimental Environment  

This set of experiments was designed to assess the 
performance of the proposed solution in an emulated cloud 
environment. Therefore, we used three physical servers, 
and Kernel-based Virtual Machine(s) (KVM). Two servers 
were used for virtualization, server one and server two were 
hosting VM1 and VM2 respectively, and the third server 
was used as an OpenFlow controller. Figure 6 shows the 
machine specifications of the virtualized environment. The 
OVS, version 2.4, was used as the virtual switch (i.e., 
OpenFlow-compliant switch) in server one and server two, 
and it was configured with OVS Linux-kernel modules, 
which are included in the OVS distribution. All three 
servers were connected via Gigabit Ethernet switch. In the 
experiments, Iperf version 2.0.8 was used to send/receive 
UDP and TCP packets for 25 seconds in each run. The Iperf 
client was running in VM1 while the Iperf server in VM2. 
All the conducted experiments share the same environment.  

5.2 Performance Results  

The performance results of UDP throughput in the 
proposed edge-overlay are plotted in Figure 7 with the 
UDP throughput in VXLAN, STT, and GRE for 
comparison. Also, the optimal network throughput for VM-
to-VM communication is included as the upper 
performance bound in the experimental environment. Here, 
the VMs were bridged to the physical network (i.e., no 
headers rewriting or tunneling encapsulation). The x-axis 
in the performance plot is the size of the transmitted bytes 
in UDP packet (excluding headers) by Iperf client. The y-
axis is the throughput measured by the Iperf server.  
As it is shown in Figure 7, the STT performance was close 
to the optimal, while the proposed technique almost 
matched the optimal throughput. The overhead of the outer 
headers in STT does not affect its performance as it utilizes 
the offloading capabilities of NIC (i.e., TSO). 



IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 18 

 

Fig. 9   TCP throughput. 

 

Fig. 10   TCP – CPU usage of the receiver VM. 

In our approach, there are no outer headers, so there are no 
additional fragmentations, and with the support of OVS-
kernel module, the performance was high. Contrarily, the 
throughput of VXLAN and GRE were far below the 
optimal, especially for large data chunks in UDP. The 
VXLAN specification recommends setting MTU size to a 
value that can accommodate the outer headers and avoid 
fragmentation. In our experiment, we kept the default MTU 
(i.e., 1500 bytes) to test all protocols under the same 
conditions and obtain a fair comparison. Comparatively, 
Figure 8 shows the packet loss rate, which is high in 
VXLAN and GRE. Whereas TCP retransmits the missing 
fragments, UDP drops the whole packet when it misses 
fragments, especially when processes send packets rapidly 
as it has a limited frame buffer. In our experiments, the 
Iperf client in the sender side was configured to consume 
all the available bandwidth. Thus, Figure 8 shows the 
packet loss rate increases gradually with VXLAN, notably 
when data chunk is multiple of 1500 bytes. 

The TCP in our solution can use the offloading capabilities 
of NIC same as STT. Figure 9 shows the throughput of TCP 
in the proposed technique, which is even higher than STT 
and very close to the optimal throughput. Also, note that 
VXLAN and GRE have better throughput in Figure 9 than 
Figure 7 because of the TCP characteristics, but both have 
higher CPU usage, as shown in Figure 10, due to the 
interruption, which is associated with the number of 
fragments. On the other hand, our solution has less CPU 
usage similar to STT because both can utilize the standard 
TCP offloading in the NIC.    

6. Discussion 

Flow visibility: The design of the proposed solution allows 
the network controller to obtain a fine-grained flow 
visibility with less overhead that is achieved by the hybrid 
flow setup. Since the first packet of the outgoing flow will 
be sent to the controller, the controller can easily monitor 
VMs activities in the network. Therefore, our solution is 
compatible with SDN-based traffic engineering techniques 
[24] and security applications [23].   

Compatibility with network security tools: Unlike STT, 
which has difficulty traversing stateful firewalls because its 
encapsulation uses pseudo-TCP header, TCP traffic in our 
solution does not encounter such problem since it does not 
add any fake headers or even modify L4 fields. 

OpenFlow control messages: As reducing the number of 
the exchanged control messages helps to reduce the 
overhead on the centralized control plane, our proposed 
solution only consult the controller for outgoing traffic 
from the edge switches, but not for the incoming traffic. 
While this reduces the control messages as discussed in 
Section 3.1, it also reduces the number of forwarding 
entries in the switch table, compared to the pure proactive 
flow setup. For further scalability, distributed controller 
systems, such as ONOS [29] and OpenDaylight [30], can 
be easily integrated with our proposed virtualization 
technique since we do not restrict the architecture of the 
controller.   

Virtual network segments: The headers rewriting method 
in our solution provides unlimited scalability regarding the 
number of supported virtual networks, compared to the 
tunneling protocols (see Table 1). Also, the proposed 
hierarchical addressing scheme can accommodate millions 
of physical hosts and thousands of switches in each 
datacenter.  

Dual-stack network: The network virtualization 
principles in the proposed solution can also be applied to 
IPv6, which has been included in the OpenFlow 
specification since version 1.2, and it is supported by OVS. 

MTU size: Although adjusting the MTU size of VM or 
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enabling jumbo frame in the datacenter network can 
mitigate the impact of IP fragmentation, they introduce 
other issues. Reducing the MTU size could affect the 
network throughput of the VM and increase the operational 
cost. On the other hand, using jumbo frame requires that 
every forwarding element in the network must support the 
extended MTU size. In such case, the datacenter gateways 
would process a large volume of traffic and fragment every 
packet to the standard MTU-size when the VMs 
communicate with users on the Internet. 

7.  Related Work    

Mudigonda et al. [15] presented NetLord, which is a Linux 
kernel module that encapsulates the VM frame with 
additional MAC/IP headers. The outer MAC headers have 
the addresses of the end-hosts (i.e., or the software switch 
in the end-host) where the sender and receiver VMs are 
located, so the VM frame can be transferred over the L2 
network fabric without exposing the VM addresses to the 
underlying network. In NetLord, the outer IP addresses are 
used to identify the tenant virtual network and the VM, to 
which the frame belongs, at the destination host. This 
solution relies on packet encapsulation with additional 
headers like the tunneling protocols, which fundamentally 
increases the packet header space and causes packet 
fragmentation. Kawashima et al. [19] proposed a non-
tunneling overlay model for L2 cloud networks. Their 
model utilizes OpenFlow to rewrite the MAC addresses of 
the VM frame and replace them with the MAC addresses 
of the physical servers, where VMs are located, in the cloud. 
Their module utilizes VLAN tag as VM identifier in the 
host server. However, their technique does not hide the 
MAC addresses of the physical servers in the cloud from 
the tenants, which could expose the cloud network 
infrastructure to threats such as cloud cartography [32]. 
Koponen et al. [2] presented NVP (Network Virtualization 
Platform), which uses the STT tunneling protocol; 
discussed above, for network virtualization in datacenters. 
Chen et al. [8] proposed WL2, multi-tenant network 
architecture for datacenters that forward traffic based on L2 
addresses. However, similar to NVP, WL2 installs the flow 
rules proactively, and by default drops packets that do not 
match any of the installed rules. As discussed in Section 3, 
the proactive installation of the forwarding rules can reduce 
the overhead on the controller, but it does not support many 
of the SDN applications. Also, Guenender et al. [14] 
published non-encapsulation technique for network 
virtualization, which replaces the addresses of the VM 
packet with the addresses of the edge switches. 

Table 1:   Comparison of network virtualization solutions. 

 
They used the source TCP port number to encode a certain 
value that identifies the VM at the destination host. Their 
method focused only on TCP, and is not generic (e.g., does 
not support ICMP). Unlike previous works, our proposed 
edge-overlay is a generic network virtualization technique 
that supports a wide range of SDN applications running on 
the SDN controller. 

8.  Conclusion 

In this paper, we discussed the limitations of the overlay 
tunneling protocols that used in production datacenter 
networks, and presented an OpenFlow based edge-overlay 
solution for network virtualization in multi-tenant 
datacenter networks. Our solution utilizes OpenFlow 
features to reactively install flow rules at the edge switches 
for the initiated flows while minimizing the number of 
control messages. It adopts packet headers rewriting at the 
ingress edge switch in order to forward the packet over the 
physical network, and the original addresses are restored at 
the egress edge switch. Thus, it eliminates the limitations 
associated with encapsulation protocols and enables fine-
grained traffic control. We also evaluated the performance 
of our network virtualization technique, and the evaluation 
results show that our solution outperforms the overlay 
tunneling protocols.  
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