
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

10

Manuscript received September 5, 2017
Manuscript revised September 20, 2017

Network Virtualization with OpenFlow for Large-Scale
Datacenter Networks

Amer Aljaedi, C. Edward Chow, Abdelhamid Elgzil, Naif Alamri and Ismail Bahkali
Department of Computer Science, University of Colorado, Colorado Springs, CO 80918, USA

Abstract
Network virtualization is one of the key components for the multi-
tenancy services in the datacenter environment, where overlay
layer 2-in-layer 3 tunneling protocols have gained wide traction.
These overlay tunneling protocols assist in overcoming the
scalability challenges associated with the traditional network
virtualization primitives such as VLAN, and they enable tenants
to use their own IP/MAC addresses while ensuring traffic isolation.
However, the tunneling protocols have introduced compatibility
and performance issues. This paper discusses the issues of the
tunneling protocols and proposes a scalable edge-overlay solution
for network virtualization in multi-tenant datacenters. The
proposed solution leverages OpenFlow to control and forward the
tenants’ traffic without using additional encapsulation. Also, it
allows the tenants to use their IP/MAC addressing scheme. We
have implemented and evaluated the proposed solution, and the
results from the experiments demonstrate that our solution
provides higher performance than the tunneling protocols.
Key words:
OpenFlow; network virtualization; software-defined networking;
datacenter networks; flow rules; virtual addresses; flow setup

1. Introduction

The increasing demand for computing resources as utility
services has driven the growth of large datacenters, which
form the backbone of cloud computing infrastructures. The
evolution of datacenter virtualization has enabled the cloud
operators to efficiently utilize the resources of their
datacenters in serving a large number of clients and
deploying a wide range of online applications, which is also
reflected in their revenues growth [1]. While the
virtualization in the datacenters has become mature in
providing a sufficient abstraction layer for the computing
resources, the virtualization of the network infrastructure is
still behind [2]. A multi-tenant datacenter is considered one
of the most challenging networking environments since
network configurations change rapidly to accelerate
application deployment, optimise traffic routing, and satisfy
tenants’ requirements. The network architecture for large-
scale, multi-tenant datacenters should meet the following
fundamental requirements to accommodate a large number
of clients and effectively manage the shared networking
environment:
Mobility of virtual machine: The datacenter network
architecture should enable Virtual Machine (VM) live
migration to any physical server in the datacenter without

changing the addresses of the migrated VM. VM migration
can be essential for rebalancing the workload on the host
servers and optimising the provision of computing
resources. In such case, the migrated VM should keep its
IP/MAC addresses to preserve the running applications’
state at the VM. Therefore, the VM addresses should be
independent of its location in the datacenter network.

Decoupling of physical and virtual networks: The
address spaces of the tenants’ virtual networks should be
independent of the physical addressing scheme of the host
servers in the datacenter for two reasons. First, changing the
physical network topology (i.e., adding/removing switches)
should not interfere with the configurations of the tenant
virtual networks. Even changing the IP/MAC addresses of
host server should not affect VMs that are hosted on the
server. Second, the tenant address spaces may overlap as
they are isolated and managed independently. This
fundamental requirement allows the tenants to configure the
addresses of their VMs conveniently as they like.

Scaling of virtual network segments: Datacenters are
growing in size as a result of the increasing demand for
computing resources under the pay-as-you-go business
model. In such large-scale networks, proper planning is
critical for achieving the benefits of resource sharing and
accommodating the increasing number of tenants.
Therefore, scaling the virtual network segments has become
important as a considerable number of tenants subscribe to
the datacenter services on a daily basis. Any adopted
network virtualization technique in a large multi-tenant
datacenter should be able to serve millions of tenants [3].

Routing/forwarding tables of the switches: Although
some modular switches have large tables to handle
thousands of forwarding entries, it is still limited for large-
scale datacenters [4]. If the traffic forwarding in the
datacenter is determined based on the addresses of VMs,
then each switch in the underlying physical network needs
to handle a large number of forwarding entries in its table,
which significantly consumes the switch resources (i.e.,
TCAM memory). Therefore, the forwarding scheme that
will be deployed should assist in reducing the forwarding
tables for the entire network fabric (i.e., Rack, Aggregate,
and Core switches in the network topology) while enabling
any VMs to communicate with one another when access is
granted.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 11

 Satisfying the above requirements for large-scale
datacenter networks raises the importance of utilizing a
scalable network virtualization technique that can
accommodate a large number of tenants while reducing the
traffic forwarding/routing overhead on the core network.
Note that datacenter networks are often structured and
managed as a single logical network fabric that
interconnects all the datacenter resources together through
multi-rooted tree-like topology with multiple core switches
[5, 6]. Typically, datacenter networks have multiple paths
between each end pair of nodes to mitigate link failures and
load balance the traffic (e.g., using ECMP). Therefore, the
traditional Layer-2 (L2) switching is not suitable for large
virtualized datacenters due to the following reasons: First,
relying on the flat L2 addressing for forwarding traffic will
result in large and overlapping MAC-learning tables among
the intermediate L2 switches since the virtualized
infrastructure further increases the density of L2 addresses.
Second, L2 switching forwards traffic through spanning
tree(s) to control forwarding loops in the network (i.e., the
nature of L2 broadcast traffic), which consequently restricts
multi-path routing as redundant links that are not present in
the tree will not be used to carry traffic [7]. This would
result in wasting considerable proportion of network
capacity in load balancing the network traffic.
 On the other hand, the hierarchical routing based on
Layer-3 (L3) addresses is easier to manage, but it also
introduces limitations when deployed in datacenters. First,
IP adopts the location-aware addressing scheme, so the VM
mobility is bounded to its IP prefix (e.g., subnet). If the IP
address of the VM is determined by the location of its host
server or the Top-of-Rack switch, it will be difficult to
perform VM live migration across IP prefix boundaries [8,
9] as the IP address of the migrated VM will be changed
according to its new location; inevitably invalidating
existing network sessions. Second, in such restricted
routing schemes, the tenant has limited choices for the
network configurations of his VMs.
 Since using the traditional routing/forwarding in
modern datacenters would limit the network scalability,
flexibility, and manageability, the networking industry has
been seeking ways to virtualize the datacenter network
infrastructure and segregate the configuration of the tenant
virtual network from the datacenter physical network. Thus,
there has been a growing interest in overlay (L2-in-L3)
tunneling protocols such as VXLAN (Virtual eXtensible
Local Area Network, RFC 7348) [10], NVGRE (Network
Virtualization using Generic Routing Encapsulation, RFC
7637) [11], and STT (Stateless Transport Tunneling) [12],
which are well-known tunneling protocols for network
virtualization in large datacenters. However, these
tunneling protocols have introduced an additional overhead
on the underlying network and some performance issues
that we highlighted in the next section as motivations for
this research.

Fig. 1 The encapsulation formats for VXLAN, NVGRE and STT.

The rest of the paper is structured as follows. The design of
our solution, which avoids the limitations associated with
overlay tunneling protocols, is described in Section 3.
Section 4 introduces the implementation details. Section 5
presents the evaluation results of our solution, compared to
the tunneling protocols, and we discuss the merits and
broader aspects of our approach in Section 6. Section 7
elaborates on the related work. Finally, Section 8 concludes
this research.

2. Background and Motivations

Since the traditional network virtualization primitives such
as VLAN suffers scalability problems, including being
limited to 4096 virtual networks due to its 12-bit VLAN ID,
configuration overhead, and forwarding traffic through
spanning tree [6], the datacenter networking industry has
alternatively adopted overlay (L2-in-L3) tunneling
protocols. These protocols are based on NVO3 (Network
Virtualization Over Layer 3) framework (RFC 7365), which
defines a reference model capable of isolating not only
virtual networks from each other, but also separating them
from the underlying physical network. These tunneling
protocols encapsulate the whole Ethernet frame sent from
the VM in an IP packet in order to transmit the VM frame
to its destination over the physical datacenter network (i.e.,
the tunnel endpoints, which can be virtual switches in the
host servers, perform the frame encapsulation and
decapsulation). After the encapsulation, the new packet has
outer (encapsulation) headers, which carry the addresses of
the physical hosts where the sender/receiver VMs are
located. Thus, the addresses in the outer headers belong to
the datacenter physical network, while the addresses in the
inner headers (i.e., in the payload of the encapsulated
packet) belong to the tenant virtual network (i.e., virtual
addresses).
The encapsulation formats of the tunneling protocols are
shown in Figure 1. When the encapsulated VM frame
reaches the physical server that is hosting the destination
VM, the virtual switch will remove the encapsulation
headers and forward the frame to its destination based on
inner header and the virtual network identifier, which
specifies the virtual network the packet belongs to.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 12

Fig. 2 Network virtualization via overlay tunnelling protocols.

Unlike VLAN, these tunneling protocols support a large
number of virtual networks. The Virtual Network Identifier
(VNI) field in VXLAN header is 24-bit, so it supports over
16 million virtual networks. Similarly, the Virtual Subnet
Identifier (VSID) in NVGRE is 24-bit, while the context ID
field in STT header is 64-bit. Note that this overlay
tunneling technique extends the tenant virtual networks
across the physical host servers as shown in Figure 2, while
it reduces the routing information in the underlying physical
network (i.e., the VMs addresses are hidden from the
physical network). The datacenter underlying network is
unaware of the overlay tunneling process as it only routes
packets between the host servers based on the outer
encapsulation headers (e.g., destination IP). Also, this
tunneling process is transparent to the tenants’ virtual
networks, and effectively allows the tenants to have their
own IP/MAC address spaces.

2.1 Issues of Tunneling Protocols

While the overlay tunneling protocols discussed above can
reduce the need for switches in the network to learn all
addresses (i.e., VM addresses), they introduce another
overhead on the network. This section highlights the
overhead and the limitations of utilizing the aforementioned
tunneling protocols for forwarding and isolating the tenants’
traffic in datacenter networks.

Multicast overhead: VXLAN and NVGRE depend on
multicast-enabled networks for forwarding the tenants’
traffic (i.e., broadcast and unknown unicast destination),
which adds more complexity for troubleshooting the
network problems, after all, the underlying network has to
handle a large number of multicast trees [16]. Using IP
multicast as an approach for destination discovery will form
a large number of multicast trees in the datacenter network,
where each multicast group requires a state to be held in the
network layer. In addition, the edge of tunnels (e.g.,
VXLAN Tunnel End Point (VTEP) in the physical server)
has to handle a considerable number of multicast messages.

Nakagawa et al. [16] studied the multicast traffic in overlay
networks, and highlighted that relying on IGMP as a
dynamic registration protocol for managing the multicast
traffic in a multi-tenant datacenter will result in millions of
membership reports every second. Therefore, datacenter
network vendors start encouraging the usage of a
centralized control plane to manage the tunnels instead of
relying on multicasting for destination discovery [2, 17].

Fragmentation: VXLAN and NVGRE encapsulate the
VM Ethernet frame into UDP and GRE respectively. Such
encapsulation causes further fragmentations that are
processed by the end-hosts (i.e., most network cards support
TCP offloading). Usually, the VM fragments the packet into
standard MTU-size without considering the additional
encapsulation headers since the tunneling process is
transparent to VMs. Consequently, the frame is fragmented
again after the tunneling encapsulation, which affects the
network performance [18]. As this is a well-known issue
associated with the encapsulation protocols [20], the
VXLAN (RFC 7348) and NVGRE (RFC 7637)
specifications recommend setting the MTU (Maximum
Transmission Unit) size to a value that can accommodate
the outer encapsulation headers and avoid fragmentation
(e.g., reducing the standard MTU-size at the NICv of VM).
Consequently, the encapsulation headers impose additional
overhead in the traffic tunneling process.

Compatibility: The Stateless Transport Tunneling (STT)
protocol for network virtualization utilizes the standard
offloading capabilities in the network interface cards (i.e.,
TSO) to improve performance. However, since it uses a
TCP-like header in L4 of the outer headers (i.e., it does not
engage in the usual TCP 3-way handshake), it is treated as
an invalid packet by the traditional network security
appliances.

Load balancing: NVGRE uses GRE protocol for
encapsulation. As it does not have a standard transport layer
(TCP/UDP) header, it cannot provide ECMP hash naturally
for flow-level granularity distribution among multiple paths.
Therefore, it cannot utilize the standard ECMP-based load
balancing. The updated NVGRE (RFC 7637) specifications
suggested using customized ECMP that its hash is
calculated based on the outer IP fields and the entire Key
field (32 bits) in GRE header. The Key field is composed of
two parts: The first 24 bits are assigned to the Virtual Subnet
ID (VSID), and the second part is an 8-bit value, named
FlowID in the NVGRE specification, which can be used to
provide per-flow entropy for flows in the same VSID.
However, this requires a special load balancing technique
that understands the NVGRE header format, which should
be installed in the core network. Supporting such a special
load balancing technique in the industry is limited.

In this paper, we propose a fixable edge-overlay solution for
network virtualization in multi-tenant datacenters. Our

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 13

network virtualization technique leverages OpenFlow/SDN
(Software-Defined Networking) to isolate the tenants’
traffic and rewrite the addresses of the VM frames before
transmitting them through the datacenter physical network;
instead of encapsulating every VM frame. Thus, it
eliminates the limitations of tunneling protocols. The
proposed technique employs a centralized SDN controller
for mapping the tenant virtual networks to the physical
network and making decisions on traffic forwarding in the
datacenter network. The network state and intelligence are
(logically) centralized in SDN, and in turn facilities the
traffic control and forwarding for dynamic networking
environments, where the configurations of the end nodes
(i.e., virtual switches in host servers) frequently change as
users/applications come and go.

3. Network System Design

Before describing the design of our proposed edge-overlay
solution, we first outline the OpenFlow, which is a leading
SDN protocol in the networking industry and has been used
in large production datacenters [2, 21]. Under the SDN
paradigm, network operators/applications can specify high-
level network policies, which are automatically translated
into low-level rules/instructions and installed in network
switches by a logically centralized controller. Thus, the
SDN controller serves traffic routing applications in SDN-
enabled datacenters, besides observing and controlling the
network forwarding state.
The controller communicates with the switches via
OpenFlow, a standardized SDN protocol [13], which allows
the controller to instruct the switches and control the
network forwarding states in either a proactive or reactive
mode. In the latter, when an ingress OpenFlow switch
receives a new flow, it performs lookup for a matching flow
entry in its flow table (e.g., based on the headers of the
received packet and the ingress port) to forward that packet
to one or more egress port(s). If it does not find the matching
flow entry, it will forward the first packet of the flow (or
just its headers) to the controller via OFPT_PACKET_IN
message in seeking instructions on how to handle the
packets of such flow. Typically, there is a special flow entry
in the switch table called table-miss, which specifies how to
process packets unmatched by other flow entries in the table.
The controller, upon receiving the OFPT_PACKET_IN
message, will instruct the ingress switch and other related
switches that reside in the packet’s path on how to handle
the packets of such flow by adding a new flow entry in the
switches’ tables using OFPT_FLOW_MOD message. These
forwarding instructions are cached by the switches for some
period of time to handle upcoming packets at line rate.
 This reactive mode, also known as a reactive flow setup,
provides a fine-grained flow visibility and control for the
SDN controller since the controller decides the path for each
flow in this operational mode. On the other hand, the flow

rules can be installed proactively in the switches when the
routing application in the controller has computed all the
traffic routes in the network. The proactive mode can reduce
the overhead on the controller, but it basically resembles the
traditional networking, where the traffic is forwarded based
on the destination addresses since the specific flows are not
known in advance. Consequently, it limits the controller
capability of observing and controlling the traffic
dynamically in the network. Unlike the reactive flow setup;
which usually installs micro-flow rules (i.e., exact-match
flow rules) [22], the proactive approach installs mega-flow
rules for traffic forwarding. The mega-flow rule only
matches one or more fields of the packet headers with other
fields being wildcarded. Note that many micro-flow rules
can be covered by one mega-flow rule as the latter allows
rules aggregation by wildcard matching. For instance, flow
rules that forward TCP packets from host A, port:66, to
different destination ports in host B are micro-flow rules of
the mega-flow rule that forwards any packet from host A to
host B. Assume that H={h1, h2,..., hi} is the set of match
fields for the packet headers that are present in the flow
rule f

1
 . The flow rule f2 is considered a strict subset of f1

when the condition in Eqn. (1) is satisfied, where hi
1
∈ f1 ,

hi
2
∈ f2, and i ≠j.

f2⊂ f1 𝑖𝑖𝑖𝑖 (∃ j | hj
2⊂hj

1) ⋀ [∀i | hi
2⊆ hi

1] (1)

First, note that the wildcard match field (i.e., means any
value) in a flow rule is considered a superset of any defined
values in the corresponding field of the other flow rules.
Also, some match fields can be partially wildcarded (i.e.,
the address is associated with a bitmask to specify which
bits are wildcard). Therefore, if at least one matching field j
in f2 is a strict subset of the corresponding field in f1 while
the other fields i in f2 are equal (or subsets) of the
corresponding fields in f1, then f2⊂ f1 because every packet
that matches f2 will also match f1 . Therefore, mega-flow
rules can be used to reduce the number of flow entries in the
switch’s table, but they cripple many SDN applications that
depend on the reactive, fine-grained flow rule installation
for monitoring or correction operations such as traffic
engineering [24] and intrusion detection/prevention [23].
3.1 Hybrid Flow Setup

As discussed above, the reactive flow setup empowers the
SDN controller to observe and control the network traffic,
but it increases the workload on the controller (i.e., the
number of exchanged control messages between the
controller and network switches). For example, for each bi-
directional flow setup, there will be: 2NFLOW_MOD +
2PACKET_IN + 2PACKET_OUT transmitted control messages
between the controller and N number of switches along the
flow path

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 14

Fig. 3 Overview of the proposed OpenFlow based edge-overlay.

Consequently, the flow latency is increased along with the
increase of network diameter as we have presented in our
previous study [31], since each switch in the flow path has
to process the OFPT_FLOW_MOD message and install the flow
rules. Therefore, our proposed OpenFlow edge-overlay
technique emphasizes limiting the reactive control
messages while also reducing the entries in the switches’
tables. We achieved this by using hybrid flow setup. In the
hybrid approach, whenever a VM is migrated to another
location in the virtualized datacenter and connected to a
virtual switch, which is running on the physical host server,
the controller proactively installs flow rules in the virtual
switch for the incoming packets to that VM. Thus, the
reactive flow setup is used only for the outgoing traffic in
order to instruct the virtual switch to rewrite the headers of
the outgoing packets before transmitting them to their
destinations through the datacenter physical network (see
Section 3.2.1 for packet headers rewriting).
Moreover, since the physical topology of the datacenter
network changes occasionally, but far less frequently than
the tenants’ virtual networks, the controller can proactively
install flow rules in the intermediate switches of the
datacenter network for routing the traffic (i.e., in
virtualized datacenter, the first and last switches in the flow
path are the virtual switches that are running in the host
servers). These routing rules are installed based on routing
application in the controller, and they are only updated
when the datacenter physical topology has changed. Thus,
hybrid flow setup reduces the control messages to
2PACKET_IN + 2FLOW_MOD+PACKET_OUT for each bi-directional
flow. Also, the flow latency is reduced in this approach
since only the ingress virtual switch processes the
OFPT_FLOW_MOD message for each new flow. Note, the
OpenFlow controller knows the location of every VM in

the datacenter (i.e., virtual switch DPID, and the port
number where the VM is connected) as follows:
• When the datacenter controller (e.g., OpenStack)

configures and adds a new VM to the virtual switch, the
switch sends an OFPT_PORT_STATUS message to notify
the OpenFlow controller of the change. Also, when VM
is migrated to another host server, it sends gratuitous
ARP, which is intercepted and sent by the virtual switch
to the OpenFlow controller. Hence, the controller can
obtain MAC/IP and location of the migrated VM (i.e.,
Sender Protocol Address (SPA) field in ARP has the IP
address of the ARP sender).

• In addition, the OpenFlow controller can utilize the
Neutron plug-in of OpenStack to obtain information
about the VMs and their locations directly.

3.2 OpenFlow Based Edge-Overlay

This section presents the proposed edge-overlay for
network virtualization in a multi-tenant datacenter, and
elaborates on the rewriting techniques of the packets’
headers using OpenFlow. Also, the fundamental
forwarding components in the multi-tenant datacenter are
highlighted in our discussion.

Fig. 4 Hierarchical addressing scheme.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 15

Figure 3 presents an example for the deployment of our
solution. Our proposed edge-overlay technique only
requires that the datacenter physical switches should be
OpenFlow-enabled, which is easily attainable as OpenFlow
has been widely supported in the networking industry. Our
solution builds upon two observations. First, using Layer-
3 instead of Layer-2 of the packet headers for forwarding
traffic is commonly used in datacenter networks [24, 26].
Second, unlike the traditional routers, OpenFlow-enabled
devices forward packets without changing any fields of the
packet headers (e.g., source/destination MAC addresses
and TTL) unless explicitly instructed by the controller to
do so.

3.2.1 Rewriting the Packet Headers

In our edge-overlay solution, we utilize OpenFlow to
stretch the virtual network segments across the physical
servers in the datacenter instead of relying on the packet
encapsulation. Note that in virtualized datacenter, the first
and last switches that receive the VM packets are the virtual
switches in the physical host servers, e.g., OVS (Open
vSwitch) [28]. Hence, we can use OpenFlow to rewrite the
MAC/IP addresses of the tenant’s packet before sending it
to its destination through the physical datacenter network,
and restore the original addresses when this packet reaches
the virtual switch at the other end of the communication,
where the destination VM is connected. Here is the
workflow as shown in Figure 3:

(1) VM5 in physical server 2 sends a packet to VM2 in
physical server 1 (both VMs belong to Tenant B).

(2) The virtual switch in physical server 2 receives the
outgoing packet to VM2. As the virtual switch does
not know where the destination is located in the
datacenter network, it sends OFPT_PACKET_IN

message to the controller.
(3) As the controller keeps tracks of the location,

MAC/IP addresses, and VNID of each VM in the
datacenter, it replies to the virtual switch and installs
the reactive flow rule for forwarding the packet. The
flow rule instructs the virtual switch to replace the
destination IP address of the VM packet with IP
address of the physical server 1 that hosts VM2 and
replace the destination MAC address with Virtual
MAC (VMAC) address. This VMAC address is
used to tell the virtual switch in the destination
physical server 1 how to forward the received packet
(see Section 3.2.2 for more details).

(4) After rewriting the destination MAC and IP
addresses, the virtual switch transmits the packet to
the physical network through the trunk port.

(5) When the virtual switch in the physical server 1
receives the incoming packet, it knows that the

packet should be forwarded to VM2 based on the
VMAC in the destination MAC field.

(6) The virtual switch in physical server 1 replaces the
destination MAC and IP addresses in the received
packet with the original MAC and IP of the VM2,
and then it forwards the packet to the destination
VM2.

3.2.2 Addressing Scheme

As it is highlighted earlier, OpenFlow has been adopted by
a long list of vendors, and using Layer-3 (L3) instead of L2
for forwarding traffic in the datacenter is common.
Therefore, our solution can efficiently reduce the
forwarding tables in the intermediate switches (i.e., Core,
Aggregate, and ToR switches) of the datacenter physical
network. In a fat-tree, which is the prevailing topology in
datacenter networks, you can easily aggregate the
forwarding entries in the switch table and reduce them to
the number of output ports. For example, in a fat-tree
topology with k = 4 such as the topology in Figure 3 (i.e.,
k is the switch port density in a fat-tree topology), the Core
switch can have only four forwarding entries in its table,
which is equal to the number of pods in the topology. Note
that the Core switch receives/sends packets from/to one of
the Aggregate switches in each pod, so it can forward the
traffic based on a specific byte in the destination IP address
according to a hierarchical addressing scheme as discussed
below, which assists in reducing the forwarding entries in
the switches’ tables.

Traffic forwarding in datacenter networks: The
proposed solution utilizes L3 for forwarding VMs traffic in
the datacenter network. As discussed in Section 3.2.1,
when VM sent a packet to another VM that is located in a
different physical server, the destination IP address is
replaced with the IP address of the physical server where
the destination VM is running. Therefore, the proposed
solution can exploit the characteristics of the fat-tree
topology and leverage L3 hierarchical addressing scheme
(see Figure 4). The fourth byte of the IP can be used to
identify the datacenter Di while the third byte for the pod
PD located in Di . The second byte is assigned to the ToR
switch (i.e., the physical access switch) Sp that is located in
pod PD , and the first byte for the physical server that is
connected to Sp . For example, the IP address 10.1.2.1 is
assigned to physical server 1 that is connected to ToR
switch number 2, and the ToR switch 2 is located in the pod
number 1 within datacenter number 10.

This addressing scheme helps to reduce the size of the
forwarding tables by aggregating the forwarding entries in
a hierarchical fashion since it assigns certain bits of the IP
as a location identifier in the multi-rooted tree with

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 16

multiple core switches, which in turn supports the load
balancing techniques such as ECMP. Second, this scheme
scales up to 16M physical host servers and 65K ToR
switches in each datacenter. Note, the proposed addressing
scheme is adjustable as the datacenter operators can assign
more bits for the hosts or switches by reducing the bits of
the datacenter or pod.

Fig. 5 An example of flow rules for incoming packets to OVS in
physical server 1 (port 1: trunk, port 2 and 3 for VMs).

Virtual MAC address (VMAC): VMAC is a simplified
method to instruct the virtual switch in the destination on
how to forward the received packet from the trunk port. For
example, in step 3 of Figure 3, the controller knows that the
destination VM2 is connected to port 3 of OVS in physical
server 1. Consequently, it installs a flow rule in the OVS of
physical server 2 that rewrites the original destination
MAC address of the outgoing frame with VMAC =
“00.00.00. 00.00.03”. We used only the first byte of the
VMAC to encode the switch port number where the
destination VM is connected. Now, when the OVS in
physical server 1 receives that packet, it replaces the
destination MAC and IP fields in the incoming packet with
the original MAC and IP addresses of VM2, and then it
forwards the packet out of port 3. Thus, the header
rewriting is transparent to VMs in the datacenter. Figure 5
shows an example of flow rules for incoming packets into
OVS of the physical server 1, which are installed
proactively by the controller when VMs connected to the
virtual switch as discussed earlier in Section 3.1 (i.e., in the
hybrid approach, the virtual switch does not need to consult
the controller for the incoming traffic). In this example, the
port number one of the OVS is a trunk port while VM1 and
VM2 are connected to ports two and three respectively.
When the OVS receives a packet with VMAC =
“00.00.00.00.00.03” in the destination MAC field, the
second flow rule in Figure 5 instructs the OVS to change
the destination MAC address to 52:54:00:af:87:2a, IP
address to 192.168.0.1, and forward the packet out of port
3 where the destination VM2 is connected. Note, in the
hybrid flow setup, the controller deletes the proactive flow
rules for the disconnected VMs to save the switch memory
and keep the flow tables updated.

3.2.3 ARP Processing

The VMs in each virtual network need to learn the
destination MAC addresses for their communications. In
traditional networks, this would be achieved by the ARP

(Address Resolution Protocol) broadcasts. In case the host
does not have the MAC address that is associated with a
certain IP address in its ARP cache, it will send ARP
broadcast, which usually controlled by STP (Spanning Tree
Protocol) to prevent loops and broadcast storm. However,
in large datacenter networks where multipath routing is
used for traffic load balancing, STP is discouraged as
discussed in Section 1 since it eliminates forwarding over
redundant links, and thus imposes restrictions on traffic
engineering. In OpenFlow-enabled networks, ARP
broadcasts can be processed differently. Since the network
controller knows the MAC/IP addresses of each VM in the
datacenter, the controller can reply to the ARP requests on
behalf of the target VM. When the VM broadcasts an ARP
request, the virtual switch, where the VM is connected, will
intercept and send the ARP request to the controller via
OFPT_PACKET_IN message. Then, the controller will
generate an ARP reply and send it to the virtual switch via
OFPT_PACKET_OUT message. This message instructs the
switch to forward the ARP reply out of the same port that
has received the ARP request, so the VM will receive the
ARP reply.

4. Implementation

The proposed OpenFlow based edge-overlay solution is
implemented as SDN application running on the Floodlight
controller [27], which is an open source OpenFlow
controller enhanced and supported by a large community
of contributors from academia and industry.

Fig. 6 Machine specifications.

It is also compatible with a large number of OpenFlow
physical and virtual switches. Our application utilizes
both StaticFlowPusher and the reactive Forwarding
modules in the Floodlight controller to implement the
aforementioned hybrid flow setup.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 17

Fig. 7 UDP throughput.

Fig. 8 UDP loss rate.

The StaticFlowPusher module is used to proactively
install and update the flow rules for incoming traffic into
the virtual edge switches, which is Open vSwitch (OVS) in
our experiments discussed below (i.e., the incoming traffic
in our discussion denotes the traffic received through the
trunk port in the virtual switch). These proactive flow rules
are installed based on the information that is collected from
TopologyManager and DeviceManager modules in the
Floodlight controller. Also, the IOFMessageListener
module of the Floodlight is used to create the VM profile,
which maps each VM to its location in the datacenter (i.e.,
switch ID and the port number, where the VM is connected)
and the MAC/IP addresses of the physical host server. This
mapping information is used to supply the Forwarding
module with the required data during the reactive flow
setup for the outgoing traffic from the virtual switches.
In our implementation, we modified the Forwarding
module of the Floodlight to reactively install flow rules for
the outgoing traffic only in the virtual ingress switch when
the switch sends an OFPT_PACKET_IN message seeking

forwarding instructions. Also, we eliminated the ARP
request flooding methods that are embedded in the
Forwarding module as ARP is handled directly by the
modified controller, which generates ARP reply using
OVS-specific instructions for ARP processing. The
LinkDiscoveryManager module in the Floodlight
controller was utilized to notify our SDN application of the
changes in the network topology (i.e., added/removed links
between switches).

5. Experimental Evaluation

This section presents and discusses the performance
evaluation results of the proposed OpenFlow edge-overlay
solution, and it compares the solution performance to the
tunneling protocols VXLAN, GRE, and STT.

5.1 Experimental Environment

This set of experiments was designed to assess the
performance of the proposed solution in an emulated cloud
environment. Therefore, we used three physical servers,
and Kernel-based Virtual Machine(s) (KVM). Two servers
were used for virtualization, server one and server two were
hosting VM1 and VM2 respectively, and the third server
was used as an OpenFlow controller. Figure 6 shows the
machine specifications of the virtualized environment. The
OVS, version 2.4, was used as the virtual switch (i.e.,
OpenFlow-compliant switch) in server one and server two,
and it was configured with OVS Linux-kernel modules,
which are included in the OVS distribution. All three
servers were connected via Gigabit Ethernet switch. In the
experiments, Iperf version 2.0.8 was used to send/receive
UDP and TCP packets for 25 seconds in each run. The Iperf
client was running in VM1 while the Iperf server in VM2.
All the conducted experiments share the same environment.

5.2 Performance Results

The performance results of UDP throughput in the
proposed edge-overlay are plotted in Figure 7 with the
UDP throughput in VXLAN, STT, and GRE for
comparison. Also, the optimal network throughput for VM-
to-VM communication is included as the upper
performance bound in the experimental environment. Here,
the VMs were bridged to the physical network (i.e., no
headers rewriting or tunneling encapsulation). The x-axis
in the performance plot is the size of the transmitted bytes
in UDP packet (excluding headers) by Iperf client. The y-
axis is the throughput measured by the Iperf server.
As it is shown in Figure 7, the STT performance was close
to the optimal, while the proposed technique almost
matched the optimal throughput. The overhead of the outer
headers in STT does not affect its performance as it utilizes
the offloading capabilities of NIC (i.e., TSO).

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 18

Fig. 9 TCP throughput.

Fig. 10 TCP – CPU usage of the receiver VM.

In our approach, there are no outer headers, so there are no
additional fragmentations, and with the support of OVS-
kernel module, the performance was high. Contrarily, the
throughput of VXLAN and GRE were far below the
optimal, especially for large data chunks in UDP. The
VXLAN specification recommends setting MTU size to a
value that can accommodate the outer headers and avoid
fragmentation. In our experiment, we kept the default MTU
(i.e., 1500 bytes) to test all protocols under the same
conditions and obtain a fair comparison. Comparatively,
Figure 8 shows the packet loss rate, which is high in
VXLAN and GRE. Whereas TCP retransmits the missing
fragments, UDP drops the whole packet when it misses
fragments, especially when processes send packets rapidly
as it has a limited frame buffer. In our experiments, the
Iperf client in the sender side was configured to consume
all the available bandwidth. Thus, Figure 8 shows the
packet loss rate increases gradually with VXLAN, notably
when data chunk is multiple of 1500 bytes.

The TCP in our solution can use the offloading capabilities
of NIC same as STT. Figure 9 shows the throughput of TCP
in the proposed technique, which is even higher than STT
and very close to the optimal throughput. Also, note that
VXLAN and GRE have better throughput in Figure 9 than
Figure 7 because of the TCP characteristics, but both have
higher CPU usage, as shown in Figure 10, due to the
interruption, which is associated with the number of
fragments. On the other hand, our solution has less CPU
usage similar to STT because both can utilize the standard
TCP offloading in the NIC.

6. Discussion

Flow visibility: The design of the proposed solution allows
the network controller to obtain a fine-grained flow
visibility with less overhead that is achieved by the hybrid
flow setup. Since the first packet of the outgoing flow will
be sent to the controller, the controller can easily monitor
VMs activities in the network. Therefore, our solution is
compatible with SDN-based traffic engineering techniques
[24] and security applications [23].

Compatibility with network security tools: Unlike STT,
which has difficulty traversing stateful firewalls because its
encapsulation uses pseudo-TCP header, TCP traffic in our
solution does not encounter such problem since it does not
add any fake headers or even modify L4 fields.

OpenFlow control messages: As reducing the number of
the exchanged control messages helps to reduce the
overhead on the centralized control plane, our proposed
solution only consult the controller for outgoing traffic
from the edge switches, but not for the incoming traffic.
While this reduces the control messages as discussed in
Section 3.1, it also reduces the number of forwarding
entries in the switch table, compared to the pure proactive
flow setup. For further scalability, distributed controller
systems, such as ONOS [29] and OpenDaylight [30], can
be easily integrated with our proposed virtualization
technique since we do not restrict the architecture of the
controller.

Virtual network segments: The headers rewriting method
in our solution provides unlimited scalability regarding the
number of supported virtual networks, compared to the
tunneling protocols (see Table 1). Also, the proposed
hierarchical addressing scheme can accommodate millions
of physical hosts and thousands of switches in each
datacenter.

Dual-stack network: The network virtualization
principles in the proposed solution can also be applied to
IPv6, which has been included in the OpenFlow
specification since version 1.2, and it is supported by OVS.

MTU size: Although adjusting the MTU size of VM or

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 19

enabling jumbo frame in the datacenter network can
mitigate the impact of IP fragmentation, they introduce
other issues. Reducing the MTU size could affect the
network throughput of the VM and increase the operational
cost. On the other hand, using jumbo frame requires that
every forwarding element in the network must support the
extended MTU size. In such case, the datacenter gateways
would process a large volume of traffic and fragment every
packet to the standard MTU-size when the VMs
communicate with users on the Internet.

7. Related Work

Mudigonda et al. [15] presented NetLord, which is a Linux
kernel module that encapsulates the VM frame with
additional MAC/IP headers. The outer MAC headers have
the addresses of the end-hosts (i.e., or the software switch
in the end-host) where the sender and receiver VMs are
located, so the VM frame can be transferred over the L2
network fabric without exposing the VM addresses to the
underlying network. In NetLord, the outer IP addresses are
used to identify the tenant virtual network and the VM, to
which the frame belongs, at the destination host. This
solution relies on packet encapsulation with additional
headers like the tunneling protocols, which fundamentally
increases the packet header space and causes packet
fragmentation. Kawashima et al. [19] proposed a non-
tunneling overlay model for L2 cloud networks. Their
model utilizes OpenFlow to rewrite the MAC addresses of
the VM frame and replace them with the MAC addresses
of the physical servers, where VMs are located, in the cloud.
Their module utilizes VLAN tag as VM identifier in the
host server. However, their technique does not hide the
MAC addresses of the physical servers in the cloud from
the tenants, which could expose the cloud network
infrastructure to threats such as cloud cartography [32].
Koponen et al. [2] presented NVP (Network Virtualization
Platform), which uses the STT tunneling protocol;
discussed above, for network virtualization in datacenters.
Chen et al. [8] proposed WL2, multi-tenant network
architecture for datacenters that forward traffic based on L2
addresses. However, similar to NVP, WL2 installs the flow
rules proactively, and by default drops packets that do not
match any of the installed rules. As discussed in Section 3,
the proactive installation of the forwarding rules can reduce
the overhead on the controller, but it does not support many
of the SDN applications. Also, Guenender et al. [14]
published non-encapsulation technique for network
virtualization, which replaces the addresses of the VM
packet with the addresses of the edge switches.

Table 1: Comparison of network virtualization solutions.

They used the source TCP port number to encode a certain
value that identifies the VM at the destination host. Their
method focused only on TCP, and is not generic (e.g., does
not support ICMP). Unlike previous works, our proposed
edge-overlay is a generic network virtualization technique
that supports a wide range of SDN applications running on
the SDN controller.

8. Conclusion

In this paper, we discussed the limitations of the overlay
tunneling protocols that used in production datacenter
networks, and presented an OpenFlow based edge-overlay
solution for network virtualization in multi-tenant
datacenter networks. Our solution utilizes OpenFlow
features to reactively install flow rules at the edge switches
for the initiated flows while minimizing the number of
control messages. It adopts packet headers rewriting at the
ingress edge switch in order to forward the packet over the
physical network, and the original addresses are restored at
the egress edge switch. Thus, it eliminates the limitations
associated with encapsulation protocols and enables fine-
grained traffic control. We also evaluated the performance
of our network virtualization technique, and the evaluation
results show that our solution outperforms the overlay
tunneling protocols.

References

[1] Synergy Research Group, “2016 Review Shows $148 billion
Cloud Market Growing at 25% Annually,” [online].
https://www.srgresearch.com/articles/2016-review-shows-
148-billion-cloud-market-growing-25-annually (accessed
August 3, 2017).

[2] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda,
B. Fulton, I. Ganichev, J. Gross, N. Gude, P. Ingram, E.
Jackson, A. Lambeth, R. Lenglet, S. Li, A. Padmanabhan, J.
Pettit, B. Pfaff, R. Ramanathan, S. Shenker, A. Shieh, J.
Stribling, P. Thakkar, D. Wendlandt, A. Yip, and R. Zhang,
“Network virtualization in multi-tenant datacenters,” in Proc.
of the 11th USENIX NSDI’14, pp. 203-216, 2014

[3] K. Atkinson, G. Wong, and R. Ricci, “Operational
Experiences with Disk Imaging in a Multi-Tenant
Datacenter,” in Proc. of the 11th USENIX NSDI’14, pp. 217-
228, 2104.

[4] S. Hu, K. Chen, H. Wu, W. Bai, C. Lan, H. Wang, H. Zhao,
and C. Guo, “Explicit path control in commodity data

https://www.srgresearch.com/articles/2016-review-shows-148-billion-cloud-market-growing-25-annually
https://www.srgresearch.com/articles/2016-review-shows-148-billion-cloud-market-growing-25-annually

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 20

centers: Design and applications,” in Proc. of the 12th
USENIX NSDI’15, pp. 15-28, 2015.

[5] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable,
commodity data center network architecture,” in Proc. of the
ACM SIGCOMM, pp. 63-74, 2008.

[6] R. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat,
“Portland: A scalable fault-tolerant layer 2 data center
network fabric,” in Proc. of the ACM SIGCOMM, 2009.

[7] Greenberg, J. Hamilton, N. Jain, S. Kandula, C. Kim, P.
Lahiri, D. Maltz, P. Patel, and S. Sengupta, “VL2: A scalable
and flexible data center network,”, in Proc. of the ACM
SIGCOMM, 2009.

[8] Chen, C. Liu, P. Liu, B. Loo, and L. Ding, “A scalable multi-
datacenter layer-2 network architecture,” in Proc. of the 1st
SIGCOMM SOSR'15, 2015.

[9] Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machine,”
in Proc. of the 2nd USENIX NSDI, 2005.

[10] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger,
T. Sridhar, M. Bursell, C. Wright. Virtual eXtensible Local
Area Network (VXLAN): A framework for overlaying
virtualized layer 2 Networks over layer 3 networks, RFC
7348, 2014.

[11] P. Garg and Y. Wang. NVGRE: Network Virtualization
Using Generic Routing Encapsulation, RFC 7637, 2015.

[12] B. Davie and J. Gross. A Stateless Transport Tunneling
Protocol for Network Virtualization (STT). [online].
https://tools.ietf.org/html/draft-davie-stt-08

[13] Open Networking Foundation (ONF). OpenFlow Switch
Specification Version 1.5.

[14] S. Guenender, K. Barabash, Y. Ben-Itzhak, A. Levin, E.
Raichstein, and L. Schour, “NoEncap: Overlay Network
Virtualization with no Encapsulation Overheads,”. in Proc.
of the 1st SIGCOMM SOSR '15, 2015.

[15] J. Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes, and Y.
Pouffary, “Netlord: a scalable multi-tenant network
architecture for virtualized datacenters,” in Proc. of the ACM
SIGCOMM, 2011.

[16] Y. Nakagawa, K. Hyoudou and T. Shimizu, "A management
method of IP multicast in overlay networks using
OpenFlow," in Proc. of the 1st SIGCOMM HotSDN’12,
2012.

[17] Reference Design: VMware NSX for vSphere (NSX-V),
Network Virtualization Design Guide. [online].
https://communities.vmware.com/docs/DOC-27683

[18] R. Kawashima and H. Matsuo, “Performance Evaluation of
Non-Tunneling Edge-Overlay Model on 40GbE
Environment,” in Proc. of the IEEE 3rd Symposium on
Network Cloud Computing and Applications (NCCA '14),
2014.

[19] R. Kawashima and H. Matsuo, "Non-Tunneling Edge-
Overlay Model using OpenFlow for Cloud Datacenter
Networks," in Proc. of IEEE Cloud Computing Technology
and Science (CloudCom), 2013.

[20] R. Bonica, C. Pignataro, and J. Touch. A widely deployed
solution to the Generic Routing Encapsulation (GRE)
fragmentation problem, RFC 7588, 2015.

[21] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A.
Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U.
Hölzle, S. Stuart, and A. Vahdat, “B4: Experience with a

Globally-Deployed Software Defined WAN,” in Porc. of the
ACM SIGCOMM, 2013.

[22] Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen, “UMON:
Flexible and Fine Grained Traffic Monitoring in Open
vSwitch,” in Proc. of the 11th ACM CoNEXT '15, 2015.

[23] N. Huang, C. Wang, and I. Liao, “An OpenFlow-based
Collaborative Intrusion Prevention System for Cloud
Networking,” in Proc. of the IEEE International Conference
on Communication Software and Networks (ICCSN), 2015.

[24] M. Al-Fares, S. Radhakrishnan,B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: Dynamic Flow Scheduling for Data
Center Networks,” in Proc. of the 7th USENIX NSDI’10,
2010.

[25] F. Tso, G. Hamilton, R. Weber, C. Perkins, and D. Pezaros,
“Longer is better: Exploiting path diversity in data center
networks,” in Proc.of the IEEE 33rd International
Conference on Distributed Computing Systems (ICDCS),
2013.

[26] S. Hu, K. Chen, H. Wu, W. Bai, C. Lan, H. Wang, H. Zhao,
and C. Guo, “Explicit path control in commodity data
centers: Design and applications,” in Proc. of the 12th
USENIX NSDI’15, 2015.

[27] Floodlight Controller. [online].
http://www.projectfloodlight.org/floodlight/

[28] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J.
Rajahalme, J. Gross, A. Wang, J. Stringer, P. Shelar, K.
Amidon, and M. Casado, “The Design and Implementation
of Open vSwitch,” in the Proc. of the 12th USENIX
NSDI’15, 2015.

[29] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T.
Koide, B. Lantz, B. O'Connor, P. Radoslavov, W. Snow, and
G. Parulkar, “ONOS: towards an open, distributed SDN OS,”
in Proc. of the 3rd SIGCOMM HotSDN’14, 2014.

[30] J. Medved, R. Varga, A. Tkacik, and K. Gray,
“OpenDaylight: Towards a model-driven SDN controller
architecture,” in Proc. of the IEEE 15th International
Symposium on a World of Wireless, Mobile and Multimedia
Networks (WoWMoM), 2014.

[31] Aljaedi, C. E. Chow, and J. Rao, “Elastic edge-overlay
methods using OpenFlow for cloud networks,” in Proc. of
the 13th International Conference on Information
Technology: New Generations (ITNG), vol. 448, Springer,
pp 25-37, 2016.

[32] Z. Xu, H. Wang, and Z. Wu, “A measurement Study on Co-
residence Threat inside the Cloud,” in the Proc. of the 24th
USENIX Security Symposium, 2015.

https://tools.ietf.org/html/draft-davie-stt-08
https://communities.vmware.com/docs/DOC-27683
http://www.projectfloodlight.org/floodlight/

