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Summary 
Hard C-means (HCM) clustering and fuzzy C-means (FCM) 
clustering, a fuzzy extension of HCM, are widely used non-
hierarchical clustering techniques. Rough C-means (RCM), on the 
other hand, is a rough set-based extension of HCM that introduces 
the lower and upper areas of clusters representing the positive and 
possible memberships of objects to the clusters, respectively. In 
the context of RCM clustering, the problem exists of selecting one 
out of two counterbalancing methods, namely, Lingras and West’s 
RCM (LRCM) and Peters’ RCM (PRCM). In this paper, we 
propose generalized rough C-means (GRCM) clustering by re-
organizing notations of RCM and unifying LRCM and PRCM. 
GRCM is formulated as a hybrid model based on LRCM and 
PRCM. Therefore, GRCM can represent not only the conventional 
LRCM and PRCM, but also their intermediate mixed states by 
adjusting some parameters. We performed numerical experiments 
to compare the performances of the proposed method using 
various parameters. We observed the trade-off between the 
classification accuracy in the lower areas and the fraction of 
objects classified as the lower areas. Through this research, we 
experimentally conclude that GRCM enables to observe 
advantages and disadvantages of LRCM and PRCM. Furthermore, 
it provides good results by combining them. 
Keywords: 
Clustering, Rough Clustering, Hard C-Means, Rough C-Means, 
Rough Set Theory  

1. Introduction 

Hard C-means (HCM) clustering, also known as k-means 
clustering, is a renowned, widely used non-hierarchical 
clustering technique [1]. HCM assigns each object to one 
unique cluster using the crisp membership value. However, 
real-life data often include objects whose belongingness to 
clusters is ambiguous. To address ambiguous cluster 
memberships, soft computing approaches, such as fuzzy 
theory and rough set theory, are utilized. Fuzzy C-means 
(FCM) clustering was proposed as a fuzzy extension of 
HCM by relaxing the domain of membership values to the 
unit interval. It has been utilized as a flexible and robust 
method [2, 3].  
In addition to fuzzy theory, rough set theory is a promising 
soft computing approach that can handle the vagueness, 
uncertainty, inconsistency, and incompleteness inherent in 
data by considering rough approximations [4, 5, 6]. Rough 
set theory considers the certainty and uncertainty of 
belongingness by introducing the lower and upper 
approximations that represent the positive and possible 

memberships in a set of interest, respectively. Rough set-
based HCM is called rough C-means (RCM) clustering. In 
the k-means context, it is referred to as rough k-means 
(RKM) clustering. Lingras and West first established RCM 
(LRCM) by introducing the rough set theory to HCM by 
using the lower and upper areas, which are analogous 
regions of the lower and upper approximations, respectively 
[7]. Moreover, Peters proposed a refined version of LRCM 
(PRCM) by modifying the object assignment using the ratio 
of distances instead of the difference of distances. In 
addition, this approach employs a calculation method of 
cluster centers using the upper area instead of the boundary 
area [8].  
Furthermore, RCM has been extended in various ways. For 
example, it has been combined with fuzzy theory [9, 10, 11]. 
The above RCM-type methods are basically formulated 
algorithmically by following the HCM iterative procedure 
without considering explicit objective functions. 
Meanwhile, Endo et al. investigated various types of 
objective functions of RCM-type methods [12].  
In the context of RCM clustering, the problem exists of 
selecting one out of two counterbalancing methods, namely, 
LRCM and PRCM. In this paper, we thus propose a 
generalized rough C-means (GRCM) clustering method by 
re-organizing notations of RCM and unifying LRCM and 
PRCM. GRCM is formulated as a hybrid model based on 
LRCM and PRCM. Therefore, GRCM can represent not 
only the conventional LRCM and PRCM, but also their 
intermediate mixed states by adjusting some parameters. 
We conducted numerical experiments to compare the 
performances of the proposed method. We observed the 
trade-off of the classification accuracy in the lower areas 
and the fraction of objects classified as the lower areas.  
The remainder of this paper is organized as follows. Section 
2 provides preliminaries, including the conventional HCM, 
LRCM, and PRCM. In Section 3, a general formulation of 
RCM is proposed by re-organizing notations of RCM and 
unifying LRCM and PRCM. Section 4 provides numerical 
experiments and discussion of their results. Finally, Section 
5 presents conclusions.  

2. Preliminaries 

In this section, HCM, LRCM, and PRCM are explained as 
conventional methods. First, symbols that appear in this 
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paper are summarized as follows. Let 𝑈𝑈  be a set of 𝑛𝑛 
objects to be classified:  

𝑈𝑈 = {𝒙𝒙1, … ,𝒙𝒙𝑖𝑖 , … ,𝒙𝒙𝑛𝑛},                          (1) 

where each object is a point in an 𝑚𝑚-dimensional vector 
space:   

𝒙𝒙𝑖𝑖 = �𝑥𝑥𝑖𝑖1, … , 𝑥𝑥𝑖𝑖𝑖𝑖 , … , 𝑥𝑥𝑖𝑖𝑖𝑖� ∈ ℝ𝑚𝑚.              (2) 

Let 𝐶𝐶 be the number of clusters and 𝒃𝒃𝑐𝑐 be the representative 
point of cluster 𝑐𝑐 called the cluster center:  

𝒃𝒃𝑐𝑐 = �𝑏𝑏𝑐𝑐1, … , 𝑏𝑏𝑐𝑐𝑐𝑐  , … , 𝑏𝑏𝑐𝑐𝑐𝑐� ∈ ℝ𝑚𝑚.            (3) 

The distance between an object, 𝑖𝑖, and a cluster center, 𝒃𝒃𝑐𝑐 , 
is abbreviated as follows:  

𝑑𝑑𝑐𝑐𝑐𝑐 = ||𝒙𝒙𝑖𝑖 − 𝒃𝒃𝑐𝑐||.                            (4) 

The minimum distance between object 𝑖𝑖 to cluster centers 
is denoted by:  

𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = min
1≤𝑙𝑙≤𝐶𝐶

𝑑𝑑𝑙𝑙𝑙𝑙 .                         (5) 

2.1 Hard C-Means  

As mentioned above, HCM is one of the most renowned 
non-hierarchical clustering techniques [1]. Let 𝑢𝑢𝑐𝑐𝑐𝑐 ∈ {0, 1} 
be the crisp membership value of object 𝑖𝑖 in cluster 𝑐𝑐. After 
randomly initializing the cluster centers, HCM iteratively 
updates the assignments of the objects to their nearest 
clusters and the cluster centers by the following rules:  

𝑢𝑢𝑐𝑐𝑐𝑐 = �
1  �𝑐𝑐 = arg min

1≤𝑙𝑙≤𝐶𝐶
𝑑𝑑𝑙𝑙𝑙𝑙� ,

0             (otherwise).
                (6) 

𝒃𝒃𝑐𝑐 = ∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝒙𝒙𝑖𝑖
𝑛𝑛
𝑖𝑖=1
∑ 𝑢𝑢𝑐𝑐𝑐𝑐
𝑛𝑛
𝑖𝑖=1

.                              (7) 

2.2 Lingras and West’s Rough C-Means  

HCM represents the object memberships to the clusters by 
using crisp membership values in the Boolean index {0, 1}. 
It cannot represent uncertain memberships to the clusters. 
Rough set theory introduces two types of memberships to a 
subset, 𝑋𝑋 ⊆ 𝑈𝑈,  namely, the lower and upper 
approximations of 𝑋𝑋,  which represent the positive and 
possible belongingness to 𝑋𝑋, respectively [4, 5, 6]. Lingras 
and West firstly established LRCM as a rough extension of 

HCM by introducing the lower and upper areas of clusters, 
which are analogous regions of the lower and upper 
approximations, respectively [7]. LRCM is executed based 
on an HCM-like alternative update procedure that includes 
the object assignments to the approximate areas and the 
calculation of the cluster centers based on these areas. Let 
𝐴𝐴𝑐𝑐 ,𝐴𝐴𝑐𝑐, and 𝐴̂𝐴𝑐𝑐 be the lower, upper, and boundary areas of 
cluster 𝑐𝑐. In each iteration step, HCM assigns each object to 
one cluster (its nearest cluster), whereas LRCM assigns it to 
the lower and upper areas of the cluster to deal with the 
certainty and uncertainty of belongingness. In the object 
assignment process, the set 𝑇𝑇 of clusters to which object 𝑖𝑖 
possibly belongs, other than its nearest cluster ℎ,  is 
generated as follows:  

ℎ = arg min
1≤𝑙𝑙≤𝐶𝐶

𝑑𝑑𝑙𝑙𝑙𝑙 ,                    (8) 

𝑇𝑇 = { 𝑐𝑐 | 𝑑𝑑𝑐𝑐𝑐𝑐 − 𝑑𝑑ℎ𝑖𝑖 ≤ 𝛽𝛽 ∧ 𝑐𝑐 ≠ ℎ},              (9) 

where 𝛽𝛽 ≥ 0 is a threshold of the difference of distances. 
The memberships to the lower and upper areas of the 
clusters are determined in the following approach using 𝑇𝑇:  

1.  If 𝑇𝑇 ≠ ∅, then 𝒙𝒙𝑖𝑖 ∈ 𝐴𝐴ℎ and 𝒙𝒙𝑖𝑖 ∈ 𝐴𝐴𝑐𝑐, ∀𝑐𝑐 ∈ 𝑇𝑇.  

2.  Otherwise, if 𝑇𝑇 = ∅, 𝒙𝒙𝑖𝑖 ∈ 𝐴𝐴ℎ and  𝒙𝒙𝑖𝑖 ∈ 𝐴𝐴ℎ.  

Boundary area 𝐴̂𝐴𝑐𝑐  is calculated by 𝐴𝐴𝑐𝑐 ∖ 𝐴𝐴𝑐𝑐 .  LRCM 
calculates the cluster center, 𝒃𝒃𝑐𝑐 , by the convex combination 
of the centers of the lower and boundary areas of cluster 𝑐𝑐:  

𝒃𝒃𝑐𝑐 =

⎩
⎪
⎨

⎪
⎧

∑ 𝒙𝒙𝑖𝑖𝒙𝒙𝑖𝑖∈𝐴𝐴𝑐𝑐
|𝐴𝐴𝑐𝑐|

                             �|𝐴̂𝐴𝑐𝑐| = 0�,
∑ 𝒙𝒙𝑖𝑖𝒙𝒙𝑖𝑖∈𝐴𝐴�𝑐𝑐

|𝐴𝐴�𝑐𝑐|
                             �|𝐴𝐴𝑐𝑐| = 0�,

𝑤𝑤
∑ 𝒙𝒙𝑖𝑖𝒙𝒙𝑖𝑖∈𝐴𝐴𝑐𝑐

|𝐴𝐴𝑐𝑐|
+ 𝑤𝑤�

∑ 𝒙𝒙𝑖𝑖𝒙𝒙𝑖𝑖∈𝐴𝐴�𝑐𝑐
|𝐴𝐴�𝑐𝑐| 

  (otherwise),

       (10) 

where 𝑤𝑤,𝑤𝑤� ∈ [0, 1], 𝑠𝑠. 𝑡𝑡.  𝑤𝑤 + 𝑤𝑤� = 1  are the priority 
weights of the lower and boundary areas, respectively. 
LRCM proceeds with the iterative updates of 𝐴𝐴𝑐𝑐 ,𝐴𝐴𝑐𝑐, and 
𝒃𝒃𝑐𝑐 , as in HCM.  

2.3 Peters’ Rough C-Means  

Peters proposed a refined version of LRCM (PRCM) by 
modifying the generation process of the set, 𝑇𝑇, of possible 
clusters, other than the nearest cluster, and the calculation 
method of cluster centers [8]. PRCM generates 𝑇𝑇  in a 
similar manner as LRCM; however, it uses the ratio of 
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distances and its threshold 𝛼𝛼 ≥ 1 instead of the difference 
of distances:  

𝑇𝑇 = { 𝑐𝑐 |  𝑑𝑑𝑐𝑐𝑐𝑐
𝑑𝑑ℎ𝑖𝑖

≤ 𝛼𝛼 ∧ 𝑐𝑐 ≠ ℎ}.                 (11) 

By using the ratio of distances, the dependence on the data 
scale can be reduced. PRCM calculates cluster center 𝒃𝒃𝑐𝑐 by 
the convex combination of the centers of the lower and 
upper areas:  

𝒃𝒃𝑐𝑐 = �
  
∑ 𝒙𝒙𝑖𝑖𝒙𝒙𝑖𝑖∈𝐴𝐴𝑐𝑐

|𝐴𝐴𝑐𝑐|
                               �|𝐴𝐴𝑐𝑐| = 0�,

𝑤𝑤
∑ 𝒙𝒙𝑖𝑖𝒙𝒙𝑖𝑖∈𝐴𝐴𝑐𝑐

|𝐴𝐴𝑐𝑐|
+ 𝑤𝑤

∑ 𝒙𝒙𝑖𝑖𝒙𝒙𝑖𝑖∈𝐴𝐴𝑐𝑐
|𝐴𝐴𝑐𝑐|

  (otherwise),
          (12) 

where 𝑤𝑤,𝑤𝑤 ∈ [0, 1], 𝑠𝑠. 𝑡𝑡.  𝑤𝑤 + 𝑤𝑤 = 1  are the priority 
weights of the lower and upper areas, respectively. Peters 
additionally suggested an object assignment strategy in 
which each lower area has at least one object. This approach 
provides computational stability and can avoid the case 
dividing in Eq. (12). In this paper, we do not consider this 
strategy because it is considered just an implementation 
technique.  

3. General Formulation of Rough C-Means 

In the context of RCM clustering, the problem exists of 
selecting one out of two counterbalancing methods, namely, 
LRCM and PRCM. In this paper, we thus propose a 
generalized rough C-means (GRCM) clustering method that 
re-organizes notations of RCM and unifies LRCM and 
PRCM. In the context of HCM-type clustering, it is more 
convenient to use matrix-element forms of set structures. 
Therefore, we introduce matrix-element forms to represent 
the membership to areas of interest. Let 𝑢𝑢𝑐𝑐𝑐𝑐 ,𝑢𝑢𝑐𝑐𝑐𝑐 , and 𝑢𝑢�𝑐𝑐𝑐𝑐be 
the memberships of object 𝑖𝑖  to the lower, upper, and 
boundary areas of cluster 𝑐𝑐,  respectively. We rewrite 
LRCM and PRCM by using the matrix-element forms to 
improve the prospect of RCM.  

3.1 Unification of upper-area constructions  

First, we consider procedures of the object assignment to 
the upper area. LRCM determines the membership, 𝑢𝑢𝑐𝑐𝑐𝑐, of 
object 𝑖𝑖 to the upper area of cluster 𝑐𝑐 by using the difference 
of distances with its threshold 𝛽𝛽 ≥ 1. The membership of 
the upper area can be derived by:  

𝑢𝑢𝑐𝑐𝑐𝑐 = �1 �𝑑𝑑𝑐𝑐𝑐𝑐 − 𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝛽𝛽�,
0           (otherwise).

                 (13) 

By a transposition, this can be rewritten as:   

𝑢𝑢𝑐𝑐𝑐𝑐 = �1 �𝑑𝑑𝑐𝑐𝑐𝑐 ≤ 𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽�,
0           (otherwise).

                 (14) 

We can determine that the upper area is constructed so that 
an object is assigned not only to the nearest cluster, but also 
to relatively close clusters with reference to an allowable 
level increased by adding 𝛽𝛽. On the other hand, PRCM uses 
the ratio of distances with its threshold 𝛼𝛼 ≥ 1 :  

𝑢𝑢𝑐𝑐𝑐𝑐 = � 1 � 𝑑𝑑𝑐𝑐𝑐𝑐
𝑑𝑑𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝛼𝛼� ,

0  (otherwise).
                        (15) 

Clearing the fraction, this can be rewritten as:  

𝑢𝑢𝑐𝑐𝑐𝑐 = �1 �𝑑𝑑𝑐𝑐𝑐𝑐 ≤ 𝛼𝛼𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚�,
0     (otherwise).

                     (16) 

Eq. (16) is a stable form since it can avoid division by zero; 
i.e., it allows the case 𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 = 0. Then, object 𝑖𝑖 is a member 
of the upper area of the nearest cluster, which is at the same 
point with the object. Additionally, we can determine that 
the upper area is constructed, including relatively close 
clusters, with reference to an allowable level increased by 
multiplying 𝛼𝛼.  Considering that these upper areas are 
obtained with reference to allowable levels increased by 
addition or multiplication to the minimum distance to the 
cluster, we propose a hybrid version of the calculation of 
the upper area membership by unifying Eqs. (14) and (16) 
as follows:  

𝑢𝑢𝑐𝑐𝑐𝑐 = �1 �𝑑𝑑𝑐𝑐𝑐𝑐 ≤ 𝛼𝛼𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 + 𝛽𝛽�,
0             (otherwise).

                 (17) 

The allowable level is increased by both 𝛼𝛼 ≥ 1 and 𝛽𝛽 ≥ 0. 
This approach is a general constructing method built on 
LRCM and PRCM. Obviously, it becomes LRCM’s 
construction when 𝛼𝛼 = 1,  whereas it becomes PRCM’s 
construction when 𝛽𝛽 = 0.  Furthermore, it approaches 
HCM’s construction when 𝛼𝛼 = 1  and 𝛽𝛽 = 0.  In both 
LRCM and PRCM, if object 𝑖𝑖 is uniquely assigned to the 
upper area of cluster 𝑐𝑐, it should also be a member of the 
lower area of the cluster. Hence, the membership 𝑢𝑢𝑐𝑐𝑐𝑐  of 
object 𝑖𝑖 to the lower area of cluster 𝑐𝑐 can be derived by:  

𝑢𝑢𝑐𝑐𝑐𝑐 = �1 (𝑢𝑢𝑐𝑐𝑐𝑐 = 1 ∧ ∑ 𝑢𝑢𝑙𝑙𝑙𝑙𝐶𝐶
𝑙𝑙=1 = 1),

0                       (otherwise).
           (18) 

This represents the detection of uniquely assigned objects 
to the upper area. The membership of the boundary area is 
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calculated by subtracting the membership of the lower area 
from the membership of the upper area:  

𝑢𝑢�𝑐𝑐𝑐𝑐 = 𝑢𝑢𝑐𝑐𝑐𝑐 − 𝑢𝑢𝑐𝑐𝑐𝑐 .                             (19) 

3.2 Unification of cluster-center calculations  

Second, we consider cluster-center calculations. LRCM 
calculates the cluster center by the convex combination of 
the centers of the lower and boundary areas:  

𝒃𝒃𝑐𝑐 = 𝑤𝑤 ∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝒙𝒙𝑖𝑖
𝑛𝑛
𝑖𝑖=1
∑ 𝑢𝑢𝑐𝑐𝑐𝑐
𝑛𝑛
𝑖𝑖=1

+ 𝑤𝑤� ∑ 𝑢𝑢�𝑐𝑐𝑐𝑐𝒙𝒙𝑖𝑖
𝑛𝑛
𝑖𝑖=1
∑ 𝑢𝑢�𝑐𝑐𝑐𝑐
𝑛𝑛
𝑖𝑖=1

,                   (20) 

where 𝑤𝑤,𝑤𝑤� ∈ [0, 1], 𝑠𝑠. 𝑡𝑡.  𝑤𝑤 + 𝑤𝑤� = 1  are the priority 
weights of the lower and boundary areas, respectively. On 
the other hand, PRCM calculates it using the upper area 
instead of the boundary area:  

𝒃𝒃𝑐𝑐 = 𝑤𝑤 ∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝒙𝒙𝑖𝑖
𝑛𝑛
𝑖𝑖=1
∑ 𝑢𝑢𝑐𝑐𝑐𝑐
𝑛𝑛
𝑖𝑖=1

+ 𝑤𝑤 ∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝒙𝒙𝑖𝑖
𝑛𝑛
𝑖𝑖=1
∑ 𝑢𝑢𝑐𝑐𝑐𝑐
𝑛𝑛
𝑖𝑖=1

,                    (21) 

where 𝑤𝑤,𝑤𝑤 ∈ [0, 1], 𝑠𝑠. 𝑡𝑡.  𝑤𝑤 + 𝑤𝑤 = 1  are the priority 
weights of the lower and upper areas, respectively. Unifying 
Eqs. (20) and (21), we propose a hybrid version of the 
calculation of the cluster center as the convex combination 
of the centers of the three areas:  

𝒃𝒃𝑐𝑐 = 𝑤𝑤 ∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝒙𝒙𝑖𝑖
𝑛𝑛
𝑖𝑖=1
∑ 𝑢𝑢𝑐𝑐𝑐𝑐
𝑛𝑛
𝑖𝑖=1

+ 𝑤𝑤 ∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝒙𝒙𝑖𝑖
𝑛𝑛
𝑖𝑖=1
∑ 𝑢𝑢𝑐𝑐𝑐𝑐
𝑛𝑛
𝑖𝑖=1

+ 𝑤𝑤� ∑ 𝑢𝑢�𝑐𝑐𝑐𝑐𝒙𝒙𝑖𝑖
𝑛𝑛
𝑖𝑖=1
∑ 𝑢𝑢�𝑐𝑐𝑐𝑐
𝑛𝑛
𝑖𝑖=1

.         (22) 

where 𝑤𝑤,𝑤𝑤,𝑤𝑤� ∈ [0, 1], 𝑠𝑠. 𝑡𝑡.  𝑤𝑤 + 𝑤𝑤 + 𝑤𝑤� = 1  are the 
priority weights of the lower, upper, and boundary areas, 
respectively. If the boundary or lower area becomes empty, 
i.e., ∑ 𝑢𝑢�𝑐𝑐𝑐𝑐𝑛𝑛

𝑖𝑖=1 = 0  or ∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1 = 0 , we must remove the 

related terms and adjust the remaining weights so that their 
sum equals one and is the convex combination as follows, 
respectively:   

𝒃𝒃𝑐𝑐 =
1

𝑤𝑤 + 𝑤𝑤
�𝑤𝑤

∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝒙𝒙𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1

+ 𝑤𝑤
∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝒙𝒙𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1

� 

(∑ 𝑢𝑢�𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1 = 0),    (23) 

𝒃𝒃𝑐𝑐 =
1

𝑤𝑤 + 𝑤𝑤�
�𝑤𝑤

∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝒙𝒙𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1

+ 𝑤𝑤�
∑ 𝑢𝑢�𝑐𝑐𝑐𝑐𝒙𝒙𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑢𝑢�𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1

�     

�∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1 = 0�.    (24) 

Here, Eq. (19) implies that, if ∑ 𝑢𝑢�𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1 = 0, then 𝑢𝑢𝑐𝑐𝑐𝑐 = 𝑢𝑢𝑐𝑐𝑐𝑐. 

Additionally, if ∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1 = 0, then 𝑢𝑢�𝑐𝑐𝑐𝑐 = 𝑢𝑢𝑐𝑐𝑐𝑐 . Hence, Eqs. 

(23) and (24) are reduced to the same equation, that is, the 
center of the upper area:  

𝒃𝒃𝑐𝑐 =
∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝒙𝒙𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1

 

(∑ 𝑢𝑢�𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1 = 0),    (25) 

𝒃𝒃𝑐𝑐 =
∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝒙𝒙𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1

 

�∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1 = 0�.    (26) 

This fact implies that upper areas are stable and important 
for cluster-center calculations. The upper area is considered 
the most fundamental structure in RCM since it is normally 
non-empty and the lower and boundary areas are derived 
based on it.  
Summarizing the above discussion, the proposed 
calculation can be derived as follows:  

𝒃𝒃𝑐𝑐 =

⎩
⎪
⎪
⎨

⎪
⎪
⎧

∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝒙𝒙𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1

                                                      

                          �� 𝑢𝑢�𝑐𝑐𝑐𝑐
𝑛𝑛

𝑖𝑖=1
= 0 ∨� 𝑢𝑢𝑐𝑐𝑐𝑐

𝑛𝑛

𝑖𝑖=1
= 0� ,

𝑤𝑤
∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝒙𝒙𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1

+ 𝑤𝑤
∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝒙𝒙𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑢𝑢𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1

+ 𝑤𝑤�
∑ 𝑢𝑢�𝑐𝑐𝑐𝑐𝒙𝒙𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑢𝑢�𝑐𝑐𝑐𝑐𝑛𝑛
𝑖𝑖=1

                                                              (otherwise).

 

(27) 
𝑤𝑤,𝑤𝑤,𝑤𝑤� ≥ 0,                            (28) 

s. t.  𝑤𝑤 + 𝑤𝑤 + 𝑤𝑤� = 1.                        (29) 
The above calculation becomes that of LRCM when 𝑤𝑤 =
 0, whereas it becomes PRCM’s calculation when 𝑤𝑤� = 0. 
Actually, the top two equations of Eq. (10) can be reduced 
to the center of the upper area.  
Note that, in our opinion, since the incidence of the empty 
lower area can be regarded as an unexpected cluster 
disappearance, the setting of the roughness or the number 
of clusters should be reviewed after forced termination.  
3.3 Generalized Rough C-Means 
Finally, we propose the generalized rough C-means 
(GRCM) method by summarizing the above discussions. 
An algorithm of GRCM can be described as follows:   
Algorithm: Generalized Rough C-Means  
Step 1. Determine the number 𝐶𝐶  of clusters, roughness 
parameters 𝛼𝛼 ≥ 1  and  𝛽𝛽 ≥ 0,  and priority weights  
𝑤𝑤,𝑤𝑤 ∈ [0, 1], 𝑠𝑠. 𝑡𝑡.  𝑤𝑤 + 𝑤𝑤 ≤ 1 of the lower and upper areas, 
respectively.   
Step 2. Initialize cluster centers by random sampling 
without replacement from 𝑈𝑈.  
Step 3. Calculate 𝑢𝑢𝑐𝑐𝑐𝑐 by Eq. (17).  
Step 4. Calculate 𝑢𝑢𝑐𝑐𝑐𝑐 by Eq. (18).  
Step 5. Calculate 𝑢𝑢�𝑐𝑐𝑐𝑐 by Eq. (19). 
Step 6. Calculate 𝒃𝒃𝑐𝑐 by Eq. (27).   
Step 7. Repeat Steps 3 to 6 until the cluster assignments do 
not change.  

GRCM can be regarded as a general formulation and also a 
hybrid model based on LRCM and PRCM. GRCM becomes 
LRCM when 𝛼𝛼 =  1  and 𝑤𝑤 = 0 , whereas it becomes 
PRCM when 𝛽𝛽 = 0 and 𝑤𝑤� = 0. Furthermore, it approaches 
HCM when 𝛼𝛼 =  1 and 𝛽𝛽 = 0. In this case, the membership 
generator in Eq. (17) becomes 𝑑𝑑𝑐𝑐𝑐𝑐 ≤ 𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 . Moreover 𝑑𝑑𝑐𝑐𝑐𝑐 =
𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 , i.e., the assignment only to the nearest cluster. Note 
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that it becomes very close to HCM; however, it is slightly 
different. This is because if there exist two more clusters 
whose distances from object 𝑖𝑖  respectively match 𝑑𝑑𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 , 
their respective memberships to the upper area 
simultaneously become one at the same time. That is, it 
allows ∑ 𝑢𝑢�𝑙𝑙𝑙𝑙  𝐶𝐶

𝑙𝑙=1 ≥ 2 . Furthermore, ∑ 𝑢𝑢𝑙𝑙𝑙𝑙  𝐶𝐶
𝑙𝑙=1 = 0 . On the 

other hand, since HCM must satisfy ∑ 𝑢𝑢𝑙𝑙𝑙𝑙𝐶𝐶
𝑙𝑙=1 = 1, the tie-

break strategy is typically imposed.  

4. Numerical Experiments 

GRCM is formulated as a hybrid model based on LRCM 
and PRCM. GRCM can represent not only the conventional 
LRCM and PRCM, but also their intermediate mixed states 
by adjusting the four parameters 𝛼𝛼 ≥ 1,𝛽𝛽 ≥ 0,  
𝑤𝑤,𝑤𝑤 ∈ [0, 1], 𝑠𝑠. 𝑡𝑡.𝑤𝑤 + 𝑤𝑤 ≤1. 𝛼𝛼 and 𝛽𝛽  are parameters that 
change the roughness of clustering. The larger 𝛼𝛼 and 𝛽𝛽 tend 
to engender the smaller lower areas and the larger upper and 
boundary areas. By detecting and rejecting the boundary 
area, the classification accuracy in the lower area is 
expected to be improved. On the other hand, positively 
classified objects are unexpectedly reduced at the same time. 
Therefore, there exists the trade-off between the 
classification accuracy in the lower areas and the fraction of 
objects classified as the lower areas. To assess this trade-off, 
we introduce two performance indicators, namely, the 
purity and quality. Let the purity be the classification 
accuracy within the lower areas of the clusters:  

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =  ∑
max
𝑙𝑙∈𝐿𝐿

𝑢𝑢𝑐𝑐𝑐𝑐𝑢𝑢𝑙𝑙𝑙𝑙
∗

∑ 𝑢𝑢𝑐𝑐𝑐𝑐
𝑛𝑛
𝑖𝑖=1

𝐶𝐶
𝑐𝑐=1 ,                     (30) 

where 𝑢𝑢𝑙𝑙𝑙𝑙∗  is the membership value of object 𝑖𝑖  to a given 
class label, 𝑙𝑙 ∈ 𝐿𝐿. Let the quality be the fraction of objects 
classified as the lower areas of the clusters:   

𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 =  ∑ ∑ 𝑢𝑢𝑐𝑐𝑐𝑐
𝑛𝑛
𝑖𝑖=1
𝑛𝑛

𝐶𝐶
𝑐𝑐=1 .                         (31) 

We measure these indicators only if all lower areas are not 
empty. Moreover, we observe the trade-off by viewing 
scatter plots of the purity and quality by using the following 
three datasets retrieved from the UCI Machine Learning 
Repository [13].  
1. Iris dataset: 𝑛𝑛 =  150 objects are classified into 𝐶𝐶 =  3 
clusters.  
2. Wine dataset: 𝑛𝑛 =  178  objects are classified into  
𝐶𝐶 =  3 clusters.  
3. Breast Cancer Wisconsin (BCW) dataset: 𝑛𝑛 =  683  
objects (excluding objects that contain missing values) are 
classified into 𝐶𝐶 =  2 clusters.  
In each dataset, all dimensions are standardized to have the 
average of zero and the standard deviation of one.  
We comprehensively compared the effects of the patterns 
of the four parameters. We tested fifteen patterns of weights 
in combination with 𝑤𝑤,𝑤𝑤 =  {0.0, 0.25, 0.5, 0.75, 1.0} such 
that 𝑤𝑤 + 𝑤𝑤 ≤ 1.  𝑤𝑤�  is determined automatically by 1 −
𝑤𝑤 −𝑤𝑤.  In each pattern of weights, four patterns of  
𝛼𝛼 = {1.0, 1.5, 2.0, 2.5} are tested and represented by black 
cross marks, red circles, green triangles, and blue squares, 
respectively. Fixing the weights and 𝛼𝛼,  the performance 
(the purity and the quality) was measured by shifting 100 
patterns of 𝛽𝛽 ∈ [0.0, 4.0] (in the case of the BCW dataset, 
𝛽𝛽 ∈ [0.0, 2.0]) in the equal interval. The pair of the purity 
and the quality was calculated by the average values of 100 
trials and plotted in the scatter plot. Figs. 1, 2, and 3 shows 
the results of Iris, Wine, and BCW, respectively. We found 
a similar tendency in all the figures as we describe below. 
We can grasp the trade-off by viewing the scatter plots. The 
larger 𝛼𝛼  and 𝛽𝛽  tend to engender the larger purity and 
smaller quality. Patterns that realize a higher purity, 
maintaining the high quality, are better; i.e., patterns located 
in the upper right corner of subfigures are better. 



IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 34 

 

Figure 1: (Iris dataset) Comparison of the trade-off between the purity and quality with each pattern of parameters.  

As shown in Figs. 1, 2, and 3, the left-most subfigures (a), 
(f), (j), (m), and (o) represent 𝑤𝑤 = 0 , that is, LRCM’s 
calculation of cluster centers. On the other hand, diagonal 
subfigures (e), (i), (l), (n), and (o) represent 𝑤𝑤� = 0, that is, 
PRCM’s calculation of cluster centers. Proceeding from left 
to right, the impact 𝑤𝑤 of the upper area increases and states 
gradually change from LRCM to PRCM. GRCM can 
represent intermediate mixed states between LRCM and 
PRCM, such as subfigures (b), (c), (d), (g), (h), and (k).  

The top-left subfigure (a) represents clustering based on 
only the boundary region and shows no results. In the first 
place, the boundary areas often do not exist and are then 
incalculable. Even if the boundary areas exist, they tend to 
be located at a point greatly deviated from the original 
cluster centers. Furthermore, coincidences of the centers of 
the boundary areas of multiple clusters may occur and cause 
the empty lower areas and unexpected cluster 
disappearances. Therefore, impact 𝑤𝑤�  of the boundary areas  
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Figure 2: (Wine dataset) Comparison of the trade-off between the purity and quality with each pattern of parameters.    

may cause unstable results. Owing to this instability, in the 
upper-left subfigures, a larger 𝛼𝛼 produces no results.  

Intensifying the impact 𝑤𝑤  of the upper areas and 
approaching PRCM’s calculation of the cluster centers (see 
the subfigures in the order of (a)-(e), (f)-(i), (j)-(l), (m)-(n), 
respectively), the overall performances and stability tend to 
improve with suppressing the variance.  

As for the update of the cluster centers, we experimentally 
concluded that PRCM’s calculation which uses the upper 
area is better than LRCM’s calculation, which uses the 
boundary area. Therefore, we focused on PRCM’s strategy 
of the cluster center and observe the results in the order of 
(o), (n), (l), (i), and (e). In (o), the cluster centers are 
calculated based on only the lower areas. In this case, the 
calculations of LRCM and PRCM coincide. Therefore, it is 
easy to compare the effect of the roughness parameters 𝛼𝛼  
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Figure 3: (BCW dataset): Comparison of the trade-off between the purity and quality with each pattern of parameters.    

and β. A larger 𝛼𝛼 tends to engender a greater purity and 
lower quality. Furthermore, in each 𝛼𝛼 , such changes are 
promoted by increasing 𝛽𝛽. Proceeding from (o) to (e), the 
impact 𝑤𝑤  of the upper areas increases, and the results 
slightly improve with suppressing the variance. On the other 
hand, it becomes unstable when 𝛼𝛼 ≥ 1.5. Overall, smaller 
𝑤𝑤 ≤ 2.5  (upper subfigures) produces relatively unstable 
results if 𝛼𝛼 ≥ 1.5.  Moreover, smaller 𝑤𝑤  (upper left 
subfigures) tends to produce more unstable results. In (e), 
which is based on the assignment by the difference and the 

cluster center by the lower and upper areas, 𝛼𝛼 = 1 provides 
fairly good results, although there is some instability in a 
larger 𝛼𝛼. This is a unique state in GRCM and not realized in 
the conventional LRCM and PRCM.  

Experimentally, we concluded that PRCM’s calculation of 
the cluster center (𝑤𝑤� = 0) is better. Additionally, a larger  
𝑤𝑤 ≥ 0.5  and smaller 𝛼𝛼 ≤ 1.5  tend to provide relatively 
stable and better results. That is, the black cross marks and 
red triangles in (l), (i), and (e) are relatively good. These 
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states are derived by GRCM as a hybrid of the LRCM 
assignment and PRCM cluster center. Therefore, GRCM 
contributed to the discovery of the combined merits of 
LRCM and PRCM. Furthermore, GRCM enabled 
observation of the robustness of the upper area and the 
instability of the boundary area by generating the 
intermediate mixed states.  

5. Conclusion 

In this paper, we proposed a general formulation of RCM 
clustering by introducing matrix-element forms of the 
memberships of the areas and a hybrid version of the 
membership assignment to the upper area, as well as the 
calculation of the cluster center. The proposed GRCM can 
represent two counterbalanced methods, namely, Lingras 
and West’s RCM (LRCM) and Peters’ RCM (PRCM) by 
adjusting the parameters. Furthermore, GRCM can 
represent their intermediate mixed state because it is a 
hybrid model based on the other two methods. We carried 
out numerical experiments to compare the performance 
relating to the trade-off between the purity and quality. 
Through this research, we conclude the following:  

(1) GRCM can represent LRCM and PRCM, which are 
two counterbalanced RCM methods, in one unified 
method and thereby improve the prospect of RCM.  

(2) GRCM can make it easier to observe advantages and 
disadvantages of LRCM and PRCM.   

(3) GRCM may provide good results by combining the 
merits of LRCM and PRCM.  

While GRCM has more expressiveness for RCM principles, 
we must determine additional parameters. For future work, 
we intend to investigate the automatic determination of 
appropriate parameters in the given context.  
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