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Abstract 
The estimation of software development efforts has become a 
crucial activity in software project management. Due to this 
significance, a few models have been proposed so far to build a 
connection between the required efforts to be employed, and the 
software size, time schedule, budget and similar requirements. 
However, various holes and slips can still be noticed in software 
effort’s estimation processes due to the lack of enough data 
available in the initial stage of project’s lifecycle. In order to 
improve the accuracy of time estimation in the software industry, 
this work used NASA projects dataset to train and validate the 
proposed model, which is based on Feedforward Artificial Neural 
Network. Moreover, Dragonfly Algorithm was used to provide 
optimal training, which in consequence offered more enhanced 
and accurate software estimation model. Randomly selected 
project datasets were used to test the proposed model, which 
resulted in clear enhanced results in comparison to similar 
estimation models. Different performance criteria were used to 
validate and accept the hypothesis suggested by this paper that the 
proposed model could be used in predicting the efforts required 
for various types of software projects. 
Keywords 
effort estimation, software projects, software development, swarm 
intelligence, artificial intelligence 

1. Introduction  

Nowadays, there is an increasing trend of using effort 
estimation information, especially in the business sector. 
Recently, a huge development in the business sector has 
been noticed, which require accurate effort estimation 
during the initial stages of project’s lifecycle in order to 
ensure better results, failure avoidance and bid balance 
between the developer and the customer, which is known 
as size estimation paradox [1]. Software development cost 
and effort estimation are important tasks for software 
project management [2]. Prediction of software 
development effort is the critical and important task for the 
effective management of any complex and large software 
industry [3]. Therefore, effort estimation gains an 
increasing importance all over the world.  

Moreover, estimation for any industry is designed to save 
competitive managing balance between the quality and the 
cost of software [3]. Another important aspect of project 
management exists in avoiding project abortion and/or 
restarts. This may sometimes relate to effort estimation, but 
may also be due to organizational restructuring, changes in 
the market, customer orders, or related reasons [4].  

The accuracy and reliability of the prediction mechanisms 
are also important. The improvement in accuracy of 
estimation is a great challenge for software engineering and 
computer science in general [5]. Overestimation of effort 
can misguide the management team for excess use of 
manpower, and delay the project inappropriately, so that 
the cost of the project may rise to unacceptable high values. 
While underestimation of project effort puts extreme 
pressure on project’s team and makes it difficult for them 
to get a quality outcome in a stipulated time, which 
ultimately results in an unsuccessful project [6].  

Correct estimation of software effort is extremely difficult. 
There is a number of models have been proposed to 
construct a relationship between software size and effort, 
for instance, COnstructive COst MOdel (COCOMO), 
which was published in 1981 [7], by analyzing 63 software 
project data. Moreover, SLIM [8][9], Walston-Felix [10], 
Bailey-Basili [11], Doty [12], to name but a few, are 
software-effort estimation models, may not be able to 
provide accurate effort estimation, due to the shortage of 
enough project data in the initial stage of the project. 
Usually, less information is available before starting the 
project then the information increases while working in the 
project. Most of the times, more accurate effort estimation, 
can be obtained, after deep analysis of a large amount of 
project data [13]. The need for accurate effort estimation in 
the software industry is still a challenge. This estimation 
includes effort, cost, size and time. 

Reviewing the literature, most of the proposed solutions 
can be categorized into non-algorithmic and algorithmic 
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techniques [14]. The non-algorithmic techniques are 
learning-based while the algorithmic ones are described to 
be model-based. Although that the learning-based 
approaches consume more time for estimation and may 
needs more complicated processes compared to the 
algorithmic techniques, but on the other side, it has wide 
flexibility to deal with the new circumstances using various 
methods, which improve their adaptability to deal with the 
changes with a lower number of bugs and holes. In addition, 
it enables the experts to adjust these methods on the 
opposite of the algorithmic techniques where the models 
cannot be human interfered. However, using various and 
wider categories of parameters, the estimation can be 
achieved accurately at early stages [14]. 

Evolutionary neural networks, fuzzy and optimization 
algorithms are examples of non-algorithmic techniques. 
They are considered as a type of soft computing, which 
gained increasing interest from 1960 due to its human 
reasoning characteristics [15]. The importance of neural 
networks can be derived from its suitability for data 
generated from large projects [16]. As illustrated in Figure 
I, big projects are not easy to be estimated, although the 
needed precision is precise [14]. Due to this importance of 
such techniques, this work proposes a solution to the issue 
of software effort estimation based on Feedforward 
Artificial Neural Network (ANN) [17] models and 
Dragonfly Algorithm (DA) [18] as a training function. The 
proposed model evaluated using NASA93 [19] dataset and 
showed clearly enhanced results in comparison with 
previous works.  

The main purpose of this work is to improve the accuracy 
of the software effort estimation to mitigate the 
aforementioned problems that are resulted from the 
inaccurate overestimation or underestimation. The rest of 
this paper goes as the following; Section 2 reviews some 
related works in order to reach contributed design. Section 
3 summarizes the methodology that was followed during 
the work. While section 4 illustrates the proposed method, 
the experiment and the obtained results are analyzed in 
section 5. 

 

Fig. I Estimation Accuracy [14] 

2. Literature review 

The aforementioned problems of effort estimation for 
software projects have been addressed since the 1960s 
[20][21]. Since then, many researchers have been focused 
their efforts to innovate new models to solve those 
problems. These innovated models can be categorized into 
three categories; expert, formal and combined-based 
estimation models [22]. 

Expert-based estimation is the steps where the estimate is 
coming as a result of judgmental processes. Playing poker 
model, which is also called Scrum poker, is one of the 
expert estimation models. This model is a consensus-
based, gamified technique for speculation. It is mostly used 
to estimate effort and required size in software 
development. James Grenning initially developed this 
method in 2002, but it was popularized by Mike Cohn in 
the book Agile Estimating and Planning [23]. 

Numerous related works [6] [24] [25] show that the expert 
estimation is the dominant method used for software 
development effort estimation. The first estimation of 
software effort in the 1960s relied on expert judgment [26]. 
Different variations are then proposed, for instance, the 
estimate in Delphi expert is the mean value of different 
independent estimates formulated by the developers. The 
main drawback of expert-based estimation is the absence of 
the primary objective of accuracy. The field expert is the 
estimator, which means additional risks. Hence, [26] 
concluded that in some situations expert estimates are more 
likely to be accurate, where; similarly, models are more 
accurate due to situational and human biases. Expert-based 
estimation can be found as group approaches such as 
Wideband Delphi and Planning poker or Work breakdown 
structure (WBS-based approaches) [27]. 

On the other hand, formal estimation models are based on 
mechanical processes, and the formula is derived from 
historical data. The most common models based on this 
estimation are COCOMO [28], SLIM [29] [30] and SEER-
SEM [31] model. 

In COCOMO (Constructive Cost Model), which is a 
procedural software cost estimation model developed by 
Barry W. Boehm [28], the regression formula is fitted 
using historical projects data (63 projects for COCOMOII 
and 163 projects for COCOMO II) to derive the model 
parameters. COCOMO consists of a hierarchy of three 
increasingly detailed and accurate forms. The first 
level, Basic COCOMO is suitable for quick, early and 
rough order of magnitude estimates of software costs, but 
its accuracy is limited due to its lack of factors for 
differences in project attributes (Cost Drivers). 
Intermediate COCOMO considers these cost drivers 

https://en.wikipedia.org/wiki/Gamification
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/w/index.php?title=James_Grenning&action=edit&redlink=1
https://en.wikipedia.org/wiki/Mike_Cohn
https://en.wikipedia.org/wiki/Estimation_in_software_engineering
https://en.wikipedia.org/wiki/Barry_Boehm
https://en.wikipedia.org/wiki/Regression_analysis
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and details them for the influence of individual project 
phases. 

Regression techniques can result with linear models 
[32][33], nonlinear approaches such as neural networks, 
tree-based models such as CART [34][35] and case-based 
reasoning strategies (CBR) [36]. In a non-statistical 
comparison, compares artificial intelligence models: ANN 
and CBR with Ordinary Least Squares regression (OLS), 
and found that ANN and CBR outperformed OLS. 

However, formal estimation models can be: 1. parametric, 
such as COCOMO [28], SLIM [29] [30] and SEER-SEM 
[31], 2. Analogy-based [37] such as weighted micro 
function points, and 3. Size-based approaches such as 
Software Size Unit, Use Case Analysis, Function Point 
Analysis and Story points-based estimation. 

Finally, Combined-based estimation is produced based on a 
judgmental and mechanical combination of estimates from 
different sources. Combined-based estimation category 
shows that combination of estimates from independent 
sources, preferably applying different approaches, will on 
average improve the estimation accuracy [38] [39]. 

Biologically inspired models also have been targeted with 
many types of research; one of them is Artificial Neural 
Network (ANN), which is usually combined with other 
models. Neuro-Fuzzy with SEER-SEM model work [40] 
which combine both neuro-fuzzy models described in the 
patent US-7328202-B2 (Huang, Ho, Ren, and Capretz 
2008) and SEER-SEM Model shows that how biologically 
inspired models can be combined with another model to 
produce unique characteristics and performance 
improvements.  

Combined-based estimation can be 1. A mechanical 
combination such as the combination of the average of 
WBS-based approaches and analogy-based ones, and 2. 
Judgment combination such as the expert judgment based 
on estimates from a group estimation and algorithmic 
model. 

The best approach to be used depends on the requirements 
of the project and the strengths and drawbacks of the 
approaches, which means that no standard estimation 
approach can be used for all projects and development 
environments. At this point, the following proposed 
approach deploys the Feedforward ANN together with DA 
in order to provide more accurate effort estimation based 
on roughly presented inputs and outputs. 

3. methodology used 

The methodology that is followed during the pursuit of this 
work can be summarized as follow: 

a) Problem Definition 
Based on the analysis of software effort estimation issues, 
the problems that face the software effort estimation were 
analyzed. We find that the major problem is the changeable 
circumstances of the development environments, which 
results with uncertain estimation with respect to the needed 
cost, time, requirements and resources of the software 
project.  

The drawbacks of the cost overestimating will result with 
undesirable extravagance, which can cause the contract and 
jobs to be lost. Underestimating the cost will cause the 
project budget to exceed what is assigned by the project 
development entity and the quality to be lower than 
expected if it is completed within its assigned deadline. 

Achieving a real and accurate estimation of the software 
effort is the target of this work to avoid uncertain 
estimation drawbacks. The motivation behind this work is 
to hunt the best solution using swarms behavior of 
dragonfly algorithm during the training method in order to 
reach a stable neural network behavior later on. 

b) Method Selection and Design 
Choosing the most appropriate software effort-estimation 
technique was the core of this work. In this phase, all of the 
estimation models and methods are analyzed with respect 
to their strengths such as flexibility, availability and 
adaptability and their deficiencies such as complexity. At 
the end of this phase, it is found that the artificial neural 
networks trained by dragonfly algorithm will improve the 
currently available estimations.  

c) Dataset Selection 
Choosing the appropriate dataset to be used for our model 
verification is a key step of our work. The dataset must be 
carefully selected [41]. In our work, the NASA93 [19] 
dataset was selected due to its public availability and its 
good documentation. This dataset will be normalized first 
before it is used in the ANN model. 

d) Model Verification 
After method implementation, the achieved estimations are 
compared to COCOMO [7], BPNN [42] and RBNN [43] 
models based on Mean Square Error (MSE), Mean 
Magnitude of Relative Error (MMRE) and Mean Absolute 
Error (MAE) performance metrics. 

4. Background 

a) Software Effort Estimation 
Historically, software effort estimation has been addressed 
in literature since at least 1960s [44] [45]. Software cost 
estimation is required to develop or maintain software 
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according to uncertain, noisy and incomplete inputs. It 
includes the determination of one or more of 1. Effort 
(usually measured in person-hours or months), 2. Project 
duration (measured in calendar time) and 3. Cost 
(measured in dollars). 

Accurate software effort estimation is a demand for both 
customers and developers. Its importance stems from its 
use in proposals requests, contract transactions, time 
scheduling, control and monitoring [46]. The drawbacks of 
the cost overestimating will result with undesirable 
extravagance, which can cause the contract and jobs to be 
lost. Underestimating the cost will cause the project budget 
to exceed what is assigned by the project development 
entity and the quality to be lower than expected if it is 
completed within its assigned deadline. 

Although that the effort estimation models have an 
objectivity, repeatability, the presence of supporting 
sensitivity analysis, and the ability to calibrate to previous 
experience strengths [7], the required accuracy is becoming 
increasingly important as the development environment is 
changeable from time to time. The deadline for any project 
can be affected by the implementation due to this 
instability of circumstances, which leads to inaccurate 
estimation due to the outdated inputs.  

Different performance criterion metrics are used to 
evaluate the accuracy of estimation [47]. These metrics 
include: 

1. Mean Magnitude Relative Error (MMRE) [48]: it is 
appropriate for comparisons using datasets but it 
depends on the scale [49]. A model, which gives 
lower MMRE, is better than the model that has 
higher MMRE [50]. 

2. Mean Absolute Relative Error (MARE): The lower 
MARE is better [51] [52]. Moreover, each of the 
MMRE or MARE can be used on the dataset even 
under a complex trial and error heuristic evaluation 
[53]. 

3. Mean Absolute Error (MAE): MAE shows the 
difference between the mean value and the 
recorded value, which clarifies the variance of the 
used algorithm. However, for this criterion, the 
lower the better.  

4. Variance Absolute Relative Error (VARE): The 
models that provide lower VARE are better [54]. 

5. Balance Relative Error (BRE): decreasing the value 
of BRE enhances the efficiency of the model. 

6. Prediction (n): it is appropriate for underestimation 
cases. It is defined as the percentage of projects that 
has an absolute relative error less than n. A model 

which provides higher Pred (n) is more efficient 
than the ones with lower Pred (n) values [55]. 

7. Variance Accounted For (VAF): the higher the 
value of VAF the more satisfactory the model is. 

8. Median Magnitude of Relative Error (MdMRE): 
MdMRE [54] exhibits a similar pattern to MMRE 
but it is more likely to select the true model 
especially in the underestimation cases since it is 
less sensitive to extreme outliers. 

9. Root Mean Square Error (RMSE): It is appropriate 
when errors are measured using the same units. The 
criterion of good quality using this metric depends 
on the variables measurement criterion and the 
degree of forecasting precision [56], so there is no 
standard criterion of quality. 
 

b) Artificial Neural Networks 
Artificial Neural Network (ANN) is an approach of 
artificial intelligent utilized to generate mathematical 
models that mimic the structure of humans neural system 
[57]. In ANN, the model consists of layers; input, hidden 
and output. Each layer consists of a number of neurons. 
Each one of these neurons is a logistic function that takes 
inputs and produces outputs according to the function 
implemented in the neuron.  

The number of neurons in the input layer equals the 
number of features utilized in the experiment. For example, 
the number of input nodes in the input layer in our work is 
24 (as shown in Table VI). The number of nodes in the 
hidden layer is an optimization issue, but in our model, this 
parameter is coming by experiment. Different empirical 
values have been used in order to choose the best value that 
achieves results that are more accurate. In our model, it 
contains 1 hidden layer with 30 nodes.  Finally, the number 
of nodes in the output layer depends on the number of 
required output values. In our model, there is 2 output 
neuron, which represents the required code length and 
efforts to be able to implement the requested software 
project successfully. 

The mathematical model of the ANN consists of a 
hypothesis function , which is a summation of functions 
of the other layers. In this work, the following 
mathematical models demonstrate the utilized functions. 
Table I shows variable descriptions.  

   (1) 

    (2) 
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     (3) 

     (4) 

The input to the artificial neurons is numeric values (vector 
x) which are perceived with particular independent weights 
(vector ). To optimize variables or weights , DA 
algorithm has been utilized. In the next sections, we will 
describe how this algorithm was adopted to find the 
optimal values of these weights.  

c) Dragonfly Algorithm 
Dragonfly Algorithm (DA) is a relatively new intelligent 
swarm optimization algorithm proposed in 2015 [18]. The 
algorithm has been proposed based on dynamic and static 
swarming behaviors. DA consists mainly of two phases; 
exploration and exploitation. In exploration phase, 
dragonflies search for swarm or areas of interest. 
Subsequently, they create sub statistical swarms. These 
statistical swarms are used in exploration process to find 
the optimal solution of the problem.  

As illustrated in Figure II, dragonflies have five different 
flying behaviors. First, separation in which they fly away 
from each other to explore a vast area to generate sub 
swarms. Second, alignment in which they fly parallel to 
each other in army way to reach a globally optimal solution. 
Third, cohesion in which they meet at a certain point. The 
last two behaviors are an attraction to food and distraction 
from the enemy in which they try to search near better 
solutions and stop searching in far swarms.  

The optimization problem must be predefined carefully to 
utilize DA for optimization. In this work, our optimization 
problem is to find the global minimum value of cost 
function of ANN algorithm, which is defined in Equ.5 and 
its variables’ description are summarized in Table I. 

 

The optimization goal is to find values of  to minimize the 
cost function. In other words, we seek to find the global 
minimum value of this function, which in turn results in 
obtaining the most optimal values of weights for the used 
ANN model. 

DA starts to search for the global optimal minimum value 
of this function. However, to reduce searching or 
exploration time, a minimum value and a maximum value 
of the searching area should be given. Figure II shows the 
behavior of DA particles in looking for the optimal 
solutions. 

Subsequently, a number of dragonflies start to search the 
area and divide it into sub-areas for potential solutions. 
These potential solutions are implemented in the cost 
function. If the output of the function is higher than last 
round, these solutions  

are marked enemies and dragonflies will run away from 
them. If the output is smaller, the dragonflies will be 
attracted to this area to find better solutions. This process, 
which is summarized in algorithm I, continues for a 
number of iterations when most of the dragonflies cohesion 
in the same point. 

Feedforward ANN [58] can be trained using DA to 
approximate the needed effort accurately. In other words, 
the ANN flows in one direction starting from the inputs 
towards the outputs, which is the estimated effort, 
Personnel, Product, Platform and Project factors in our case. 
The optimal output values are chosen, after training the 
ANN by the DA as is illustrated in following sections. 

Table 1: description of variables 
M Number of training data 

 The hypothesis function 

 The real output of sample i in the training data 

 Optimization variables 

 Scaling variable 

 
(5) 
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Fig. II Dragonfly Behaviours [18] 

d) NASA93 Database 
In order to be able to develop an estimation model using 
DA training algorithm and Feedforward ANN method and 
evaluate it successfully, NASA93 dataset [19] was used, 
which was obtained from different project centers, 
collected by Jairus Hihn [59]. It is constituted of 93 flight 
or ground projects, and 24 cost drives to contribute to 
productivity, and then to cost. These cost drives consider 
Kitchenham analysis [60], which includes the subjective 
assessment of product, hardware, personnel and project 
attributes, and can take the values as in Table II. The 
classified cost drives are illustrated in Table I in Annex A. 

Algorithm 1: Dragonfly Algorithm (DA) 
 

1. Initialize Particles Xi (i = 1, 2, ..., n) 
2. Initialize Step vectors ΔXi (i = 1, 2, ..., n) 
3.         while not (stopping criteria) 
4.                   Measure the objectives for all particles 
5.                   Update solutions 
6.                   Update coefficients (a, c, e, f, s, w) 
7.                   Calculate the five behaviors 
8.                   Update neighbor list 
9.                   if a particle has a minimum of one 

neighbor particle 
10.                         Update velocity vector 
11.                         Update position vector 
12.                   else 
13.                         Greedy update position 
14.                   end if 
15.                   Validate the new position 
16.  end while 

 

Alg. I. Dragonfly Algorithm (DA) 

Moreover, the projects used (forg), their category (cat2), in 
addition to the projects, which were developed in centers 
(center), and the mode of software development (mode), 
are also considered and shown in Table I in Annex A. tool 
attribute enables selection the records about different 
development languages such as FORTRAN and year 
attribute enables selection records related to the 
development year, while project name means Project Name, 
From 8-22 attributes enables different COCOMOI 
designations such as BUS for business applications and 
SYS for system software. MODE attribute describes the 
development mode. It can take one of the following the 
values shown in Table II. While attributes equivphyskloc 
and act_effort are real numbers describe the required code 
length and effort respectively. 

It is worthy to say that COCOMOI is the first version of 
COCOMO model. It follows the waterfall process using the 
aforementioned imperative programming languages [61], 
which is evaluated using COCOMO dataset, which is 
adopted here for comparison purposes. In addition to its 
lineage. NASA93 is adopted in this work due to its wide 
use and evaluation in a wide range of organizations. Also, 
it has an available well documentation, which is supported 
by public domain and commercial tools. 

Table 2: cost drive values [60] 
Super Low SL 
Extra Low EL 
Very Low VL 

Low L 
Normal N 

High H 
Very High VH 
Extra High XH 
Super High SH 
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5. proposed approach 

In this work, Artificial Intelligent (AI) methods have been 
utilized to generate a prediction model to predict and 
estimate the required time to produce a new software or 
programming project. Artificial neural networks and the 
case-based reasoning [62] are potential approaches to 
artificial intelligence. While the case-based reasoning 
depends on exploiting the solutions of old problems that 
are similar to the current problem, the artificial neural 
networks can estimate accurately in case of distorted inputs 
or when the variables have complex relationships. To build 
the proposed model, supervised Feedforward Artificial 
Neural Network (ANN) model has been utilized. In 
supervised learning, we should have a preconceived idea 
about the input and output data. In other words, the features 
and the predicted effort values should be presented. 
Subsequently, they are used to train the mathematical 
model [63].  

To train this proposed mathematical model NASA93 
dataset has been utilized. The dataset consists of 93 
samples. Each sample has 24 cost drives (Features) and the 
estimated output values, as shown in table I in Annex A. 
These features have been normalized as the first step of the 
proposed approach. Equ.6 has been used in normalizing 
this data. Subsequently, these features have been fed into 
the ANN model as illustrated in Tables III and IV 

      (6) 
In order to train the ANN, several training algorithms were 
tested in order to have the lowest Mean Square Error 
(MSE), which results in the best overall system 
performance. FigureIII shows that DA has the lowest MSE 
in training the ANN for NASA93 dataset compared to 
Back Propagation Neural Network (BPNN) [42] which 
showed the heights MSE value of 0.04. Recurrent Neural 
Network (RNN) [64] with lower MSE value, but still not 
enough to be used to train the ANN. Artificial Bee Colony 
(ABC) [65] reached a good result with 0.005 MSE, and 
Genetic Algorithm (GA) [43], which was higher in MSE 
with 0.021. However, the DA reached the best MSE result 
with  which is a promising value, which 
indicates that most optimal weights and bias values for the 
ANN can be reached.  

While BPNN calculates the error at the output and 
distributes it back through the network layers, RNN uses 
loops for signal flow, which means the signal can flow 
backward or shift for a number of steps. On the other hand, 
ABC adopted swarm intelligence and is motivated by the 
intelligent behavior of honey bees, while GA adopted the 
Darwinian notion of natural selection. GAs search all 
possible solutions of the problem under study which are 
computed using their fitness. The best solutions will remain 

with the next generations and produce “offspring” which 
are variations of their parents. 

 

Fig. III ANN Training Methods Comparison 

e) Model Design 
After obtaining the above results, ANN was trained with 
DA using the specifications shown in Table V and VI, 
which are used for the selection process. Figure IV (below), 
summarizes the steps followed in the proposed method. 

 

Fig. IV Steps of The Proposed Method 

This model has two phases; the training phase and the 
testing phase. During the training phase, the selected 
training dataset will be initially normalized using Equ 6, in 
order to be able to be used with the ANN model. The 
normalized data then enters the ANN model, which is 
trained by the DA. Then the ANN can estimate the required 
efforts to complete the requested project successfully. The 
stopping criterion for this phase is tied to the MSE value of 
the ANN, in comparing the output values with the real 
targets. This criterion depends on the cost function value 
reached by the DA, which is required to be as close to zero 
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as possible. The entire model is illustrated in figure V. 
Moreover, the convergence curve for the used DA is shown 
in figure VI (below). 

Then comes the testing phase, which is the operation phase, 
where the proposed model can be used in real projects. In 
this phase, the randomly selected testing dataset is 
normalized also and then entered to the ANN, which in 
turn can provide accurate and quick estimation for the 
required efforts. 

Table 3: ANN Specifications 
Hidden Layers 1 

Nodes in hidden layer 30 
Number of training data 93 vectors 

Epoch 5500 
Training Dataset 70% of 93 vectors 

Validation Dataset 15% of 93 vectors 
Testing Dataset 15% of 93 vectors 

 

 

Fig V ANN-DA Model 

Table 4: ANN-DA configuration parameters 
Number of Nodes in Layer 1 24 

Number of hidden Layers 1 
Number of Nodes in hidden Layer 30 
Number of Nodes in output layer 2 

Iteration for DA 500 
Number of Agents 20 

Max DA value 500 
Min DA value -500 

6. evaluation experiments 

To measure the performance of the proposed model, three 
different models have been implemented and compared 
with our work. The first model is the COCOMOII model 
[7]. The second is the ANN model with backpropagation 
training process (BPNN). The last one is Radial Basis ANN 

(RBNN) model, which has been proposed in [43]. 
MATLAB has been used to implement these algorithms. 

To compare these algorithms with the proposed model, 
three performance metrics have been evaluated. In the next 
sub-section, these metrics will be demonstrated. 
Subsequently, the obtained results will be discussed later in 
this section. 

a) Performance Metrics 
Three software effort estimation performance metrics are 
utilized in this work, and they are described in the 
following: 

1. Mean Square Error (MSE): MSE is the output of 
the final value the cost function gets in the training 
process. It can be defined in Equ.7. The MSE 
should be as low as possible in order to consider 
the model. 

 
Where,  is the recorded output in the dataset,  is 
the estimated output obtained from the model and 

 is the number of training elements ‘93’. 
 

2. Mean Magnitude of Relative Error (MMRE): 
MMRE measures the Balance Relative Error (BRE) 
for a group of data. BRE is defined in Equ.8 and 
MMRE is defined in Equ.9. A model, which gives 
lower MMRE, is better than the model that has 
higher MMRE 

 

 
 

3. Mean Absolute Error (MAE) 
MAE is defined as the differences between the 
mean value and the recorded value. Equ.10 shows 
the MAE. The lower MARE is better 

  
 

b) Experimental Results 
After implementing and training the proposed model, 
randomly selected project dataset, representing 15% of the 
NASA93 Dataset were used to evaluate the proposed 
model and compare its results with the other models, using 

(7) 

(8) 

(9) 

(10) 
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the same testing dataset. However, important results were 
obtained, which evaluated the proposed model.  

Figure VII shows MSE of these algorithms. It can be 
observed from the figure that COCOMO recorded the 
highest error value. Since this algorithm has no 
optimization methods this result was expected. Moreover, 
we can observe that RBNN obtained results better than 
BPNN since RBNN attempts to memorize the training 
examples with only 44 training data; RBNN can memorize 
most of them. Finally, we can observe how DA attempted 
to minimize the cost function to around zero ( ). 

Figure VIII shows MMRE result. As mentioned MMRE 
value is calculated utilizing BRE. We can observe from the 
figure that BRE values of RBNN and BPNN are massive. 
Even if the differences between the predicted value and the 
real value are small, the division with small value will 
amplify it. We can observe that COCOMO MMRE result is 
better than BPNN and RBNN. However, DANN obtained 
the smallest value. 

Figure IX shows MAE of these algorithms. MAE depends 
on the mean value of all obtained outputs without any 
relation to the training values. If the data have vast variance, 
MAE will increase. We can observe that COCOMO has the 
highest variance of all algorithms and DANN obtained the 
lowest results. This means that the variance is small in the 
predicted outputs of DANN algorithm. 

After testing the proposed model using randomly selected 
testing dataset, the Receiver Operating Characteristic 
(ROC) curve was measured, after calculating the 
confusion-matrix for the obtained results, which was not 
shown in this paper, as it is summarized by the ROC curve 
in Figure X. However, this curve shows the trade-off 
between specificity and sensitivity, which looks represents 
more accurate results as it is close from the sensitivity 
access as well as the top border of the ROC space. This 
result validates the hypothesis of this work as the proposed 
model, which is constituted of Feedforward ANN trained 
by DA showed more accurate results and contribute to the 
field under study. 
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Fig. VI AD Convergence Curve 
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Fig. VII  Mean Square Error Results 
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Fig. VIII  Mean Magnitude of Relative Error Results 
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Fig. IX  Mean Absolute Error Results 
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Fig. X  Proposed Model ROC Curve 

7. Conclusions 

In this work, aiming to provide accurate software project 
efforts estimation, ANN was used with DA training 
algorithm. Various algorithms have been implemented and 
evaluated, such as; BPNN, RNN, ABC, GA, and DA, using 
NASA93 datasets. Software effort estimation, ANN, DA, 
and NASA93 are explained briefly. Moreover, the accuracy 
of the proposed approach, the used models, and their data 
fitness has been tested. 

DA found to provide the best performance in terms of MSE, 
thus it was used as training algorithm for the ANN, which 
provided enhanced results for software effort estimation. 
By evaluating the algorithms using NASA93 dataset and 
calculating the MSE, RBNN, MMRE and MAE values, it 
can be concluded from the MSE calculations that 

COCOMO has the highest error values. Moreover, it can be 
concluded that RBNN outperforms BPNN since RBNN 
attempted to memorized most of training data. For the DA, 
it attempted to minimize the cost function to reach zero. In 
terms of MMRE, the BRE values of RBNN and BPNN are 
massive regardless of the difference between the predicted 
and real values. However, in this situation, COCOMO 
MMRE outperformed BPNN and RBNN. However, DANN 
showed the best value. On the other hand, COCOMO 
showed the highest variance of other algorithms, in 
comparison with DANN, which showed the lowest results. 

From the obtained results of this study, it can be concluded 
that the proposed ANN-DA model provides more accurate 
software efforts’ estimation, in comparison with other 
models. However, it is an important step to apply this 
proposed model on a different dataset that contains a larger 
number of projects, in order to study the stability of this 
model. 
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Annex A 

Table I: NASA93 Descriptive Attributes 
Attribute 
Number Notation Description Contents 

1 recordnumber Unique ID real # 

2 projectname project name de,erb,gal,X,hst,slp,spl,Y 

3 cat2 Cagetory of 
application 

avionics, application_ground, avionicsmonitoring, 
batchdataprocessing, communications, datacapture, 

launchprocessing, missionplanning, monitor_control, 
operatingsystem, realdataprocessing, science, 

simulation, utility 

4 Forg flight or ground 
system f,g 

5 Center which nasa center? 
 1,2,3,4,5,6 

6 year year of development real # 

7 Mode development mode embedded,organic,semidetached 

8 rely cocomo attributes vl,l,n,h,vh,xh 

mailto:Jairus.M.Hihn@jpl.nasa.gov
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9 Data cocomo attributes vl,l,n,h,vh,xh 

10 Cplx cocomo attributes vl,l,n,h,vh,xh 

11 Time cocomo attributes vl,l,n,h,vh,xh 

12 Stor cocomo attributes vl,l,n,h,vh,xh 

13 Virt cocomo attributes vl,l,n,h,vh,xh 

14 turn cocomo attributes vl,l,n,h,vh,xh 

15 acap cocomo attributes vl,l,n,h,vh,xh 

16 Aexp cocomo attributes vl,l,n,h,vh,xh 

17 Pcap cocomo attributes vl,l,n,h,vh,xh 

18 Vexp cocomo attributes vl,l,n,h,vh,xh 

19 Lexp cocomo attributes vl,l,n,h,vh,xh 

20 Modp cocomo attributes vl,l,n,h,vh,xh 

21 Tool cocomo attributes vl,l,n,h,vh,xh 

22 Sced cocomo attributes vl,l,n,h,vh,xh 

23 equivphyskloc 
equivalent physical 
1000 lines of source 

code 
real # 

24 act_effort 

development effort in 
months (one month 

=152 hours and 
includes development 

and management 
hours) 

 

real # 
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