
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

108

Manuscript received September 5, 2017
Manuscript revised September 20, 2017

Dragonfly Estimator: A Hybrid Software Projects’ Efforts
Estimation Model using Artificial Neural Network and Dragonfly

Algorithm

Qais M. Yousef*

Computer Engineering department,
ATIT Academy, Amman, Jordan;

Yasmeen A. Alshaer
Project Management department,
ATIT Academy, Amman, Jordan;

Noor K. Alhammad
Computer Engineering department,
ATIT Academy, Amman, Jordan;

Abstract
The estimation of software development efforts has become a
crucial activity in software project management. Due to this
significance, a few models have been proposed so far to build a
connection between the required efforts to be employed, and the
software size, time schedule, budget and similar requirements.
However, various holes and slips can still be noticed in software
effort’s estimation processes due to the lack of enough data
available in the initial stage of project’s lifecycle. In order to
improve the accuracy of time estimation in the software industry,
this work used NASA projects dataset to train and validate the
proposed model, which is based on Feedforward Artificial Neural
Network. Moreover, Dragonfly Algorithm was used to provide
optimal training, which in consequence offered more enhanced
and accurate software estimation model. Randomly selected
project datasets were used to test the proposed model, which
resulted in clear enhanced results in comparison to similar
estimation models. Different performance criteria were used to
validate and accept the hypothesis suggested by this paper that the
proposed model could be used in predicting the efforts required
for various types of software projects.
Keywords
effort estimation, software projects, software development, swarm
intelligence, artificial intelligence

1. Introduction

Nowadays, there is an increasing trend of using effort
estimation information, especially in the business sector.
Recently, a huge development in the business sector has
been noticed, which require accurate effort estimation
during the initial stages of project’s lifecycle in order to
ensure better results, failure avoidance and bid balance
between the developer and the customer, which is known
as size estimation paradox [1]. Software development cost
and effort estimation are important tasks for software
project management [2]. Prediction of software
development effort is the critical and important task for the
effective management of any complex and large software
industry [3]. Therefore, effort estimation gains an
increasing importance all over the world.

Moreover, estimation for any industry is designed to save
competitive managing balance between the quality and the
cost of software [3]. Another important aspect of project
management exists in avoiding project abortion and/or
restarts. This may sometimes relate to effort estimation, but
may also be due to organizational restructuring, changes in
the market, customer orders, or related reasons [4].

The accuracy and reliability of the prediction mechanisms
are also important. The improvement in accuracy of
estimation is a great challenge for software engineering and
computer science in general [5]. Overestimation of effort
can misguide the management team for excess use of
manpower, and delay the project inappropriately, so that
the cost of the project may rise to unacceptable high values.
While underestimation of project effort puts extreme
pressure on project’s team and makes it difficult for them
to get a quality outcome in a stipulated time, which
ultimately results in an unsuccessful project [6].

Correct estimation of software effort is extremely difficult.
There is a number of models have been proposed to
construct a relationship between software size and effort,
for instance, COnstructive COst MOdel (COCOMO),
which was published in 1981 [7], by analyzing 63 software
project data. Moreover, SLIM [8][9], Walston-Felix [10],
Bailey-Basili [11], Doty [12], to name but a few, are
software-effort estimation models, may not be able to
provide accurate effort estimation, due to the shortage of
enough project data in the initial stage of the project.
Usually, less information is available before starting the
project then the information increases while working in the
project. Most of the times, more accurate effort estimation,
can be obtained, after deep analysis of a large amount of
project data [13]. The need for accurate effort estimation in
the software industry is still a challenge. This estimation
includes effort, cost, size and time.

Reviewing the literature, most of the proposed solutions
can be categorized into non-algorithmic and algorithmic

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

109

techniques [14]. The non-algorithmic techniques are
learning-based while the algorithmic ones are described to
be model-based. Although that the learning-based
approaches consume more time for estimation and may
needs more complicated processes compared to the
algorithmic techniques, but on the other side, it has wide
flexibility to deal with the new circumstances using various
methods, which improve their adaptability to deal with the
changes with a lower number of bugs and holes. In addition,
it enables the experts to adjust these methods on the
opposite of the algorithmic techniques where the models
cannot be human interfered. However, using various and
wider categories of parameters, the estimation can be
achieved accurately at early stages [14].

Evolutionary neural networks, fuzzy and optimization
algorithms are examples of non-algorithmic techniques.
They are considered as a type of soft computing, which
gained increasing interest from 1960 due to its human
reasoning characteristics [15]. The importance of neural
networks can be derived from its suitability for data
generated from large projects [16]. As illustrated in Figure
I, big projects are not easy to be estimated, although the
needed precision is precise [14]. Due to this importance of
such techniques, this work proposes a solution to the issue
of software effort estimation based on Feedforward
Artificial Neural Network (ANN) [17] models and
Dragonfly Algorithm (DA) [18] as a training function. The
proposed model evaluated using NASA93 [19] dataset and
showed clearly enhanced results in comparison with
previous works.

The main purpose of this work is to improve the accuracy
of the software effort estimation to mitigate the
aforementioned problems that are resulted from the
inaccurate overestimation or underestimation. The rest of
this paper goes as the following; Section 2 reviews some
related works in order to reach contributed design. Section
3 summarizes the methodology that was followed during
the work. While section 4 illustrates the proposed method,
the experiment and the obtained results are analyzed in
section 5.

Fig. I Estimation Accuracy [14]

2. Literature review

The aforementioned problems of effort estimation for
software projects have been addressed since the 1960s
[20][21]. Since then, many researchers have been focused
their efforts to innovate new models to solve those
problems. These innovated models can be categorized into
three categories; expert, formal and combined-based
estimation models [22].

Expert-based estimation is the steps where the estimate is
coming as a result of judgmental processes. Playing poker
model, which is also called Scrum poker, is one of the
expert estimation models. This model is a consensus-
based, gamified technique for speculation. It is mostly used
to estimate effort and required size in software
development. James Grenning initially developed this
method in 2002, but it was popularized by Mike Cohn in
the book Agile Estimating and Planning [23].

Numerous related works [6] [24] [25] show that the expert
estimation is the dominant method used for software
development effort estimation. The first estimation of
software effort in the 1960s relied on expert judgment [26].
Different variations are then proposed, for instance, the
estimate in Delphi expert is the mean value of different
independent estimates formulated by the developers. The
main drawback of expert-based estimation is the absence of
the primary objective of accuracy. The field expert is the
estimator, which means additional risks. Hence, [26]
concluded that in some situations expert estimates are more
likely to be accurate, where; similarly, models are more
accurate due to situational and human biases. Expert-based
estimation can be found as group approaches such as
Wideband Delphi and Planning poker or Work breakdown
structure (WBS-based approaches) [27].

On the other hand, formal estimation models are based on
mechanical processes, and the formula is derived from
historical data. The most common models based on this
estimation are COCOMO [28], SLIM [29] [30] and SEER-
SEM [31] model.

In COCOMO (Constructive Cost Model), which is a
procedural software cost estimation model developed by
Barry W. Boehm [28], the regression formula is fitted
using historical projects data (63 projects for COCOMOII
and 163 projects for COCOMO II) to derive the model
parameters. COCOMO consists of a hierarchy of three
increasingly detailed and accurate forms. The first
level, Basic COCOMO is suitable for quick, early and
rough order of magnitude estimates of software costs, but
its accuracy is limited due to its lack of factors for
differences in project attributes (Cost Drivers).
Intermediate COCOMO considers these cost drivers

https://en.wikipedia.org/wiki/Gamification
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/w/index.php?title=James_Grenning&action=edit&redlink=1
https://en.wikipedia.org/wiki/Mike_Cohn
https://en.wikipedia.org/wiki/Estimation_in_software_engineering
https://en.wikipedia.org/wiki/Barry_Boehm
https://en.wikipedia.org/wiki/Regression_analysis

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

110

and details them for the influence of individual project
phases.

Regression techniques can result with linear models
[32][33], nonlinear approaches such as neural networks,
tree-based models such as CART [34][35] and case-based
reasoning strategies (CBR) [36]. In a non-statistical
comparison, compares artificial intelligence models: ANN
and CBR with Ordinary Least Squares regression (OLS),
and found that ANN and CBR outperformed OLS.

However, formal estimation models can be: 1. parametric,
such as COCOMO [28], SLIM [29] [30] and SEER-SEM
[31], 2. Analogy-based [37] such as weighted micro
function points, and 3. Size-based approaches such as
Software Size Unit, Use Case Analysis, Function Point
Analysis and Story points-based estimation.

Finally, Combined-based estimation is produced based on a
judgmental and mechanical combination of estimates from
different sources. Combined-based estimation category
shows that combination of estimates from independent
sources, preferably applying different approaches, will on
average improve the estimation accuracy [38] [39].

Biologically inspired models also have been targeted with
many types of research; one of them is Artificial Neural
Network (ANN), which is usually combined with other
models. Neuro-Fuzzy with SEER-SEM model work [40]
which combine both neuro-fuzzy models described in the
patent US-7328202-B2 (Huang, Ho, Ren, and Capretz
2008) and SEER-SEM Model shows that how biologically
inspired models can be combined with another model to
produce unique characteristics and performance
improvements.

Combined-based estimation can be 1. A mechanical
combination such as the combination of the average of
WBS-based approaches and analogy-based ones, and 2.
Judgment combination such as the expert judgment based
on estimates from a group estimation and algorithmic
model.

The best approach to be used depends on the requirements
of the project and the strengths and drawbacks of the
approaches, which means that no standard estimation
approach can be used for all projects and development
environments. At this point, the following proposed
approach deploys the Feedforward ANN together with DA
in order to provide more accurate effort estimation based
on roughly presented inputs and outputs.

3. methodology used

The methodology that is followed during the pursuit of this
work can be summarized as follow:

a) Problem Definition
Based on the analysis of software effort estimation issues,
the problems that face the software effort estimation were
analyzed. We find that the major problem is the changeable
circumstances of the development environments, which
results with uncertain estimation with respect to the needed
cost, time, requirements and resources of the software
project.

The drawbacks of the cost overestimating will result with
undesirable extravagance, which can cause the contract and
jobs to be lost. Underestimating the cost will cause the
project budget to exceed what is assigned by the project
development entity and the quality to be lower than
expected if it is completed within its assigned deadline.

Achieving a real and accurate estimation of the software
effort is the target of this work to avoid uncertain
estimation drawbacks. The motivation behind this work is
to hunt the best solution using swarms behavior of
dragonfly algorithm during the training method in order to
reach a stable neural network behavior later on.

b) Method Selection and Design
Choosing the most appropriate software effort-estimation
technique was the core of this work. In this phase, all of the
estimation models and methods are analyzed with respect
to their strengths such as flexibility, availability and
adaptability and their deficiencies such as complexity. At
the end of this phase, it is found that the artificial neural
networks trained by dragonfly algorithm will improve the
currently available estimations.

c) Dataset Selection
Choosing the appropriate dataset to be used for our model
verification is a key step of our work. The dataset must be
carefully selected [41]. In our work, the NASA93 [19]
dataset was selected due to its public availability and its
good documentation. This dataset will be normalized first
before it is used in the ANN model.

d) Model Verification
After method implementation, the achieved estimations are
compared to COCOMO [7], BPNN [42] and RBNN [43]
models based on Mean Square Error (MSE), Mean
Magnitude of Relative Error (MMRE) and Mean Absolute
Error (MAE) performance metrics.

4. Background

a) Software Effort Estimation
Historically, software effort estimation has been addressed
in literature since at least 1960s [44] [45]. Software cost
estimation is required to develop or maintain software

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

111

according to uncertain, noisy and incomplete inputs. It
includes the determination of one or more of 1. Effort
(usually measured in person-hours or months), 2. Project
duration (measured in calendar time) and 3. Cost
(measured in dollars).

Accurate software effort estimation is a demand for both
customers and developers. Its importance stems from its
use in proposals requests, contract transactions, time
scheduling, control and monitoring [46]. The drawbacks of
the cost overestimating will result with undesirable
extravagance, which can cause the contract and jobs to be
lost. Underestimating the cost will cause the project budget
to exceed what is assigned by the project development
entity and the quality to be lower than expected if it is
completed within its assigned deadline.

Although that the effort estimation models have an
objectivity, repeatability, the presence of supporting
sensitivity analysis, and the ability to calibrate to previous
experience strengths [7], the required accuracy is becoming
increasingly important as the development environment is
changeable from time to time. The deadline for any project
can be affected by the implementation due to this
instability of circumstances, which leads to inaccurate
estimation due to the outdated inputs.

Different performance criterion metrics are used to
evaluate the accuracy of estimation [47]. These metrics
include:

1. Mean Magnitude Relative Error (MMRE) [48]: it is
appropriate for comparisons using datasets but it
depends on the scale [49]. A model, which gives
lower MMRE, is better than the model that has
higher MMRE [50].

2. Mean Absolute Relative Error (MARE): The lower
MARE is better [51] [52]. Moreover, each of the
MMRE or MARE can be used on the dataset even
under a complex trial and error heuristic evaluation
[53].

3. Mean Absolute Error (MAE): MAE shows the
difference between the mean value and the
recorded value, which clarifies the variance of the
used algorithm. However, for this criterion, the
lower the better.

4. Variance Absolute Relative Error (VARE): The
models that provide lower VARE are better [54].

5. Balance Relative Error (BRE): decreasing the value
of BRE enhances the efficiency of the model.

6. Prediction (n): it is appropriate for underestimation
cases. It is defined as the percentage of projects that
has an absolute relative error less than n. A model

which provides higher Pred (n) is more efficient
than the ones with lower Pred (n) values [55].

7. Variance Accounted For (VAF): the higher the
value of VAF the more satisfactory the model is.

8. Median Magnitude of Relative Error (MdMRE):
MdMRE [54] exhibits a similar pattern to MMRE
but it is more likely to select the true model
especially in the underestimation cases since it is
less sensitive to extreme outliers.

9. Root Mean Square Error (RMSE): It is appropriate
when errors are measured using the same units. The
criterion of good quality using this metric depends
on the variables measurement criterion and the
degree of forecasting precision [56], so there is no
standard criterion of quality.

b) Artificial Neural Networks
Artificial Neural Network (ANN) is an approach of
artificial intelligent utilized to generate mathematical
models that mimic the structure of humans neural system
[57]. In ANN, the model consists of layers; input, hidden
and output. Each layer consists of a number of neurons.
Each one of these neurons is a logistic function that takes
inputs and produces outputs according to the function
implemented in the neuron.

The number of neurons in the input layer equals the
number of features utilized in the experiment. For example,
the number of input nodes in the input layer in our work is
24 (as shown in Table VI). The number of nodes in the
hidden layer is an optimization issue, but in our model, this
parameter is coming by experiment. Different empirical
values have been used in order to choose the best value that
achieves results that are more accurate. In our model, it
contains 1 hidden layer with 30 nodes. Finally, the number
of nodes in the output layer depends on the number of
required output values. In our model, there is 2 output
neuron, which represents the required code length and
efforts to be able to implement the requested software
project successfully.

The mathematical model of the ANN consists of a
hypothesis function , which is a summation of functions
of the other layers. In this work, the following
mathematical models demonstrate the utilized functions.
Table I shows variable descriptions.

 (1)

 (2)

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

112

 (3)

 (4)

The input to the artificial neurons is numeric values (vector
x) which are perceived with particular independent weights
(vector). To optimize variables or weights , DA
algorithm has been utilized. In the next sections, we will
describe how this algorithm was adopted to find the
optimal values of these weights.

c) Dragonfly Algorithm
Dragonfly Algorithm (DA) is a relatively new intelligent
swarm optimization algorithm proposed in 2015 [18]. The
algorithm has been proposed based on dynamic and static
swarming behaviors. DA consists mainly of two phases;
exploration and exploitation. In exploration phase,
dragonflies search for swarm or areas of interest.
Subsequently, they create sub statistical swarms. These
statistical swarms are used in exploration process to find
the optimal solution of the problem.

As illustrated in Figure II, dragonflies have five different
flying behaviors. First, separation in which they fly away
from each other to explore a vast area to generate sub
swarms. Second, alignment in which they fly parallel to
each other in army way to reach a globally optimal solution.
Third, cohesion in which they meet at a certain point. The
last two behaviors are an attraction to food and distraction
from the enemy in which they try to search near better
solutions and stop searching in far swarms.

The optimization problem must be predefined carefully to
utilize DA for optimization. In this work, our optimization
problem is to find the global minimum value of cost
function of ANN algorithm, which is defined in Equ.5 and
its variables’ description are summarized in Table I.

The optimization goal is to find values of to minimize the
cost function. In other words, we seek to find the global
minimum value of this function, which in turn results in
obtaining the most optimal values of weights for the used
ANN model.

DA starts to search for the global optimal minimum value
of this function. However, to reduce searching or
exploration time, a minimum value and a maximum value
of the searching area should be given. Figure II shows the
behavior of DA particles in looking for the optimal
solutions.

Subsequently, a number of dragonflies start to search the
area and divide it into sub-areas for potential solutions.
These potential solutions are implemented in the cost
function. If the output of the function is higher than last
round, these solutions

are marked enemies and dragonflies will run away from
them. If the output is smaller, the dragonflies will be
attracted to this area to find better solutions. This process,
which is summarized in algorithm I, continues for a
number of iterations when most of the dragonflies cohesion
in the same point.

Feedforward ANN [58] can be trained using DA to
approximate the needed effort accurately. In other words,
the ANN flows in one direction starting from the inputs
towards the outputs, which is the estimated effort,
Personnel, Product, Platform and Project factors in our case.
The optimal output values are chosen, after training the
ANN by the DA as is illustrated in following sections.

Table 1: description of variables
M Number of training data

 The hypothesis function

 The real output of sample i in the training data

 Optimization variables

 Scaling variable

(5)

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

113

-10 0 10
-10

-5

0

5

10
(a) t+1

Dragonfly Neighkourhood Radius Food Source Enemy

-10 0 10
-10

-5

0

5

10
(b) t+25

-10 0 10
-10

-5

0

5

10
(c) t+50

-10 0 10
-10

-5

0

5

10
(d) t+75

-10 0 10
-10

-5

0

5

10
(e) t+100

Fig. II Dragonfly Behaviours [18]

d) NASA93 Database
In order to be able to develop an estimation model using
DA training algorithm and Feedforward ANN method and
evaluate it successfully, NASA93 dataset [19] was used,
which was obtained from different project centers,
collected by Jairus Hihn [59]. It is constituted of 93 flight
or ground projects, and 24 cost drives to contribute to
productivity, and then to cost. These cost drives consider
Kitchenham analysis [60], which includes the subjective
assessment of product, hardware, personnel and project
attributes, and can take the values as in Table II. The
classified cost drives are illustrated in Table I in Annex A.

Algorithm 1: Dragonfly Algorithm (DA)

1. Initialize Particles Xi (i = 1, 2, ..., n)
2. Initialize Step vectors ΔXi (i = 1, 2, ..., n)
3. while not (stopping criteria)
4. Measure the objectives for all particles
5. Update solutions
6. Update coefficients (a, c, e, f, s, w)
7. Calculate the five behaviors
8. Update neighbor list
9. if a particle has a minimum of one

neighbor particle
10. Update velocity vector
11. Update position vector
12. else
13. Greedy update position
14. end if
15. Validate the new position
16. end while

Alg. I. Dragonfly Algorithm (DA)

Moreover, the projects used (forg), their category (cat2), in
addition to the projects, which were developed in centers
(center), and the mode of software development (mode),
are also considered and shown in Table I in Annex A. tool
attribute enables selection the records about different
development languages such as FORTRAN and year
attribute enables selection records related to the
development year, while project name means Project Name,
From 8-22 attributes enables different COCOMOI
designations such as BUS for business applications and
SYS for system software. MODE attribute describes the
development mode. It can take one of the following the
values shown in Table II. While attributes equivphyskloc
and act_effort are real numbers describe the required code
length and effort respectively.

It is worthy to say that COCOMOI is the first version of
COCOMO model. It follows the waterfall process using the
aforementioned imperative programming languages [61],
which is evaluated using COCOMO dataset, which is
adopted here for comparison purposes. In addition to its
lineage. NASA93 is adopted in this work due to its wide
use and evaluation in a wide range of organizations. Also,
it has an available well documentation, which is supported
by public domain and commercial tools.

Table 2: cost drive values [60]
Super Low SL
Extra Low EL
Very Low VL

Low L
Normal N

High H
Very High VH
Extra High XH
Super High SH

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

114

5. proposed approach

In this work, Artificial Intelligent (AI) methods have been
utilized to generate a prediction model to predict and
estimate the required time to produce a new software or
programming project. Artificial neural networks and the
case-based reasoning [62] are potential approaches to
artificial intelligence. While the case-based reasoning
depends on exploiting the solutions of old problems that
are similar to the current problem, the artificial neural
networks can estimate accurately in case of distorted inputs
or when the variables have complex relationships. To build
the proposed model, supervised Feedforward Artificial
Neural Network (ANN) model has been utilized. In
supervised learning, we should have a preconceived idea
about the input and output data. In other words, the features
and the predicted effort values should be presented.
Subsequently, they are used to train the mathematical
model [63].

To train this proposed mathematical model NASA93
dataset has been utilized. The dataset consists of 93
samples. Each sample has 24 cost drives (Features) and the
estimated output values, as shown in table I in Annex A.
These features have been normalized as the first step of the
proposed approach. Equ.6 has been used in normalizing
this data. Subsequently, these features have been fed into
the ANN model as illustrated in Tables III and IV

 (6)
In order to train the ANN, several training algorithms were
tested in order to have the lowest Mean Square Error
(MSE), which results in the best overall system
performance. FigureIII shows that DA has the lowest MSE
in training the ANN for NASA93 dataset compared to
Back Propagation Neural Network (BPNN) [42] which
showed the heights MSE value of 0.04. Recurrent Neural
Network (RNN) [64] with lower MSE value, but still not
enough to be used to train the ANN. Artificial Bee Colony
(ABC) [65] reached a good result with 0.005 MSE, and
Genetic Algorithm (GA) [43], which was higher in MSE
with 0.021. However, the DA reached the best MSE result
with which is a promising value, which
indicates that most optimal weights and bias values for the
ANN can be reached.

While BPNN calculates the error at the output and
distributes it back through the network layers, RNN uses
loops for signal flow, which means the signal can flow
backward or shift for a number of steps. On the other hand,
ABC adopted swarm intelligence and is motivated by the
intelligent behavior of honey bees, while GA adopted the
Darwinian notion of natural selection. GAs search all
possible solutions of the problem under study which are
computed using their fitness. The best solutions will remain

with the next generations and produce “offspring” which
are variations of their parents.

Fig. III ANN Training Methods Comparison

e) Model Design
After obtaining the above results, ANN was trained with
DA using the specifications shown in Table V and VI,
which are used for the selection process. Figure IV (below),
summarizes the steps followed in the proposed method.

Fig. IV Steps of The Proposed Method

This model has two phases; the training phase and the
testing phase. During the training phase, the selected
training dataset will be initially normalized using Equ 6, in
order to be able to be used with the ANN model. The
normalized data then enters the ANN model, which is
trained by the DA. Then the ANN can estimate the required
efforts to complete the requested project successfully. The
stopping criterion for this phase is tied to the MSE value of
the ANN, in comparing the output values with the real
targets. This criterion depends on the cost function value
reached by the DA, which is required to be as close to zero

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

115

as possible. The entire model is illustrated in figure V.
Moreover, the convergence curve for the used DA is shown
in figure VI (below).

Then comes the testing phase, which is the operation phase,
where the proposed model can be used in real projects. In
this phase, the randomly selected testing dataset is
normalized also and then entered to the ANN, which in
turn can provide accurate and quick estimation for the
required efforts.

Table 3: ANN Specifications
Hidden Layers 1

Nodes in hidden layer 30
Number of training data 93 vectors

Epoch 5500
Training Dataset 70% of 93 vectors

Validation Dataset 15% of 93 vectors
Testing Dataset 15% of 93 vectors

Fig V ANN-DA Model

Table 4: ANN-DA configuration parameters
Number of Nodes in Layer 1 24

Number of hidden Layers 1
Number of Nodes in hidden Layer 30
Number of Nodes in output layer 2

Iteration for DA 500
Number of Agents 20

Max DA value 500
Min DA value -500

6. evaluation experiments

To measure the performance of the proposed model, three
different models have been implemented and compared
with our work. The first model is the COCOMOII model
[7]. The second is the ANN model with backpropagation
training process (BPNN). The last one is Radial Basis ANN

(RBNN) model, which has been proposed in [43].
MATLAB has been used to implement these algorithms.

To compare these algorithms with the proposed model,
three performance metrics have been evaluated. In the next
sub-section, these metrics will be demonstrated.
Subsequently, the obtained results will be discussed later in
this section.

a) Performance Metrics
Three software effort estimation performance metrics are
utilized in this work, and they are described in the
following:

1. Mean Square Error (MSE): MSE is the output of
the final value the cost function gets in the training
process. It can be defined in Equ.7. The MSE
should be as low as possible in order to consider
the model.

Where, is the recorded output in the dataset, is
the estimated output obtained from the model and

 is the number of training elements ‘93’.

2. Mean Magnitude of Relative Error (MMRE):
MMRE measures the Balance Relative Error (BRE)
for a group of data. BRE is defined in Equ.8 and
MMRE is defined in Equ.9. A model, which gives
lower MMRE, is better than the model that has
higher MMRE

3. Mean Absolute Error (MAE)
MAE is defined as the differences between the
mean value and the recorded value. Equ.10 shows
the MAE. The lower MARE is better

b) Experimental Results
After implementing and training the proposed model,
randomly selected project dataset, representing 15% of the
NASA93 Dataset were used to evaluate the proposed
model and compare its results with the other models, using

(7)

(8)

(9)

(10)

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

116

the same testing dataset. However, important results were
obtained, which evaluated the proposed model.

Figure VII shows MSE of these algorithms. It can be
observed from the figure that COCOMO recorded the
highest error value. Since this algorithm has no
optimization methods this result was expected. Moreover,
we can observe that RBNN obtained results better than
BPNN since RBNN attempts to memorize the training
examples with only 44 training data; RBNN can memorize
most of them. Finally, we can observe how DA attempted
to minimize the cost function to around zero ().

Figure VIII shows MMRE result. As mentioned MMRE
value is calculated utilizing BRE. We can observe from the
figure that BRE values of RBNN and BPNN are massive.
Even if the differences between the predicted value and the
real value are small, the division with small value will
amplify it. We can observe that COCOMO MMRE result is
better than BPNN and RBNN. However, DANN obtained
the smallest value.

Figure IX shows MAE of these algorithms. MAE depends
on the mean value of all obtained outputs without any
relation to the training values. If the data have vast variance,
MAE will increase. We can observe that COCOMO has the
highest variance of all algorithms and DANN obtained the
lowest results. This means that the variance is small in the
predicted outputs of DANN algorithm.

After testing the proposed model using randomly selected
testing dataset, the Receiver Operating Characteristic
(ROC) curve was measured, after calculating the
confusion-matrix for the obtained results, which was not
shown in this paper, as it is summarized by the ROC curve
in Figure X. However, this curve shows the trade-off
between specificity and sensitivity, which looks represents
more accurate results as it is close from the sensitivity
access as well as the top border of the ROC space. This
result validates the hypothesis of this work as the proposed
model, which is constituted of Feedforward ANN trained
by DA showed more accurate results and contribute to the
field under study.

0 100 200 300 400 500

Iteration

0

50

100

150

M
ea

sn
 S

qu
ar

e
E

rr
or

 (
M

S
E

)

ANN Weights and Bias Convergence Curve

Fig. VI AD Convergence Curve

COCOMO RBNN BPNN DANN

Algorithms

0

0.1

0.2

0.3

0.4

0.5

M
SE

MSE Results

Fig. VII Mean Square Error Results

COCOMO RBNN BPNN DANN

Algorithms

0

100

200

300

400

500

600

700

800

900

1000

M
M

R
E

MMRE Results

Fig. VIII Mean Magnitude of Relative Error Results

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

117

COCOMO RBNN BPNN DANN

Algorithms

0

0.04

0.08

0.12

0.16

0.20

0.24

0.28

0.32

0.36

0.40
M

A
E

MAE Results

Fig. IX Mean Absolute Error Results

0 10 20 30 40 50 60 70 80 90 100

False Positive rate (100-Specificity)

0

10

20

30

40

50

60

70

80

90

100

Tr
ue

 P
os

itiv
e

ra
te

 (S
en

sit
ivi

ty)

ROC Curve

Fig. X Proposed Model ROC Curve

7. Conclusions

In this work, aiming to provide accurate software project
efforts estimation, ANN was used with DA training
algorithm. Various algorithms have been implemented and
evaluated, such as; BPNN, RNN, ABC, GA, and DA, using
NASA93 datasets. Software effort estimation, ANN, DA,
and NASA93 are explained briefly. Moreover, the accuracy
of the proposed approach, the used models, and their data
fitness has been tested.

DA found to provide the best performance in terms of MSE,
thus it was used as training algorithm for the ANN, which
provided enhanced results for software effort estimation.
By evaluating the algorithms using NASA93 dataset and
calculating the MSE, RBNN, MMRE and MAE values, it
can be concluded from the MSE calculations that

COCOMO has the highest error values. Moreover, it can be
concluded that RBNN outperforms BPNN since RBNN
attempted to memorized most of training data. For the DA,
it attempted to minimize the cost function to reach zero. In
terms of MMRE, the BRE values of RBNN and BPNN are
massive regardless of the difference between the predicted
and real values. However, in this situation, COCOMO
MMRE outperformed BPNN and RBNN. However, DANN
showed the best value. On the other hand, COCOMO
showed the highest variance of other algorithms, in
comparison with DANN, which showed the lowest results.

From the obtained results of this study, it can be concluded
that the proposed ANN-DA model provides more accurate
software efforts’ estimation, in comparison with other
models. However, it is an important step to apply this
proposed model on a different dataset that contains a larger
number of projects, in order to study the stability of this
model.

References
[1] Demirors, Onur, and Cigdem Gencel. "A comparison of size

estimation techniques applied early in the life cycle." Lecture
notes in computer science(2004): 184-194.

[2] Jones, Capers Capers. Software quality: Analysis and
guidelines for success. Thomson Learning, 1997.

[3] Kan, Stephen H. Metrics, and models in software quality
engineering. Addison-Wesley Longman Publishing Co., Inc.,
2002.

[4] Moløkken, K., & Jørgensen, M. (2003, September). A
review of software surveys on software effort estimation. In
Empirical Software Engineering, 2003. ISESE 2003.
Proceedings. 2003 International Symposium on (pp. 223-
230). IEEE.

[5] Kalichanin-Balich, I., & Lopez-Martin, C. (2010, May).
Applying a feedforward neural network for predicting
software development effort of short-scale projects. In
Software Engineering Research, Management and
Applications (SERA), 2010 Eighth ACIS International
Conference on (pp. 269-275). IEEE.

[6] Molokken-Ostvold, K., & Jorgensen, M. (2005). A
comparison of software project overruns-flexible versus
sequential development models. Software Engineering, IEEE
Transactions on, 31(9), 754-766.

[7] B.W. Boehm, Software Engineering Economics, Prentice-
Hall, Englewood Cli4s, NJ, 1981.

[8] Putnam, Lawrence H. "A general empirical solution to the
macro software sizing and estimating problem." IEEE
transactions on Software Engineering 4 (1978): 345-361.

[9] Putnam. L.. and Fitzsimmons, A. Estimating software costs.
Datamation 25, lo-12 (Sept.-Nov. 1979).

[10] Walston, Claude E., and Charles P. Felix. "A method of
programming measurement and estimation." IBM Systems
Journal 16.1 (1977): 54-73.

[11] Bailey, John W., and Victor R. Basili. "A meta-model for
software development resource expenditures." Proceedings
of the 5th international conference on Software engineering.
IEEE Press, 1981.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

118

[12] Herd, J. R., et al. "Software cost estimation study-study
results." Doty Associates, Inc., Rockville, MD, Final Tech.
Rep. RADC-TR-77-220 1 (1977): 40-54.

[13] Xia, W., Ho, D., & Capretz, L. F. (2015). A neuro-fuzzy
model for function point calibration. arXiv preprint
arXiv:1507.06934.

[14] Bardsiri, Amid Khatibi, and Seyyed Mohsen Hashemi.
"Software effort estimation: A survey of well-known
approaches." International Journal of Computer Science
Engineering (IJCSE) 3.1 (2014): 46-50.

[15] Du, Wei Lin, Danny Ho, and Luiz Fernando Capretz.
"Improving software effort estimation using neuro-fuzzy
model with SEER-SEM." arXiv preprint
arXiv:1507.06917 (2015).

[16] Barcelos Tronto, Iris Fabiana, José Demísio Simões da Silva,
and Nilson Sant’Anna. "An investigation of artificial neural
networks based prediction systems in software project
management." Journal of Systems and Software81.3 (2008):
356-367.

[17] Dawson, C. W. (1996). A neural network approach to
software project effort estimation. International conference
on applications of artificial intelligence in engineering.

[18] Mirjalili, S. (2015). Dragonfly algorithm: a new meta-
heuristic optimization technique for solving single-objective,
discrete, and multi-objective problems.Neural Computing
and Applications, 1-21.

[19] Murphy-Hill, T. M. (n.d.). Nasa93 Dataset. Retrieved
September 18, 2017, from
http://openscience.us/repo/effort/cocomo/nasa93.html

[20] Farr, L. (1964). Factors that affect the cost of computer
programming. Santa Monica, CA: The Corporation.

[21] Nelson, E. A. (1967). Management handbook for the
estimation of computer programming costs. Santa Monica,
CA: System Development Corp.

[22] Jorgensen, M., & Shepperd, M. (2007). A Systematic
Review of Software Development Cost Estimation Studies.
IEEE Transactions on Software Engineering,33(1), 33-53.
doi:10.1109/tse.2007.256943

[23] Cohn, M. (2006). Agile estimating and planning. Upper
Saddle River, NJ: Prentice Hall Professional Technical
Reference.

[24] Moløkken-Østvold, Kjetil, et al. "A survey on software
estimation in the Norwegian industry." Software Metrics,
2004. Proceedings. 10th International Symposium on. IEEE,
2004.

[25] Jørgensen, Magne. "A review of studies on expert estimation
of software development effort." Journal of Systems and
Software 70.1 (2004): 37-60.

[26] Kitchenham, Barbara, et al. "An empirical study of
maintenance and development estimation accuracy." Journal
of systems and software 64.1 (2002): 57-77.

[27] Tausworthe, Robert C. "The work breakdown structure in
software project management." Journal of Systems and
Software 1 (1979): 181-186.

[28] Selby, R. W. (2007). Software engineering: Barry W.
Boehm's lifetime contributions to software development,
management, and research. Hoboken, NJ: Wiley-Interscience.

[29] Putnam, L. H. (2013). Five core metrics: the intelligence
behind successful software management.

[30] Putnam, L. (1978). A General Empirical Solution to the
Macro Software Sizing and Estimating Problem. IEEE

Transactions on Software Engineering,SE-4(4), 345-361.
doi:10.1109/tse.1978.231521

[31] Applying SEER-SEM to Estimation Processes. (2006).
Software Sizing, Estimation, and Risk Management, 397-498.
doi:10.1201/9781420013122.ch11

[32] G. Finnie, G. Wittig, and J.-M. Desharnais, “A Comparison
of Software Effort Estimation Techniques: Using Function
Points with Neural Networks, Case-Based Reasoning and
Regression Models,” J. Systems and Software, vol. 39, pp.
281-289, 1997.

[33] P. Sentas, L. Angelis, I. Stamelos, and G. Bleris, “Software
Productivity and Effort Prediction with Ordinal Regression,”
Information and Software Technology, vol. 47, pp. 17-29,
2005.

[34] L. Briand, K.E. Emam, D. Surmann, and I. Wieczorek, “An
Assessment and Comparison of Common Software Cost
Estimation Modeling Techniques,” Proc. 21st Int’l Conf.
Software Eng., pp. 313-323, May 1999.

[35] L. Briand, T. Langley, and I. Wieczorek, “A Replicated
Assessment and Comparison of Common Software Cost
Modeling Techniques,” Proc. 22nd Int’l Conf. Software Eng.,
pp. 377-386, June 2000.

[36] J. Li, G. Ruhe, A. Ak-Emran, and M. Richter, “A Flexible
Method for Software Effort Estimation by Analogy,”
Empirical Software Eng., vol. 12, pp. 65-107, 2007.

[37] Idri, Ali, Fatima azzahra Amazal, and Alain Abran.
"Analogy-based software development effort estimation: A
systematic mapping and review." Information and Software
Technology 58 (2015): 206-230.

[38] Tsunoda, M., Monden, A., Keung, J., & Matsumoto, K.
(2012). Incorporating Expert Judgment into Regression
Models of Software Effort Estimation. 2012 19th Asia-
Pacific Software Engineering Conference.
doi:10.1109/apsec.2012.58

[39] Blattberg, R. C., & Hoch, S. J. (1990). Database Models and
Managerial Intuition: 50% Model 50% Manager.
Management Science,36(8), 887-899.
doi:10.1287/mnsc.36.8.887

[40] Du, W. L., Ho, D., & Capretz, L. F. (2015). Improving
software effort estimation using neuro-fuzzy model with
SEER-SEM. arXiv preprint arXiv:1507.06917.

[41] Briand, Lionel C., et al. "An assessment and comparison of
common software cost estimation modeling
techniques." Software Engineering, 1999. Proceedings of the
1999 International Conference on. IEEE, 1999.

[42] Buscema, M. (1998). Back propagation neural networks.
Substance use & misuse, 33(2), 233-270.

[43] Whitley, D. (2014). An executable model of a simple genetic
algorithm. Foundations of genetic algorithms, 2(1519), 45-
62.

[44] Farr, Leonard, and Henry J. Zagorski. FACTORS THAT
AFFECT THE COST OF COMPUTER PROGRAMMING.
VOLUME II. A QUANTITATIVE ANALYSIS. SYSTEM
DEVELOPMENT CORP SANTA MONICA CA, 1964.

[45] Nelson, Edward Axel. Management handbook for the
estimation of computer programming costs. No. TM-
3225/000/01. SYSTEM DEVELOPMENT CORP SANTA
MONICA CA, 1967.

[46] Jensen, Randall W., L. H. Putnam, and William Roetzheim.
"Software estimating models: three viewpoints." Software
Engineering Technology 19.2 (2006): 23-29.

http://openscience.us/repo/effort/cocomo/nasa93.html

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

119

[47] Huang, Xishi, et al. "Improving the COCOMO model using
a neuro-fuzzy approach." Applied Soft Computing 7.1
(2007): 29-40.

[48] Lee, Jooon-kil, and Ki-Tae Kwon. "Software cost estimation
using SVR based on immune algorithm." Software
Engineering, Artificial Intelligences, Networking and
Parallel/Distributed Computing, 2009. SNPD'09. 10th ACIS
International Conference on. IEEE, 2009.

[49] Foss, Tron, et al. "A simulation study of the model
evaluation criterion MMRE." IEEE Transactions on
Software Engineering 29.11 (2003): 985-995.

[50] Azzeh, Mohammad, Daniel Neagu, and Peter I. Cowling.
"Analogy-based software effort estimation using Fuzzy
numbers." Journal of Systems and Software 84.2 (2011):
270-284.

[51] Reddy, P. V. G. D., et al. "Software effort estimation using
radial basis and generalized regression neural
networks." arXiv preprint arXiv:1005.4021 (2010).

[52] Prasad Reddy, P. V. G. D., K. R. Sudha, and P. Rama Sree.
"Ramesh SNSVSC, Fuzzy Based Approach for Predicting
Software Development Effort." International Journal of
Software Engineering 1.1 (2010): 1-11.

[53] Keung, Jacky. "Software Development Cost Estimation
using Analogy: A Review, Australian Software Engineering
Conference." (2009).

[54] Mittal, Harish, and Pradeep Bhatia. "Optimization criteria for
effort estimation using fuzzy technique." CLEI Electronic
Journal 10.1 (2007): 1-11.

[55] Jodpimai, Pichai, Peraphon Sophatsathit, and Chidchanok
Lursinsap. "Estimating software effort with minimum
features using neural functional
approximation." Computational Science and Its Applications
(ICCSA), 2010 International Conference on. IEEE, 2010.

[56] Malathi, S., and S. Sridhar. "Analysis of size metrics and
effort performance criterion in software cost
estimation." Indian Journal of Computer Science and
Engineering 3.1 (2012): 24-31.

[57] Graupe, Daniel. Principles of artificial neural networks. Vol.
7. World Scientific, 2013.

[58] Bebis, George, and Michael Georgiopoulos. "Feed-forward
neural networks." IEEE Potentials 13.4 (1994): 27-31.

[59] Jairus Hihn, JPL, NASA, Manager SQIP Measurement &
Benchmarking Element. Phone (818) 354-1248
(Jairus.M.Hihn@jpl.nasa.gov)

[60] B. Kitchenham. (1998). A Procedure for Analyzing
Unbalanced Datasets, IEEE Transactions on Software
Engineering, 24(4):278-301

[61] Pant, Bhushan, Hardwari Lal Mandoria, and Ashok Kumar.
"Wavy Software Process Model: A Modern Approach." i-
Manager's Journal on Software Engineering 9.1 (2014): 27.

[62] Mukhopadhyay, Tridas, Steven S. Vicinanza, and Michael J.
Prietula. "Examining the feasibility of a case-based
reasoning model for software effort estimation." MIS
quarterly (1992): 155-171.

[63] Zhong, Shi, Taghi M. Khoshgoftaar, and Naeem Seliya.
"Unsupervised Learning for Expert-Based Software Quality
Estimation." HASE. 2004.

[64] Mikolov, T., Karafiát, M., Burget, L., Cernocký, J., &
Khudanpur, S. (2010, September). Recurrent neural network
based language model. In INTERSPEECH (Vol. 2, p. 3).

[65] Karaboga, D., & Basturk, B. (2007). A powerful and
efficient algorithm for numerical function optimization:
artificial bee colony (ABC) algorithm. Journal of global
optimization, 39(3), 459-471.

Annex A

Table I: NASA93 Descriptive Attributes
Attribute
Number Notation Description Contents

1 recordnumber Unique ID real #

2 projectname project name de,erb,gal,X,hst,slp,spl,Y

3 cat2 Cagetory of
application

avionics, application_ground, avionicsmonitoring,
batchdataprocessing, communications, datacapture,

launchprocessing, missionplanning, monitor_control,
operatingsystem, realdataprocessing, science,

simulation, utility

4 Forg flight or ground
system f,g

5 Center which nasa center?
 1,2,3,4,5,6

6 year year of development real #

7 Mode development mode embedded,organic,semidetached

8 rely cocomo attributes vl,l,n,h,vh,xh

mailto:Jairus.M.Hihn@jpl.nasa.gov

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

120

9 Data cocomo attributes vl,l,n,h,vh,xh

10 Cplx cocomo attributes vl,l,n,h,vh,xh

11 Time cocomo attributes vl,l,n,h,vh,xh

12 Stor cocomo attributes vl,l,n,h,vh,xh

13 Virt cocomo attributes vl,l,n,h,vh,xh

14 turn cocomo attributes vl,l,n,h,vh,xh

15 acap cocomo attributes vl,l,n,h,vh,xh

16 Aexp cocomo attributes vl,l,n,h,vh,xh

17 Pcap cocomo attributes vl,l,n,h,vh,xh

18 Vexp cocomo attributes vl,l,n,h,vh,xh

19 Lexp cocomo attributes vl,l,n,h,vh,xh

20 Modp cocomo attributes vl,l,n,h,vh,xh

21 Tool cocomo attributes vl,l,n,h,vh,xh

22 Sced cocomo attributes vl,l,n,h,vh,xh

23 equivphyskloc
equivalent physical
1000 lines of source

code
real #

24 act_effort

development effort in
months (one month

=152 hours and
includes development

and management
hours)

real #

	a) Problem Definition
	b) Method Selection and Design
	c) Dataset Selection
	d) Model Verification
	a) Software Effort Estimation
	b) Artificial Neural Networks
	c) Dragonfly Algorithm
	d) NASA93 Database
	e) Model Design
	a) Performance Metrics
	b) Experimental Results

