
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 151

On a construction and a highly effective update

method for the consistency

in structured p2p systems

Hong Minh Nguyen
1
, Xuan Huy Nguyen

2
, Ha Huy Cuong Nguyen

3

1
 People's Security University, Vietnam

2
Institute of information technology, Vietnam academy of science and technology, Vietnam

3
Quang Nam University, Vietnam

Abstract: Many replicas are distributed of an

object sharing be processed by the independent users

(replica nodes), which leads to inconsistency. The

authors propose a new efficient solution to construct a
tree and an update propagation method for each data

sharing on distributed applications in the structured

p2p substrate. In these trees, the replica nodes are
linked logically as close together to increase

communication efficiency and performance of optimal

replication base on the update rate, thus enhancing
the availability of data, so reducing of latency update

and increasing the ratio of a successful update of

generated replicas. The proposed method has been

experimented by using the OverSim simulation to
prove the effectiveness and comparing with existing

solutions.

Keyword: structured p2p substrate; data

consistency; replica; replica node; update tree.

I. INTRODUCTION

Sharing a dynamic distributed data, in the sense

that the data can change by frequent updates or even

simultaneous processing interacted by many users
increasingly interested in research, such as p2p WiKi

[1], Social Networking [2], p2p collaborative

workspace [3]…. The distributed systems are built on

top of the p2p substrate. Besides, peers link logically
to create an overlay network on the physical underlay

network (such as Pastry [4], Tapestry [5], CAN [6]…).

P2P is suitable for construct a large-scale and complex
applications due to provide distributed platform, fault

tolerance and ensuring high availability of data

sharing. Main features are that peers are self-
organizing, heterogeneous about processing

capabilities, join/leave or update rate, delay of

communication and bandwidth usage.

A peer which holds a copy of object sharing is

named as a replica node. Therefore, the replicas are

processed by replica nodes, which are independent
and autonomous, so over time replicas can not

guarantee consistency [7], this leads to misleading

results. Therefore assurance of consistency is a very

important requirement. However, it is also a difficult
and major challenge because of the complexity

requirements of distributed applications (scalability,

requirements consistency …) and characteristics of
p2p.

Any replica node updates on the local replica, so
the change must be propagated to other replica nodes

in the system, called the consistency maintenance

scheme. The scheme includes a solution for the
structure and a method of update propagation.

An auxiliary tree (update tree) is built on top of the
overlay structure (example Figure 2) for sending

updates proved to be a suitable and effective solution

for distributed applications building on the structured
p2p substrate. Such as ensuring high reliability,

reducing the number of messages and using bandwidth

usage due to redundancy, duplicate… However, it also

poses many difficulties, complications in research and
development, that need to solve as an overload of

replica nodes, bottleneck, imbalanced…

Consequently, the scheme which using of an updated
tree in previous studies still has the following

limitations:

The first, limited on a method of building tree

Because the update tree is built in chronological

order into the node's system, then interconnected

152 IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

nodes can be distant in physically or logically, so

increases latency, number of messages and bandwidth
usage when exchanging messages or spreading

updates. The updated tree is built the base on

calculating the ability of the node (stability,
processing speed…) that will be very difficult and

costly, especially when node's join/leave high rate. An

updated tree dynamically only show effects when
node's update low rate because of no maintenance cost

of update tree.

The second, limited on a method of update

propagation The method of update propagation for all

node online is high cost, redundant and not suitable
for large-scale applications or the users require to use

a replica with different time. The method only

propagates updates to a subscribed nodes that

overcome above limitations but it needs to solve
difficult problems as the bottleneck, imbalanced…

The case of update propagation from the root to a

subscribed nodes (below, even a leaf nodes), so high-
cost a lot of time (latency), a number messages,

bandwidth…

In order to overcome the above limitations, the

researchers propose a new solution that will allow

assuring sequential consistency [7], nodes link in tree
base on node’s ID (logical value) and assign the

identifier space to which it is responsible. So that

nodes are linked logically as close together to have a

high-efficient communication and processing node’s
join/leave high-rate. Moreover, the solution calculates

to perform an optimal replication base on the

subscribed rate thus enhancing the availability of data
and it only updates to a subscribed nodes, so that

reducing latency and increasing the ratio of a

successful update of a generated replicas. During,
some researcher have been proposed method based on

the update rate of nodes and to solve the problem of

load balancing, or application on the consistency

maintenance scheme use a dynamic tree, make
updates for all nodes and is only effective when a

node has low update frequency. The results of the

research have new contributions are as follows:

 A proposal for construction and maintenance of the

update tree base on node’s ID.

 Calculating of an optimal replication base on the
subscriber's update rate and only an update to a

subscribed node, so that reducing latency and

increasing the ratio of the successful update of a

generated replicas.

 The experiment of the proposal by using the
OverSim simulation [8]; comparing and demonstrating

of the effectiveness by the proposal to the solutions by

Nakashima [9], Yi [10].

The rest of the paper is organized as follows: the

related work is reviewed in section II. Gives an
overview of our proposal, followed by a detailed

description of its design in section III, the performance

of proposal is evaluated in section IV. The paper is

concluded in section V.

II. RELATED WORK

Li [11] propose to construct an updated tree

dynamically including a supernode (high reliability
and capacity). The maximum α of low-capacity nodes

are liked to each super node with close proximity to

receive updates. This solution only shows effects
when node's update low rate, because of no

maintenance cost of update tree. However, when a

node has an update high rate so the cost of

construction tree is very high, which has difficulty to
determine the ability and proximity of nodes.

Moreover, all updates are sent to all nodes online by

root so that increasing the cost and be not practical
because of each node requires use the replica with

different time.

Xin [12] propose SCOPE for construction of an

updated tree statically by using splitting identifier

space into equal partitions and selecting one
representative node in each partition which records the

replica locations within that partition. Only leaf nodes

store a replica. Then the update can be sent layer by

layer from the root to leaf nodes. Nodes may not be
interested in the object sharing are in the object’s

update tree, which adds the scale of the tree is very

large so that it is the unnecessary overhead of
maintaining the tree from node’s join/leave and

increases the delay of update propagation…Moreover,

nodes may be easily overloaded when sending
updates, because of its participating all update tree.

Especially, updates are sent from root to leaf nodes so

that inefficient latency and problems as the bottleneck,

imbalanced…

Nakashima [9] propose a construction of an
updated tree statically only from replica nodes. It

connects to the tree by computation of the balance of

the number of subtree nodes. When new updates are

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 153

received, the root propagates to all nodes below, then

other new updates arrive in the root that will be
discarded. Because of node join/leave can be a single

node or a subtree, therefore the reconstruction of such

the tree will be ineffective when the node’s join/leave
high rates, since it both has cost calculation and may

be the imbalance of the tree (height), it also increases

the average delay of update propagation for all nodes.
Since each joint/leave node can be single ỏ a subtree,

the reconstruction …

Yi [10] propose BCoM for construction of an

updated tree statically from replica nodes which are

ordered by their arrival times and balance of the
number of subtree nodes. Each replica node (except

leaf nodes) is given a buffer of size k for buffering

updates. The root receives an update, then sequentially

sends it to all its children. Such operation is repeated
until the leaf nodes received. The sliding window size

k is critical for balancing the consistency strictness,

object availability, and latency. So BCoM proposed a
class that each node requires a maximum and

sequences of generated updates, balanced among the

parameter above. The drawbacks are that a tree is built

ordered by their arrival times and balanced tree, thus
the tree is not optimal. Moreover, using the buffer

easily leads to a bottleneck. Although, Yi proposes a

swapping for preventing from blocking by the master
node to a higher level besides, degrade the bottleneck

node to the lower level. However, this is very difficult

and costly, especially when in both cases, node’s
join/leave or update high- rate.

III. DESCRIPTION OF A PROPOSAL

III.1. Overview

1.1. The researchers use an overlay p2p Pastry to

illustrate the new proposal. However, it can also be
applied for other structured p2p such as Tapestry,

CAN… Pastry use a distributed hash function to

uniquely identify (ID) of each node and object sharing

in the same identifier space 128 bit ([0, 2128 − 1]).

Node i’s ID (denoted by IDi hash from address IP and

object f's ID (denoted by IDf) hash from the name of

the file. Node linked logically in Pastry as Figure 1
and exchanging messages by the overlay routing.

 Any node I need an object sharing, it sends a request
to a root by the overlay routing. The root call

algorithm ID_LINK to link the node into the tree.

After linking, the new node subscribers a replica from

its parent (or any node subscribes an update), so just

register them all the corresponding location in vector

updated. The operation can be repeated until it is sent
to a replicated node. This node has the latest update,

then the nodes send the update to a subscribed nodes

by using an information in vector updated.

III.2. Construction of an update tree

For each object sharing 𝑓, the solution construct a

update tree statically 𝑑_𝑎𝑟𝑦 (node has maximum 𝑑 =
2𝑏 child nodes) includes the primary node of a key (𝑓)

in the identifier space is the root (denoted by 𝑅) and

replica nodes. The method of construction is as

follows:

Node R is responsible for all identifier space as [0,

2128-1]. Node 𝑖 in tree is responsible for the identifier

space, denoted by wsi and consecutive d-equal

partitions denoted by wsi
1, wsi

2…wsi
d. Ni

n denotes as

a children of node i at the 𝑛𝑡ℎ position (𝑛 = 1, 𝑑̅̅ ̅̅̅).

Node j sends a request joining to the root R. It

check IDj ∈ wsR
n (n = 1, d̅̅ ̅̅̅). If R has not yet its

children NR
n, then j is linked to become NR

n and wsj: =

wsR
n . Otherwise, R sends a request to NR

n and this
child which received the forwarded message conducts

the same operation, and such a forwarding is repeated

until the parent of j is determined. After linking into
the update tree, a new node sends a request to the its

parent for a data. The tree construction algorithm in

pseudocode 𝐼𝐷_𝐿𝐼𝑁𝐾 is shown as follows:

ID_LINK d-Ary Construction(𝑅,𝑗)

Input: node j which send request_join to 𝑅

Peer

Replica node

Figure 1: Peers in Pastry

0|2128 − 1

0 - Root

5

3

2 7

4

6

1

154 IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

Output: the parent of j

Begin

 //at the root check

 𝐼𝐷𝑗 ∈ 𝑤𝑠𝑅
𝑛 // 𝑛 = 1, 𝑑̅̅ ̅̅ ̅

If has not yet its children 𝑁𝑅
𝑛 Then

 Return 𝑅

 𝑤𝑠𝑗: = 𝑤𝑠𝑅
𝑛

Else if

𝑅 sends a request to NR
n and the child which

received the forwarded message conducts the

same operation, and such a forwarding is

repeated until the parent 𝑞 of 𝑗 is determined

//𝑞 has not yet its children 𝑁𝑞
𝑛

//𝐼𝐷𝑗 ∈ 𝑤𝑠𝑞
𝑛 , 𝑛 = 1, 𝑑̅̅ ̅̅̅

𝑤𝑠𝑗: = 𝑤𝑠𝑞
𝑛

 Return 𝑁𝑞
𝑛

End

The nodes denoted by 1,2, … 6 are ordered by their

arrival times in update tree 2-Ary (illustrated in Figure

2). At the beginning, node 1 is joined. Then node 1

sends a request to node 0 (root), it check ID1 ∈ ws0
2

and it has not yet N0
2, so node 1 were assigned by node

0 as its children N0
2 and of course ws1: = ws0

2 . The

same as node 2 is joined, the root check ID2 ∈ ws0
1

and it has not yet N0
1. So that node 2 were assigned by

node 0 as its children N0
1 and ws2: = ws0

1 . When node

3 joined, the root check ID3 ∈ ws0
1 , but it has a node

N0
1 (node 2). Then the root sends a request to node 2.

It check ID3 ∈ ws2
2 and has not yet N2

2, so node 3

were assigned by node 2 as its children N2
2 and ws3: =

ws2
2 .

Lemma: the cost of communcation or update

propagation (following called propagation cost,

measured in hop) between node 𝑖𝑙 (node 𝑖 at level 𝑙)
and node 𝑗𝑘 (or opposite) as:

𝑐𝑜𝑠𝑡𝑖𝑙

𝑗𝑘 = |𝑙 − 𝑘| ∗ log 𝑁 −
𝑏 ∗ (𝑙 − 1)2

2
+

𝑏 ∗ 𝑘2

2

Where N is the number of peer in overlay network.

Proof: suppose 0 ≤ 𝑘 < 𝑙, the propagation cost

between a nodes with level 𝑙 and 𝑙 − 1 as log
𝑁

𝑑𝑙−1, so

the propagation cost between node 𝑖𝑙 and node 𝑗𝑘 as:

𝑐𝑜𝑠𝑡𝑖𝑙

𝑗𝑘 = log
𝑁

𝑑𝑙−1
+ log

𝑁

𝑑𝑙−2
+ ⋯ + log

𝑁

𝑑𝑘

 = log 𝑁 − 𝑏 ∗ (𝑙 − 1) + log 𝑁 −

 𝑏 ∗ (𝑙 − 2) + ⋯ log 𝑁 − 𝑏 ∗ 𝑘

 = (𝑙 − 𝑘) ∗ log 𝑁 −
𝑏 ∗ (𝑙 − 1 − 𝑘) ∗ (𝑙 − 1 + 𝑘)

2

 = (𝑙 − 𝑘) ∗ log 𝑁 −
𝑏 ∗ (𝑙 − 1)2

2
+

𝑏 ∗ 𝑘2

2

Denoted by pl probability of a new node liked as at

level l (0 < l ≤ L, L = logd NR as height of update

tree and NR is a number of tree nodes).

pl =
dl

NR
, ∑ pl

𝐿
𝑙=1 = 1

Then, the cost of joining a new node can be

expressed as follows:

𝑐𝑜𝑠𝑡𝑗𝑜𝑖𝑛 = ∑ pl ∗ 𝑐𝑜𝑠𝑡𝑖𝑙−1

𝑅0

𝑙=𝐿

𝑙=1

III.3. Basic Operations

a. The new update request

Each node uses a vector updated to record

subscribers and to send to its parent. If a node is a
replicated node (method of replication will be

presented below), it forwards updates to the

subscribers directly, elsewhere it sets the
corresponding bit 1 in a vector updated (d bit) and

continues to forward subscriber requests to the node at

the next upper-level. This operation proceeds until it

reaches the replicated node (or the root). It towards the
updates to all subscribers using the information of

vector updated.

The operation of subscription request of node il can

be finished in hops as:

 Figure 2: Dissemination tree illustration 2-Ary

 0

 1

 4

2

3 5

 6

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 155

𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑟_𝑠𝑢𝑏(𝑖𝑙) =
∑ 𝑐𝑜𝑠𝑡𝑖𝑙

𝑗𝑘𝑘=0
𝑘=𝑙−1

𝑙

∑ 𝑐𝑜𝑠𝑡𝑖𝑙

𝑗𝑘

𝑘=0

𝑘=𝑙−1

 = ∑ (𝑙 − 𝑘) ∗ log 𝑁 −
𝑏 ∗ (𝑙 − 1)2

2
+

𝑏

2
∗ 𝑘2

𝑘=0

𝑘=𝑙−1

=

𝑙 ∗ (𝑙 + 1)

2
∗ log 𝑁 −

𝑏 ∗ 𝑙 ∗ (𝑙 − 1)2

2

+
𝑏 ∗ (𝑙 − 1) ∗ 𝑙 ∗ (2𝑙 − 1)

6

=

𝑙 ∗ (𝑙 + 1)

2
∗ log 𝑁 −

𝑏 ∗ 𝑙 ∗ (𝑙 − 1) ∗ (𝑙 − 2)

12

Therefore,

 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑟_𝑠𝑢𝑏(𝑖𝑙) =
(𝑙+1)

2
∗ log 𝑁 −

𝑏∗(𝑙−1)∗(𝑙−2)

12

b. The update propagation

Any replica node can update on local replica but it

should be submitted to the root. This is responsible for

update propagation (or replication) to a childs and
repeated until the subscibers received.

The update propagation performance in two ways

as follows:

 The first, the replication to a nodes which satisfy

condition.

The second, each replicated node (include root)

check the information in vector updated for

knowledge about an subscribers for sending the child
nodes and its continue repeating until the subscibers

received. Note that, then the nodes receive also know

the information of the replicated node. During any
update is being replicated by the root, then new update

that arrives to the root will be discarded.

Suppose the number of updates request

(subscribers) at node 𝑖𝑙 in period τ as a Poisson

process, denoted by 𝑛𝑟𝑢
𝑖𝑙 . Denoted by Ni as the number

of nodes in subtree rooted with 𝑖; ℎ𝑖 = logd Ni as

height of subtree rooted with 𝑖.

Denoted by 𝑝𝑢𝑚 is that a probability of any node

𝑥𝑚 (𝑙 < 𝑚 ≤ 𝑙 + ℎ𝑖 ≤ 𝐿) subscribes to node 𝑖𝑙.

𝑝𝑢𝑚 =
𝑑𝑚−𝑙

𝑁𝑖
, ∑ 𝑝𝑢𝑚

𝑚=𝑙+ℎ𝑖
𝑚=𝑙+1 = 1

The average cost of updating for each subscriber

among 𝑛𝑟𝑢
𝑖𝑙 as:

averager_update_to(𝑖𝑙) + ∑ 𝑝𝑢𝑚 ∗ 𝑐𝑜𝑠𝑡𝑖𝑙

𝑥𝑚
𝑙+ℎ𝑖

𝑚=𝑙+1

At which easy to see:

 averager_update_to(𝑖𝑙) = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑟_𝑠𝑢𝑏(𝑖𝑙)

 =
(𝑙 + 1)

2
∗ log 𝑁

 −
𝑏 ∗ (𝑙 − 1) ∗ (𝑙 − 2)

12

III.4. The optimal replication

Data sharing is replicated for high availability to

reduce a latency of update, the tree balance, handing
over possibility of bottleneck or overload of node.

However, it also increases other costs as storage, a

number of messages and bandwidth usage. The
proposal calculates all costs based on the update rate

at each node for deciding of replicating for the node.

So that, the optimal replication reduces a latency

without increasing the costs (even reduced).

Suppose the number of updates arrive at root in

period τ as a Poisson process, denoted by 𝑛𝑢𝑑
𝑅0 . It is

periodically collected and sent to all node to help with

the optimal replication. The number of subscribers at

𝑖𝑙 in period τ as 𝑛𝑟𝑢
𝑖𝑙 . Moreover, node 𝑖𝑙 know that

node 𝑗𝑘 is the replicated node (presented above).

The costs of update for 𝑛𝑟𝑢
𝑖𝑙 subscribers in case of

replicating from 𝑗𝑘 to 𝑖𝑙 include: the cost of

propagation 𝑛𝑢𝑑
𝑅0 updates from 𝑗𝑘 to 𝑖𝑙 and the average

cost of propagation from 𝑖𝑙 to 𝑛𝑟𝑢
𝑖𝑙 subscribers, so that:

𝑐𝑜𝑠𝑡_𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑖𝑙

𝑗𝑘 = 𝑛𝑢𝑑
𝑅0 ∗ 𝑐𝑜𝑠𝑡𝑖𝑙

𝑗𝑘 + 𝑛𝑟𝑢
𝑖𝑙

∗ ∑ 𝑝𝑢𝑚 ∗ 𝑐𝑜𝑠𝑡𝑖𝑙

𝑥𝑚
𝑚=𝑙+ℎ𝑖

𝑚=𝑙+1

The costs of update for 𝑛𝑟𝑢
𝑖𝑙 subscribers in case of

not replicating from 𝑗𝑘 to 𝑖𝑙 include: the cost of

sending of 𝑛𝑟𝑢
𝑖𝑙 subscribers from 𝑖𝑙 to 𝑗𝑘 and sending

of 𝑛𝑟𝑢
𝑖𝑙 update from 𝑗𝑘 to 𝑖𝑙, so that:

𝑐𝑜𝑠𝑡_𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝑖𝑙

𝑗𝑘

= 2 ∗ 𝑛𝑟𝑢
𝑖𝑙 ∗ 𝑐𝑜𝑠𝑡𝑖𝑙

𝑗𝑘 + 𝑛𝑟𝑢
𝑖𝑙

∗ ∑ 𝑝𝑢𝑚 ∗ 𝑐𝑜𝑠𝑡𝑖𝑙

𝑥𝑚
𝑙+ℎ𝑖

𝑚=𝑙+1

Note that in the two expressions above, we don’t

calculate the cost of sending for 𝑛𝑟𝑢
𝑖𝑙 subscribers from

the subscribers to 𝑖𝑙. Because, in both cases this same

cost.

Node 𝑖𝑙 performs to compare two expressions

above, if

𝑐𝑜𝑠𝑡_𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝑖𝑙

𝑗𝑘 < 𝑐𝑜𝑠𝑡_𝑝𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛𝑖𝑙

𝑗𝑘

156 IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

 𝑛𝑢𝑑
𝑅0 < 2 ∗ 𝑛𝑟𝑢

𝑖𝑙

Node 𝑖𝑙 requets to replicate from node 𝑗𝑘. After

that, node 𝑗𝑘 is responsible to replicate for node 𝑖𝑙.

Then the inequality above is not satisfied, so node 𝑖𝑙

require to stop replicating.

We note that a values nud
R0 and nru

il are dependent of

the updates rate and the total number of tree nodes (or

subtree nodes). Then the solution of optimal
replication above can be evaluated effectively when

theses parameters are changed.

III.5. Maintenance for tree structure

 Each node has an information of its parent and
grandfather which helps to robust against frequent

node churn and failures. In which, departure of node

can be detected by through periodical message
exchanging. For example, after a certain number of

messages are sent without feedback.

When there is a change, relevant nodes will be

passed parameters as the new identifier space that it is

responsible. The proposal only requires very little
structural change, so it is effective in the case of

node’s join/leave high-rate. Two cases of node

departure as:

a. The actively leave of nodes

When a node is not interested in data sharing

anymore, it is active-leave. If node i is a leaf node,

then just notify to the parent j for this node to

acknowledge and know the identifier space 𝑤𝑠𝑗
𝑛

currently has no node responsible, else node 𝑖 select a

leaf node of the subtree rooted with 𝑖 to substitute

itself.

b. Node churn

If node churn is a leaf node, the parent will detect
the abandonment and performance of the same

operation as above. Else each child independent

discovers this and they send a request of maintenance
at the same time to them grandfather by proposing the

substitution nodes (leaf nodes of each subtree). The

grandfather chooses one of the proposed nodes to
replace the node leaving. Especially, if the root is

leaving, the overlay network is responsible for finding

the new node instead.

IV. PERFORMANCE EVALUATION

The reseachers evaluate the performance of new

proposal by using the OverSim simulation about the

latency and the ratio of successful update by the

impact of three parameters include the update rate, the
total number of tree nodes and the churn rate

respectively.

 The latency: the average delay propagation for all

subscribed nodes to receive an update.

 The ratio of successful update: the ratio of the

number of successful update to the total number of

generated replicas.

In addition, the reseachers also compared to the
results obtained to demonstrate the effectiveness of the

new proposal with the proposed solution by

Nakashima and Yi. The reason for choosing these

solutions is because they both also use an update tree
on structured p2p substrate and highly effective in

latency (Nakashima) or the ratio of successful update

(Yi).

IV.1. Simulation setting

The configuration parameters of Pastry include:

network consisting of 5000 peers. The routing table of
each node has 40 levels, each level consists of 15

entries, and the leaf set of each node has 32 entries.

The configuration parameters of distributed

systems and simulation include: the length of each

simulation is fixed to 1000 unit times. The number of

data sharing ranges from 102 to 104 follows a Zipf’s
distribution [13]. The number of replica nodes of each

data sharing follows the Zipf’s distribution with

parameter s = 1, NR = 5000. The heterogeneity of
node capacities follows a Pareto distribution [14]. We

set the shape parameter a = 1 and scale parameter

b = 5000 to get 5000 different node capacities. The

update rate, arrival and departure of nodes follows the

Poisson distribution with default value λ = 0,05, λ =
0,1 respectively. The results points in the figures are

the average values of 10 trials.

IV.2. The effectively latency

In Figure 3, the results show that the impact of

parameter 𝑑 on latency (100 replica nodes). When 𝑑

has a small values, so the height of the tree is high
then it will cost to propagate through many levels (as

in the expression 𝑐𝑜𝑠𝑡𝑖𝑙

𝑗𝑘 above). Oppositely, the tree

will have a small height which reduces the cost of
propagation among levels but increasing the cost of

propagation at the same level (as log
𝑁𝑅

𝑑𝑙 at level 𝑙). So

we see that when 𝑑 = 16, the latency is smallest at 9.5

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 157

unit times. That is why, the researchers used the value

d = 16 in later experiments.

Figure 3: impact of parameter d on latency

The results as shown in Figure 4 when increasing

the number of replica nodes (scalability), the proposal

compares to the solutions by Nakashima and Yi to
significantly reducing the delay of updates

propagation as 16; 18,5 và 40,5 unit time (𝑁𝑅 =
1000), respectively. There are a reasons as follows:

 Figure 4: impact of the number of tree nodes on
latency

Nakashima and Yi's solutions, the both use a

method of update propagation from the root to all

nodes (not just list of subscribed nodes). So that, when

scalability there will have two causes for increasing
latency. The first, this leads to increase the height tree,

so the update propagation from the root is low-

efficient. The second, of course the sending to all node
also increases the latency. Besides, the both has a

limitations in the mothods of construction and

communication (presented above). Furthermore Yi's
propagation also depends on the update rate of the all

nodes, so Yi's solution is less effective in latency. For

the proposal, the optimal replication that puts the

replicas at the nodes can respond to the update
requests faster than the root. This also includes the

efficiency of communication because the nodes are

linked logically as close by the method construction of
the update tree and the solution only update the

subscribed nodes, so reducing the number of nodes

that need updating, also reducing the latency for other
solutions.

The node’s join/leave rate is the Poisson process
that can be calculated by the ratio of time of that node

online to a simulation cycle. When increasing this

value, the solutions by Nakashima and Yi take more
time to build or maintain the update tree due to the

balance of the number of nodes in a subtrees and the

ineffective of the communication. Moreover, Yi’s
solution also added time to transmit updates in the

buffer. The proposal uses the identifier space to be

responsible for each node which provides a solution

that requires minimal alteration of the tree structure in
case of node’s join/leave. Then as a result shown in

Figure 5, the proposal has a smaller latency. In

particular, when the node's join/leave rate is high (≥
0,4), it does not spike as in the solutions by

Nakashima and Yi. Example 29; 48 and 45.5 units

time in case of the node's join/leave rate at 0,5 by

proposal, Yi and Nakashima respectively.

 Figure 5: impact of the node’s join/leave rate on

latency

IV.3. The effectiveness of successful update

Although the latency is always greatest (in previous

results), however the results from Figure 6 show that
Yi's solution has a ratio of successful update of

approximately 90%. The reason is that it uses buffer

(𝑘 = 20 in the experiment) at each node (except leaf
node). Only in case the root's buffer is full then the

new update will be discarded. But the large values of

𝑘 are only weakly consistent. Therefore, Yi's solution

is applicable in the event of a need to update up to the

0
2
4
6
8

10
12
14
16

2 4 8 16 32 64

La
te

n
cy

(u
n

it
 t

im
e)

Parameter d

0

10

20

30

40

50

200 400 600 800 1000

La
te

n
cy

(u
n

it
 t

im
e)

Number of replica nodes

Proposed new

Nakashima

Yi

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5

La
te

n
cy

(u
n

it
 t

im
e)

Node's join/leave rate

Proposed new

Nakashima

Yi

158 IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

maximum number of generated replicas and to meet

the balance between latency and consistency.

Figure 6: impact of the update rate on the ratio of

successful update

The proposal has a higher ratio of successful update

of Nakashima (both without a buffer) and when the
higher the update rate, so the better the result (9.5%

compare to 5.5% in the case of the update rate of 200).

Because, the proposal always has smaller latency and
more stable. Furthermore, Nakashima's solution

updates from the root to all nodes. So the root will

remove the new update until the previous update has

propagated to all nodes. While with the proposal, the
root only needs to propagate the new update to the

replicated nodes.

V. CONCLUSION

This paper presents the efficient proposal which

ensures consistent data sharing on structured p2p. It
proposes a new way to build, maintain the update tree

and perform the optimal replication based on the

update rates, moreover, it uses the effective method of
update propagation. The results of the experiments

show that as increasing the node’s join/leave rate, the

update rate, and the replica nodes, so the proposal is
more stable and effective than by Nakashima and Yi

about the latency and the ratio of the successful

update.

VI. REFERENCES

[1] G.Pierre, and M. V. Steen G. Urdaneta, A decentralized

wiki engine for collaborative wikipedia hosting,

WEBIST, pp.156-163, 2007.

[2] D. Schioberg, L.H.Vu, and A.Datta S. Buchegger,

Peerson: p2p social networking early experiences and

insights, Proceedings of the Second ACM EuroSys

Workshop on Social Network Systems, ACM, pp.46-

52, 2009.

[3] Jun, et al Wang, Distributed collaborative filtering for

peer-to-peer file sharing systems, Proceedings of the

2006 ACM symposium on Applied computing, ACM,

pp.1026-1030, 2006.
[4] A.Rowstron and P.Druschel, Pastry: Scalable,

distributed object location and routing for large-scale

peer-to-peer systems, IFIP/ACM International

Conference on Distributed Systems Platforms and

Open Distributed Processing, Springer Berlin

Heidelberg, pp.329-350, 2001.

[5] Y.Zhao, J. D. Kubiatowicz, and A. D. Joseph, Tapestry:

An infrastructure for fault-resilient wide-area location

and routing, Technical Report UCB//CSD-01-1141,

vol. 214, U. C. Berkeley, (April)2001.

[6] S. Ratnasamy, P . Francis, M. Handley, R. Karp, and S.

Shenker, A Scalable Content-Addressable Network,
Proc. of ACM SIGCOMM, vol. 31, no. 4, pp.161-172,

(Aug)2001.

[7] David, and Jörn Kuhlenkamp. Bermbach, Consistency

in distributed storage systems, Networked Systems,

Springer Berlin Heidelberg, pp.175-189, 2013.

[8] Ingmar, Bernhard Heep, and Stephan Krause.

Baumgart, OverSim: A flexible overlay network

simulation framework, IEEE Global Internet

Symposium, IEEE, pp.79-84, 2007.

[9] Nakashima, Taishi, and Satoshi Fujita, Tree-Based

Consistency Maintenance Scheme for Peer-to-Peer File
Sharing Systems, Computing and Networking

(CANDAR), 2013 First International Symposium on,

IEEE, pp.187-193, 2013.

[10] Yi, Hu, Laxmi N. Bhuyan, and Min Feng, Maintaining

data consistency in structured p2p systems, IEEE

Transactions on Parallel and Distributed Systems,

pp.2125-2137, (23.11)2012.

[11] Zhenyu LI, Gaogang XIE, and Zhongcheng LI,

Efficient and scalable consistency maintenance for

heterogeneous peer-to-peer systems, IEEE Transactions

on Parallel and Distributed Systems, pp.1695-1708,

19.12(2008).
[12] Xin, et al Chen, SCOPE: Scalable consistency

maintenance in structured p2p systems, in 24th Annual

Joint Conference of the IEEE Computer and

Communications Societies, vol. 3, pp.1502-1513, 2005.

[13] Lada A., and Bernardo A. Huberman. Adamic, Zipf’s

law and the Internet, Glottometrics, pp.143-150, 2002.

[14] Josef. Steindl, The Pareto Distribution, Palgrave

Macmillan UK, Economic Papers, pp.321-327, 1990.

0

0.2

0.4

0.6

0.8

1

20 40 60 80
10

0
12

0
14

0
16

0
18

0
20

0

Th
e

ra
ti

o
 o

f
su

cc
es

sf
u

l
u

p
d

at
e

(%
)

Node's update rate

Proposed new

Nakashima

Yi

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 159

THE BRIEF'S AUTHORS

NGUYEN HONG MINH

Born in 1982.

Nguyen Hong Minh received the

BS degree in Computer Science

from People’s Security

Academy, Vietnam in 2005 and
the MS degree in distributed

systems and network from

Université de Franche-Comté,
France, in 2010. He is currently

an teaching in the Department of mathematics and

Information Technology at People's Security
University. His research interests include distributed

system and network.

Email: hongminhnguyen1982@gmail.com

NGUYEN XUAN HUY

Born in 1944

Nguyen Xuan Huy received the BS

degree in mathematics from
Leningrad University of Pedagogy,

The Union of Soviet Socialist

Republics, in 1973 and the in Ph.D.

degrees Information Technology
from Soviet Academy of Sciences,

in 1990. His research interests include software

technology, big data and distributed systems

Email: nxhuy564@gmail.com

NGUYEN HA HUY CUONG

Born in 1979

Ha Huy Cuong Nguyen received

the M.S degrees Computer

Science from Danang of
University in 2010. From 2011

until 2016, he studied at the

center DATIC, University of
Science and Technology - The

University of Da Nang. At the

center of this research, he doctoral thesis "Studies

deadlock prevention solutions in resource allocation
for distributed virtual systems." He received the Ph.D.

degrees Computer Science from Da Nang of

University in 2017.

http://www.univ-fcomte.fr/
mailto:hongminhnguyen1982@gmail.com
mailto:nxhuy564@gmail.com

