
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017

188

Manuscript received September 5, 2017
Manuscript revised September 20, 2017

CPU-GPU Processing

Zulfiqar A. Memon1, *, Fahad Samad1,*, Zafar Rehman Awan2,+, Abdul Aziz1,*, ~Shafaq Siraj Siddiqi2
1Department of Computer Science, FAST-National University of Computer and Emerging Sciences Karachi, Pakistan

2Department of Computer Science, Sukkur IBA University, Airport Road, Sukkur, Sindh, Pakistan

Summary
For achieving high performance from CPU-GPU Processors many
steps were taken in the light of architectural advancement in
design, computational techniques and optimization. We will first
look at the state of art of GPU-CPU architectures and try to
understand CPU-GPU design. Next, we are focusing on major
enhancements in all areas of CPU-GPU Processors according to
research studies. We will then gaze upon the synergy between
CPU-GPU and their execution behavior. Ultimately, we will
examine future for CPU-GPU systems.
Keywords:
CPU-GPU, CPU architecture design, computational technique,
CPU-GPU execution behavior.

1. Introduction

CPU (central processing unit) is the primary component of
the computer systems for performing arithmetic logic and
control (I/O) specified instructions [1]. On the other hand,
GPU (graphics processing unit) is specialized component
intended to quickly control and modify memory to
accelerate rendering of images for displaying. CPU and
GPU have unique feature and strengths by combining
intellectually higher performance can be gained.
Architecturally, the CPU consist of few cores that interacts
with caches that can deal with few instructions at a time.
Conversely, a GPU is comprised of many cores that can
deal with a large number of instructions at the same time. In
today’s computers, the GPU can now take on numerous
multimedia tasks, such as accelerating transcoding
(translating) video between many formats, image
processing, pattern matching and others. To an ever
increasing extent, the really difficult issues to deal with are
those that have a parallel nature such as signal processing,
video processing and image analysis etc.

2. GPU and CPU Background

In mid-2003, the highly advanced GPU and CPU from
NVIDIA and Intel, individually, offered almost the same
single-precision performance according to theoretical
analysis. After nine years, in 2011, the performance of
NVIDIA’s highly advanced GPU was eight times greater
than of Intel’s highly advanced CPU. GPUs have the
capability to provide much faster performance than relative

to CPUs Because GPU have workloads that are more
sensitive to aggregate throughput against single-threaded
executions. GPU designers intelligently use multiple simple
processing elements (PEs) rather than using large, highly
expensive cores, and by providing much smaller die area to
caches and control logic. SIMD (Single Instruction
Multiple Data) control consist of multiple simple PEs by
amortizing the area to instructions store and control logic.
Rather than using large caches, GPUs is installed with
memory latency with a combination of heavy
multithreading and much higher memory bandwidth. Even
if some threads are in waiting state for data from memory,
there will also be many threads that can be executed in their
place. This promises high utilization and high performance,
but at the amount of increased latency for any individual
thread.
These increases in performance have been combined with
increases in the programmability and extensibility of
GPUs.In an effort to permit GPU programs to create
realistic images, GPU designs have been evolved from a
fixed set of functions in pipeline stages into a complete
programmable pipeline. Support for more complex control
instructions and less fixed restrictions on memory access
patterns are included in changes. In more Recently, GPUs
added more features regarding of non-graphics such as
support for higher-precision floating-point arithmetic,
general-purpose computation and Error-correcting code
(ECC) memory, are both essential for many applications,
and global synchronization with low overhead, which is
effective for iterative computations [12].

Table 1: Specifications of the top Intel CPU and AMD GPU as of March
2013

 Intel CPU AMD GPU
Die Size (mm2) 513 352
Cores 10 32
Thread per core 2 2560
Total thread 20 81920
Total active threads 20 2048
Core Frequency (GHz) 2.0 0.4
Highest throughput (GFLOPS/s) 192 4096
Total cache (MB) 33.1 1.4
Memory channels 4 12
Highest memory bandwidth (GB/s) 43 288

Highest power consumption (W) 130 250

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 189

As a solid example of the differences between GPUs and
CPUs, Table 1 compares the best accessible Intel CPU with
most advanced AMD GPU using different number of
matrices [2]. The GPU’s massive parallelism is pretty much
clear in a large portion of these measurements. While CPU
consist of 10 independent cores, the GPU has 32
independent core. A single CPU core has only two
hardware threads while a single GPU core has 2,560 threads.
CPU have 64 threads are active in a single clock cycle while
GPU have 2,048 threads active at the same time, that is 100
plus times as many as the CPU. The difference in high
performance of both CPU and GPU is not quite as high. Be
that as it may, because the CPU execute instructions at a
much higher clock rate and can perform more
computational operations in a thread in single cycle.
Generally, the GPU’s highest computational output is 21
times higher than that of the CPU. The GPU has a smaller
advantage against CPU when it comes to memory
bandwidth. Because the GPU has memory channels that are
3 times as many that is in CPU also GPU have wider
memory interfaces plus higher memory clock speeds as it
reaches 6.7 times more in memory bandwidth.

3. CPU and GPU Architecture

In recent past few years there has been the fusion between
CPU and GPU in a single die. Both Intel and AMD
launched such processors in year 2011, known as Intel
Sandy Bridge and AMD Fusion1 [4]. The CPU and GPU
are fused together in such a way that their designs share a
single memory system, unlike the separate memories
employed in traditional discrete designs. Subsequently, one
potential benefit is a much lower or even irrelevant
overhead in communication between CPU and GPU.
However, the main limitation is that of GPU is much
weaker in both computational capability and memory
bandwidth. The reason behind is primarily based on
financial rather than used of technology. AMD will likely to
discharge a idea of processor chip incorporating with a
high-performance GPU, in light of the fact that it would risk
cannibalizing sales of its most selling discrete GPUs. Intel
may possibly be free from such financial requirements, yet
it doesn't deliver high-performance GPUs. For some reason
AMD called these processors as Accelerated Processing
Units (APUs) rather than Fusion processors. Their
applications the reduced data transfer rate plus longer
computation time and a Fusion GPU can speedup more than
powerful dedicated GPU. However, discrete GPUs will
likely remain the optimal choice for most applications
requiring high performance.
For utilizing GPUs for non-graphics computational
requirements which use corner cases of the graphics APIs.
To use APIs for general purpose, programmers have to
mapped data to the accessible shader buffer memory and

operate data via the graphics pipeline. GPUs vendors have
to add additional hardware and software support to
non-graphics workload as demanded. NVIDIA’s CUDA
and AMD’s CTM explicitly added hardware to support
general purpose computations with providing
multi-threaded hardware by using high level language
interface[3][4]. The programmer can operate on data on
separate GPU memory address space.

As we had discussed AMD's Fusion APUs, Intel's Sandy
Bridge and also ARM's MALI provide solutions that
integrate general purpose programmable GPUs together
with CPUs on the single die[4][6][15]. In this model, the
CPU and GPU do share memory and a common space.
These solutions can be programmed either by using
OpenCL or DirectX. Combining a CPU and GPU on the
same chip has various advantages [8].

• Firstly, it reduced cost due to the use of shared
structures.

• Secondly, this increases to performance because
no data transfers are required between the CPU
and GPU as they shared same memory.

• Thirdly, programming is much simpler because
GPU memory management is not required. It
also enables more directions in system
development.

It reduces data transfer costs plus increased bandwidth and
opens new optimizations paths that were not available. Now,
there are more problems to consider. According to a
theoretical survey, the research and development for
CPU-GPU systems in figure 1. The figure 1 shows the facts
that have cause the development of current GPGPU
systems.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 190

4. General Purpose GPU Architectures

General-purpose computing which is done in GPU as GPU
can compute only for graphical purposes but it can handle
application computation as well which is traditionally
handled by CPU. As GPU have many cores that can operate
on graphics much effectively and much faster than a CPU.
The use of data had to transform into a graphical data in
order to compute in GPU.
Latest GPU consist of fixed function graphics pipeline
which contains pixel fragment processors executing pixel
shader programs and vertex processors that are executing
vertex shader programs.
Pixel fragment processing consist of operation on rasterizer
output to filling with interpolated values in interior of
triangle primitives. Vertex processors operate on point, line
and triangle vertex primitives[11].

In any case, instability in current workloads influenced a
pixel processor and unified vertex design. NVIDIA's Tesla
first implemented Unified processing that increases in
resource utilization and align it in single generalized design.
In Figure 2 GPU design contains streaming multiprocessors
(SMs), on-chip L2 cache and 6 high-bandwidth DRAM
channels. In Figure 3 SM contains 32 single instruction
multiple thread (SIMT) issued a number 32 instruction per
cycle per thread. 32 threads are arranged in group known as
wrap. All wraps then execute using a general program
counter [8].
NVidia’s CUDA allowed programmer that they do not need
to use the graphical concepts in order gain
high-performance from GPU. As it has hardware that
support Microsoft's DirectCompute and Apple/Khronos
Group's OpenCL. GPGPU pipelines can speed up GPU
without any need of data conversion in graphical form.
OpenGL or DirectX are high-level shading languages as a
result graphics accelerators can be used for non-graphical
applications in later 90s. Many problem like protein folding,
stock option pricing have been worked out on graphic
accelerators exhibit notable speedup. Implementing graphic
accelerators turned out to be difficult because graphic APIs
missing programming feature so the implementation was
quite difficult as they had to be expressed in term of graphic
and shader concepts. Floating point computation was
impossible in the beginning then GPU were re-developed as
highly threaded streaming processors with a programming
model extending c [9].
Compiler and runtime system are then permit to utilize as
GPU as general-purpose processor to increase performance.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 191

Latest NVIDIA’s CUDA was purposely designed for the
support the dynamic use of GPUs. Table 2 shows features
of many GPUs considered in the sequel [14].

Recently, Fermi design is just like last generation
NVIDIA’s GPU Design. It is built around scalable
multithreaded Streaming Multiprocessors which features
more than 512 CUDA cores with 3 billion transistors. One
core of CUDA can execute a floating point per clock cycle
in a thread. Every core in CUDA has pipelined Arithmetic
Logic Unit and Floating Point Unit. Fermi is built on the
basis of IEEE 754-2008 floating-point standard CUDA has
the library known as Basic Linear Algebra Subroutines
(cuBLAS) that support programmers to solve large scale
problems. The cuBLAS library is a standard BLAS library
[7].

Traditionally, CPU was only way to communication GPU
in order display on device. As time passes, GPU is
permitted that it can first analyze data like image, 2D or 3D
video as it understand these kind of data much quickly as it
hard for CPU. As straightforward answer that GPU have to
render values on some view like computer graphics now it
has passed back to CPU in order to make some adjustments
in overall view. A more complex example that GPU need to
detect edges output values to represent something as it have
fast and local hardware to access and operate more easily.
GPGPU is much of logical concept not physical that is type
of procedure not a piece of hardware. Nonetheless specific
hardware design that can actually increase the effectiveness
of its pipeline.

The following are some of the areas where GPUs have been
used for general purpose computing General purpose
computing same of major areas like computer clusters or

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 192

any of its variant as in high-performance computing cluster
or so on in Grid computing, Load-balancing clusters or in
learning algorithms machine learning and data mining
computations, Cryptography and cryptanalysis or Neural
networks and much bigger field of bio information like
DNA Analysis, Protein searching and in molecular
dynamics.

5. Heterogenous Computing

Use of two different multi-core processors that are
specialist in their specific tasks. Heterogeneous System
Architecture (HSA) design multiple processor types both
CPU and GPU in one die that effectively handle their
respective works at their best that is GPU can render
graphics and can perform computation on large scale while
CPU can perform scheduling, sequential tasks on OS.
Demands of new user experience to access more natural
interface like speech, gesture and devices to manage
different kind of contents [10] [16].

HSA is introduced by HSA Foundation and many others
(AMD and ARM). The aim is to improve latency between
CPU and GPU. Devices that are using HSA are more
compatible with programming like moving data between
devices that is currently done with CUDA and OpenCL. It
is easy for programmers that they can perform off load
computation to the GPU much easily [13].

Offloading non-HSA system 1

Offloading HSA system 1

Effort to increase GPU for general purpose computation
takes a coincided for consumer culture. Recently consumer
are hungry for rich visual experiences but at the same time
new mainstream OS had to perform better.
To increase performance, power and scalability of
multicore CPU led designers use GPU's vector processing
capabilities. Advanced vector processors consist of
thousands of cores that can operate in same time to compute.
This lead GPU to be much effectively to deal with intensive
computation in a large scale.
As GPU vector processing is not solution of everything like
overhead associated with small data array can be resolved
much faster by CPUs scaler approach. As CPU still do
much better than GPU for certain problems.

Heterogeneous computing is really amazing that it can
process video in HD to translation and interpretation in
real-time. It can improve parallelism and power efficiency.

6. Future of CPU-GPU Systems

In modern era, GPUs and CPUs are increasingly being
presented as imperative co processors, as they cannot
interchange each other. Heterogeneous computing has been
effectively explored to utilize in several applications

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.9, September 2017 193

ranging from natural sciences to engineering and still many
challenges remain.
As it also appears the industry is moving towards
heterogeneous computing. AMD, NVidia and Intel are all
pointing toward same directions that journey would be full
of challenges. Heterogeneous computing is listed as major
advancement in the field of computer architecture that it
will increase power efficiency. By 2020 it might be possible
a 4W processor can rival 100W processor. Heterogeneous
computing are now an emerging trend in every domain of
computing, you can find in all high-performance computers,
servers, tablets, mobile phones and embedded devices.

7. Conclusion

In this work we investigate the architecture CPU-GPU
systems. We looked at CPU-GPU background. We then
discuss current architecture CPU-GPU. Then we talked
about general purpose GPU. We examine hybrid computing
in modern architecture. Lastly, we what will be the future of
CPU-GPU systems.

References
[1] CPU and GPU
[2] http://www.wikipedia.org
[3] NVIDIA GPU and Intel CPU family comparison articles.

http://www.wikipedia.org
[4] NVIDIA’s next generation cuda compute architecture:

Kepler GK110. Technical report, 2012.
[5] AMD http://www.amd.com/.
[6] AMD OpenCL Programming Guide.

http://developer.amd.com.
[7] ARM Mali-400 MP. http://www.arm.com
[8] NVIDIA Corporation. CUDA Toolkit 4.0.

http://developer.nvidia.com/ category/zone/cuda-zone
[9] The Architecture and Evolution of CPU-GPU Systems for

General Purpose Computing-Manish Arora
[10] Improving Resource Utilization in Heterogeneous CPU-GPU

Systems–Michael Boyer.
[11] A Survey of CPU-GPU Heterogeneous Computing

Techniques
[12] Sparsh Mittal, Oak Ridge National Laboratory Jeffrey S.

Vetter, Oak Ridge National Laboratory and Georgia Tech.
[13] Computing Performance Benchmarks among CPU, GPU,

and FPGA Christopher Cullinan, Christopher Wyant and
Timothy Frattesi

[14] Recent Advances on GPU Computing in Operations
Research

[15] Vincent Boyer and Didier El Baz
[16] Heterogeneous system architecture helps AMD and ARM

deal with demands
http://www.theinquirer.net/inquirer/feature/2435169/heterog
eneous-system-architecture-helps-amd-and-arm-deal-with-
mammoth-compute-demands

[17] CUDA GPUs https://developer.nvidia.com/cuda-gpus
[18] Intel www.intel.com

[19] What is Heterogeneous Computing?
http://developer.amd.com/resources/heterogeneous-computi
ng/what-is-heterogeneous-computing/

http://www.wikipedia.org/
http://www.wikipedia.org/
http://developer.amd.com/
http://www.arm.com/
http://www.theinquirer.net/inquirer/feature/2435169/heterogeneous-system-architecture-helps-amd-and-arm-deal-with-mammoth-compute-demands
http://www.theinquirer.net/inquirer/feature/2435169/heterogeneous-system-architecture-helps-amd-and-arm-deal-with-mammoth-compute-demands
http://www.theinquirer.net/inquirer/feature/2435169/heterogeneous-system-architecture-helps-amd-and-arm-deal-with-mammoth-compute-demands
https://developer.nvidia.com/cuda-gpus

