
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

32

Manuscript received October 5, 2017

Manuscript revised October 20, 2017

Develop and Design Hybrid Genetic Algorithms with Multiple

Objectives in Data Compression

Khalil Ibrahim Mohammad Abuzanouneh

Qassim University, College of Computer, IT Department, Saudi Arabia

Summary
In this paper, Data compression plays a significant role and is

necessary to minimize the storage size and accelerate the data

transmission by the communication channel object, The quality

of dictionary-based text compression is a new approach, in this

concept, the hybrid dictionary compression (HDC) is used in one

compression system, instead of several compression systems of

the characters, syllables or words, HDC is a new technique and

has proven itself especially on the text files. The compression

effectiveness is affected by the quality of hybrid dictionary of

characters, syllables, and words. The dictionary is created with a

forward analysis of text file a. In this research, the genetic

algorithm (GAs) will be used as the search engine for obtaining

this dictionary and data compression, therefore, GA is stochastic

search engine algorithms related to the natural selection and

mechanisms of genetics, the s research aims to combine

Huffman’s multiple trees and GAs in one compression system.

The Huffman algorithm coding is a tactical compression method

of creating the code lengths of variable-length prefix code, and

the genetic algorithm is algorithms are used for searching and

finding the best Huffman tree [1], that gives the best

compression ratio. GAs can be used as search algorithms for

both Huffman method of different codes in the text characters

leads to a difference in the trees, The GAs work in the same way

to create the population, and can be used to guide the research

to better solutions, after applying the test survive and their

genetic information is used.

The proposal is a new multi-trees approach to compute and

present the best Huffman code trees of characters, syllables, and

words to get the best possible of minimization compression [2].

The frequency increases to the text have an impact on

compression rate. This approach generates more distinctive code

words and efficient of space consumption and computation for

compression rate without losing any data on the original files, the

experiments and results show that a significant improvement and

accuracy can be achieved by using the code words derived [3].

 Key words:
Huffman algorithm, Data compression, Genetic information,

Huffman code trees.

1. Introduction

Data compression is one of the main important topics in

the last years. Big data must be stored in data warehouses

or archives, and a big data must be transmitted through

communication channels. There are several of Data

compression algorithms were designed for data processing

byte by byte [4]. For example, input any symbols are

taken from ASCII code table, therefore, the size of all

symbols are is 256 represented by 8-bits. and it’s easy to

store all symbols into compressed data, because it's

available on every system. Data compression is the

creating binary process of representations of the file which

requires minimum storage space than the original file. The

main data compression techniques are a lossy and lossless

compression. The lossless data compression is used when

the data has to be uncompressed exactly as it was before

compression. The files is stored by using lossless

technique, losing any single character can in the worst

case make the data misleading. There are limits to the

amount of space saving that can be gotten with lossless

compression. Lossless compression ratios are generally in

the range of 0.5 to 0.2. The compression of lossy works on

the assumption that the file doesn't have to be stored

perfectly. Much information can be thrown away from

some images, data of video and audio, and when

uncompressed some of the data will still be acceptable

quality. The popular method for data compression is

Huffman Code runs under various platforms. It is used as

a multistep compression process to produce better codes;

the best code produces if the symbol probabilities are

negative and power of 2.

The compression methods are developed and have the best

research for the data compression By D. Huffman in 1952,

the algorithm was started to build a list of all the symbol

probabilities in descending order. It can construct a

Huffman trees at every leaf, with a symbol node, from the

down up, it’s done in several steps, and for each step, the

two symbols are selected with minimum probabilities,

where it will be added to the partial tree top, and from the

list is deleted, in the next step, the two original symbols

can be replaced with an auxiliary symbol, where the list is

reduced to one auxiliary symbol representing all alphabet,

the characters after completing , the tree will be traversed

to determine all codes .

2. Huffman algorithm

All Huffman code defines a frequency based on codes of

scheme that can generate a set of variables with size code

words of the minimum average length as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 33

1- The frequency table will be constructed and sorted in

descending order from text file to Build binary trees,

derive Human tree and generate Huffman code to be

compressed and find the best Huffman trees, as in the

figure 1 below.

The data will be readied from file text of the proposed

system and to create the initial population, and from the

initial population, the chromosomes will be produced.

Huffman encoding example: When a message has n

symbols, block encoding requires log n bits to encode

each symbol. Message Size = frequency character * fixed

length 43*8= 44 bits.

Huffman encode massage:

10 01 10 001 111 01 111 10 01 001 10 000 000 10 01 110

10 01 001 10 110 111 110 10 001 111 01 10 01 10 01 10

10 01 111 110 10 01 111 000 111 10 01 10

All character in this message a=111, b=01, c=001, d=000,

e=10, f=110.

Message Size after encoding =

a(3*7)+b(2*10)+c(3*4)+d(3*3)+ e(10*15) + f(3*4) = 224

bits.

Fig 1: Huffman Code Trees

The Huffman encoding = 224 bits long. The Huffman

encode tree saves: 344 - 224= 220 bits. Data compression

ratio is the ratio between the uncompressed data size and

compressed data size: CompRatio=UncompSize /

CompSize =1.535 to 1. DataRate savings is defined as the

reduction of DataRate relative to the uncompressed of

DataRate saving =1- Compressed DataRate/

Uncompressed DataRate = 34.5%.

3. Design of Huffman Multiple Trees

This section describes the GAs applying for Huffman’s

Multi-Trees. The GAs design involves several operators:

Genetic_ representation, Population initialization,

Ftness_function, Selection scheme, Crossover, and

Mutation. Huffman multi-trees consist adjacent nodes

sequence in the graph. Hence, this is a natural choice to

apply the path oriented of the encoding method. The path

based crossover, the behavior and effectiveness of a

genetic algorithm depend on the several parameters

settings, all these parameters include the population size,

crossover probability, mutation probability , generations

number, where mutation range are also very popular [6].

Siding degree and elitism are used for h better individuals

in selection scheme. In this paper, the multiple point

crossover is applied to get its positive effect, when used

them with populations to avoid creating unproductive

clones for the algorithm.

In this research ,will be applied the elitism algorithm to

get and prevent losing of the best solution that found, the

elitism t means that instead of replacing some old

individuals with the new individual, and keep set of the

old individuals as long as and it will be better than the

worst individuals of the next new population. Too much

elitism may cause premature convergence, which is a

really unpleasant consequence. To avoid this, we control

applying of the elitism algorithm to select individuals as

small number no more one percent of the population

selection.

The chromosomes will be produced randomly from the

initial population length by depending on the variety in the

text file of the inserted symbols. For each character the

frequency is computed and for each character the

probability is found in our research and for each

chromosome will build the Huffman tree in the population

by depending on its probability. The code word for each

gene is determined from its tree. The fitness function is

computed by evaluating the chromosome using the

variance of characters that depend on calculating the

average for each chromosome.

 Chromosome 1 :

1 1 0 0 0 1 0 1

 Chromosome 2 :

0 1 0 1 0 1 0 0

 Chromosomes 3 :

1 1 1 0 1 1 0 0

The fitness function is calculated depend on the individual

evaluation by computing the average size, is shown in the

Eq.1, 2.
 n

 A= ∑ (Pi * ai) , (1)

 i=1

 n

 Variance = ∑n pi (ai – A)2 , (2)

 i=1

Where pi: probability, ai: number of bits; A: average size.

 Crossover operations generates a variety of individuals

and can avoids the conflict between the genes constructing

and the chromosome, and the most important property

must be available in our approach, and to complete

building of the Hoffman trees for each new individual, the

fitness function will be evaluated after each computing of

tree. In next step the new offspring will be applied to

compare it with the worst individuals in the exiting

population and will be exchanged with the worst

individual’s selection to produce the best variety in the

next population.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 34

3.1 Fitness Function

In this research there are different methods to evaluate

fitness function, the byte series method uses to evaluate

the bytes series data, the second is the byte frequency

method to evaluate the frequency bytes, the words

frequency method is to evaluate the words frequency, and

the decision method is to select the best decision for each

method as multi-objectives [7]. The fitness functions are

applying for measuring the problems quality of each

method. The genetic algorithms are evaluated using

different methods to find the best results of combinations

methods, and performance, also to determine the best

corresponding between environmental characteristics files

and their algorithms , genetic algorithms will be selected

a fitness measurement each process and produced a new

individuals of population,. all objectives based on its

fitness function will be forced optimize using the

evolution process ,the fitness function is the absolute

variation value average between the compression ratio and

achieved compression in the environmental characteristics

files, and also the fitness of the byte frequency method can

be expressed as the output of the byte frequency of file n,

file n is the file in the experiment files, and the

compression saving file n can be denoted as

Comp(algorithm, file n) , the file compression saving n

when using the compression algorithm .

3.2 Genetic Operators

In this research will be applied a multi-objective algorithm

of the individuals, there are several options to apply multi-

objective genetic operators to generate new individual

based on multi-objective to guide evolution through the

search space as follows: 1- Using a particular operator that

has been selected to all models within an individual or

select a different operator for each model. 2-The crossover

technique will be applied between homogenous structures

models, used crossing over trees at different positions in

the swapping of useless material of genetic algorithm for

restricting the crossover positions during evolution.3- The

system will be selected an operator and a predefined

probabilities for Huffman coding on characters, Huffman

coding on syllables, and Huffman coding on words. 4- In

the crossover will be applied only homologous data are

allowed for crossing process. 5- The system will take the

structural constrains as multi-objective of Huffman code

trees into consideration to be ensure its syntax is

implemented.

4. Proposed Compression Method

In this research, the author proposed a multi-trees

representation, first tree is selected to analyze the byte

series, second tree is selected to analyze the byte

frequency, and a third tree is selected to analyze the words

frequency, and decision method to select the best

prediction for the compression ratio.

The test data compression coding and its strategy is based

on compression techniques such as run length coding,

statistical coding, and dictionary based coding. In this

paper, the researcher evolves Huffman multi-trees and

syllable-based compression of LZW using GAs to predict

the compression ratio of a specific compression models to

apply with different text[12], so the data representation

will be depended on the file type, for example each unit

for the file text will be represented a character as ASCII

text, and if a file type is an executable or instructions file

can be represented as numeric or textual data, the file type

could be determined by file name or extensions, and after

this stage , the compression model can be decided to

build multi-trees representation based on decision method

[9].

The proposed compression method demonstrated the

optimal Huffman code trees via a genetic algorithm, the

experiment determined the all possible strings were

known during of processing time, the genetic algorithm

applied to select the most efficient set of strings to use it

in the Huffman multi-trees encoding, the bits string can

be represented as a collection of variable-length for

matching series of bits 0, 1, the matching vectors are

assigned a prefix free code, a string can be represented as

a set of matching-series coding with the values of the

unspecified positions, GAs will be generated a set of

multi-trees for matching strings and used it to compress

the files data , the better fitness is producing optimal

compression ratio .

The binary tree is the best way to visualize any particular

encoding diagram, and any character can be stored at a

leaf node. The character encoding is obtained by

following the path from the root to its node tree, left going

edge represents a 0, and right going edge a 1, as Shawn in

the figures 3,4 , this diagram tree using the fixed length

encoding are given in Eq. 3, 4.

𝐴𝑚 = ∑ (𝑃𝑖 ∗ 𝑎𝑖 + 𝑇𝑙)

𝑛.𝑘

𝑖=1.𝑙=0

 (3)

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = ∑ 𝑃𝑖((𝑎𝑖 + 𝑇 𝑙) − 𝐴𝑚)

𝑛,𝑘

𝑖=1,𝑙=0

 (4)

 d=000, &=001, c=010, f=101, k=100, a=101, b=110, e=111

Fig 2: Illustrates the binary tree diagrams of the fixed-length encoding.

37

k=5

14

25

51

12

Left=0 Right=1

6 8

e=15 b=10 a=7 c=4 f=4 &=3 d=3

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 35

MassageSize=d(3*3)+&(3*3)+c(3*4)+f(3*4)+k(3*5)+a(3*7)+b(

3*10)+e(3*15)=153 bits.

Frequency d & C f K a B E

Symbols 3*3 3*3 3*4 3*4 3*5 3*7 3*10 3*15

Bits 000 010 010 011 100 101 110 111

Fig 3: Illustrates the binary tree diagrams of the variable-length encoding.

Massage Size=a(4*3)+d(4*3)+ & (4*3)+c(4*4)+ f(3*4) +

k(3*5)+b(2*10)+e(2*15) = 129 bits.

Fig 4: illustrates the Huffman multi-trees diagrams of the variable-length

encoding.

 T=T1+T2 + …….

MassageSize=d(3*2)+&(3*2)+c(3*4)+f(3*4)+k(2*5)+a(2

*7)+b(2*10)+e(2*15)= 110 bits.

 Tree 1=36 bits Tree 2=74 bits

Frequency d & c f K a b e

Symbols 3*2 3*2 3*4 3*4 2*5 2*7 2*10 2*15 110

Bits 00 01 10 11 00 01 10 11

The different types mutation will be applied, which have

named bytes’ mutation, is identical to that used in genetic

system, there are a set of binary nodes in Huffman

multiple trees, each of its node can be a leaf or an internal

node and replaced with another node, in this case can be

swapped between an internal node and a leaf node as in

Figures 5 and 6.

Fig 5: The swap mutation probability in genetic algorithm has been

applied as a prefix-free tree.

Fig 6: Illustrates a prefix free tree before the combine mutations have

been implemented.

Fig 7: Illustrates the trees from figure 6 after the combine mutations have

been applied, with the nodes ‘cross’ with ‘over’ and ‘some’ with ‘thing’

selected for combination.

There is another new mutation, known as join mutation to

provide the functionality of creating new long string is

constructed from a set of words, there are the set of

symbols occur more frequently than others symbols in

English text. For example the most common letters are E

and T, and therefore to create an optimal Huffman code

tree for the English alphabet, and encode some texts with

it to apply the compression ratio and the quality of results

[9].

In this part of research, they are three priorities, the system

will take words in the first priority, in the second priority

will select frequent syllables, and in the third priority will

take individual letters, and in a typical text file, there are

some words occur more than others. And to represent

these words in Huffman binary code, the common words

will be replaced with short letter sequences and

uncommon words with longer sequences, for increasing

the information entropy of file text, the compression ratio

Frequency d & c F k a b e

Symbols 4*3 4*3 4*4 4*4 3*5 3*7 2*10 2*15

Bits 1111 1110 1000 1001 001 101 01 11

b=10
11

15

30

8

Left=0
Right=1

6

e=15

k=5

f=4 c=4 &=3

21

71

d=3

a=7

51

14

12

37

k=5

8 25 6

&=3 d=3 f=4 c=4

a=7

b=10 e=15

Level =0 Level=1

T1=Tree 1 T2=Tree 2

k=5 16 23

30

8 6

a=7

b=10

f=4 c=4 &=3

21

71

d=3

e=15

51

great 11 15

30

great

crossover

21

71

something

51

great 11 15

30

8 6

great

crossover

thing some

c=4 over

21

71

cross

something

51

https://www.howmanysyllables.com/words/something
https://www.howmanysyllables.com/words/something

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 36

will be more efficient, when the compressed of file text

includes on frequented words with longer sequence of

[11].

The sequence of frequented words are computing the

probability for a new string, and randomly selected the

leaf nodes, two strings are joined together into a new one

string, a new node is created for containing that string.

The new node is selected to be new leaf node in Huffman

binary tree, the new node is created its sibling.

There is another mutation, known as words mutation to

provide the functionality of swapping some words

between an internal node and a leaf node in the Huffman

binary tree described above.

There are randomly selected two leaf nodes for swapping,

the words are created into a Huffman binary tree, and the

new node is created to include that word as one string.

One of the two string, randomly selected of leaf nodes,

brought down a level, and the new node is made its

children [14].Figures 3 and 4 are an illustration of one

particular case of the word mutation.

Unlike in genetic programming; by the nature of the trees

used in this algorithm, any crossover would have a

significant potential to cause some strings in the tree to

occur twice while others disappeared entirely. The fitness

of a chromosome is determined by the length of a file, in

bits, as compressed using the encoding it represents; in

this experiment, therefore, fitness is to be minimized.

In this research the tree binary structure will be

represented by 2n−1 bits of n internal nodes, a prefix free

encoding tree will be represented in its entirety by

selecting a preorder traversal of the tree as it is a full

binary tree to identify each of the nodes visited is a leaf

node or an internal node. The uncompressed string in the

encoding has 8L bits for each, where L is the string length

in bytes, characters in the code word will be calculated for

the total lengths of symbols, the compressed data length is

determined by looking up each encoding trees.

Consider a multicast tree is defined by G(VT,ET), where

VT ⊆V, ET⊆E and G⊆T, and all trees are associated

with link cost C(Ti), is shown in Eq. 5.

T=T1+T2+T3 ……,Level={0, 1,2,3…k} (5)

A unicast probabilities request from the root node r to

node d as to the destination node with the encoding

probability bound (Δ), see Eq. 6.

∆ (Pi) = ∑

𝑛

𝑒∈𝑃𝑇𝑖(v,di)

𝑃𝑇𝑖 ≤ ∆ (6)

The shortest path of encoding probability is obtained by

selecting the path from the root to its node to find a series

of paths Pi; i∈ {0, 1, 2.3….}, is given Eq.7.

 𝑃𝑇𝑖 = ∑ (𝑃𝑖 ∗ 𝑎𝑖 + 𝑙) (7)

𝑛

𝑖=1,𝑙=0

Consider a symbol a occurs at a node n at depth k in the

tree, and D array encoding of length k is given by C(a) =

D = {d1,d2,d2….dk},where di ∈ [D],all prefixes Codes

of C (di) are matching to nodes on the path from root(r) to

destination (di). While length max Lmax can be the

longest encoded symbol, the possible value of leaves at

depth lmax is D(Lmax), The code word leaf of depth i

will be D(Lmax − Li) , and so Symbol_Coding C(a) =

Encoding lengths E(La), see Eq. 8.

𝐶(𝑎) = ∑ 𝐷(𝐿max − 𝐿𝑖) (8)

𝑘

𝑖=1

In a series of graphs Gi, where i ∈{ 0,1,.2.3….}, the

value of fitness function, used to evaluate the solution

quality is the tree cost among a set of candidate solutions,

is given in Eq.9.

𝑓(𝐶𝑇) = ∑ 𝑃𝑇𝑖 𝑇𝑖 T (9)

𝑛

𝑖=1

|The cost of the minimal tree will satisfy the encoding

probability of constraint, the minimum cost of encoding

probability, is given in Eq. 10.

C(T) = 𝑀𝑖𝑛 𝑃𝑇 ∑ 𝐶(𝑇𝑖)

𝑛

𝑒𝜖𝑃𝑇𝑖(v,𝑑𝑖)

 (10)

The Stability of the best solution’s fitness function can be

measure after calculating the standard deviation between

the different solution of fitness for each process, the

fitness solutions and average increasing indicates that the

system produce good visible solutions in each new process

[5]. The fitness value should be accurately evaluated as is

quality and determined by the fitness function [10]. In the

fitness algorithm for finding the minimum cost of

encoding probability between the root of tree and the leaf

node. the path cost is the primary criterion of solution

quality between a set of candidate solutions as minimum

cost of the fitness value , for example a chromosome Chi

representing the path P, is denoted as F(Chj), see Eq. 11 ,

below.

F(Chi) = [∑ C(chi)

 chi∈Pi(r,l)

]

−1

 (11)

In this research the system will be started randomly to

initialize the individuals population using standard genetic

operators for guiding evolution during the search space

related to the compression field , and construct Huffman

multiple trees encoding that work with different data

types and data frequencies sizes, and after several studies

to get advantages of all available knowledge concerning

the data compression parameters, for implementing

various compression algorithms to the heterogeneous data

file, will generate different compression ratios with

extremely time periods consuming, the best Testing

compression algorithms to determine data compression

and avoid time consuming ,when the data size is less than

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 37

1GB [11], and to avoid applying a random compression

algorithm that could be loosed efficiency by increasing

storage space or it might even get unexpected results, the

researcher applied several compression algorithm side by

side with estimating and analyzing the compression ratio

to be helpful for saving the computational resource and

the time required for executing the compression process

[12].

In this paper, the proposed algorithms presented a new

compression algorithm of lossless data and used Genetic

algorithm to apply the different data compressibility and

compare it with different multi-trees for minimizing the

file total size. When GAs was successfully implemented

for constructed different Huffman’s multiple trees to give

an evaluation of a compression ratio, the proposed

approach based on GAs and Huffman’s multi-trees to

implement program that use to predict data compression

and high efficiency for different compression model trees,

and to get a fast analysis for determining and which

compression model trees is to be used minimum resources

and save the time processed to run Huffman multi-trees

[13].

3. Compression methods and Technical

In this research, the author supposed the word-based

compression will be more suitable for large files, the syllable-

based compression will be useful for middle-sized files, and the

character based compression will be more suitable for short files,

used syllable based compression of LZW and Human coding

with genetic algorithm to compare each compression methods

with their counterpart variants for words, syllables, and

characters for making the best decisions to have the minimum

cost of Huffman encoding probability [14].
We have created for each language a database of frequent words

to improve a compression, the words from database are used for

compressing algorithms initialization. As we know the English

languages have a set of syllables characteristically [15]. So set of

testing documents was created for English language, and we

created for it decomposition algorithm into syllables one

database of frequent syllables from letters, and also created

databases of frequent other syllables.

For encoding length of syllables are used three Huffman trees,

the first for Huffman coding trees on characters, the second for

Huffman coding trees on syllables. The third for Huffman

coding trees on words, all Trees are initialized from received

from text documents.

Optimizing Compression Algorithms: The proposed system

applied genetic algorithms to determine the most repetitive

strings inside the text file to be a compressed file, the population

search as contained a set of nodes that represent different strings,

the Huffman trees are generated to encode higher frequency with

lower references. In this work, the researchers utilized

specialized search operators. The final results demonstrated that

GAs was used with Huffman trees to achieve higher

compression than the standard coding algorithm [15].

Fig 8: Illustrates the block diagram of the proposed system and its

algorithms.

4. Experiments and Results

There are two main criteria in the compression methods should

be taken into consideration: the compression ratio and the quality

of results, the differences between the input file and the output

file. GAs use a genome including a binary trees structures,

while a genotype represents a particular prefix free encoding, and

the initializing of population consists of a set of trees with 256

possible bytes, the experiments were implemented using the Java

Genetic Algorithms Package , All experiments were performed

using the following parameters settings: a population size 100-

200 individuals, maximum generations 1000, a crossover

probability 80%, a mutation probability 5%, and a maximum tree

depth 15. The population size and number of generations

dependent on type of the experimental analysis, in each mutation

was applied full probability to get optimal solution. There were

used for ‘swap’ and ‘combine’ mutation for each new individual.

In the first experiment, the space saving will be calculated and

defined as the decreasing in data size relative to the

uncompressed data size: Space Savings = 1− Compressed Size /

Uncompressed Size. The best compression performs is The

higher value for the space saving. In our first tests, we used the

set of text files to study the compression behavior with trees

including 256 possible 8bits ASCII characters, the achieved

space savings were compared to ratios that can be achieved using

Huffman coding tree SpaceSaving, Table 1, presents the results

of applying the GAs Huffman coding based tree to all files.We

performed 10 runs using four text file and let each run for 1000

total of generations, the best SpaceSaving achieved was 49%,

resulting in a file size of 5055 bits using GAs Huffman coding

tree comparing 49% resulting in the same file using Huffman

coding tree.

 Table 1. Comparison Huffman coding Tree and GAs Huffman coding

Tree SpaceSaving taking into consideration effect of different files sizes,

while the population size and generation number are fixed.

File HuffTree
Comp_Size

GAHuffTree
Comp_Size

HuffTree
SpaceSaving

GAs HuffTree
SpaceSaving

File1 4211 3762 0.33 0.41

File2 4502 4122 0.36 0.42

File3 4952 4491 0.40 0.46

File4 5055 4901 0.47 0.49

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 38

In the second experiment, we applied the GAs Huffman

coding algorithm in a set of the files, using different

generation numbers, the file must be more than 800

generation numbers, in order to get maximum

compression ratio and SpaceSaving. In this experiment,

the results satisfied the probability of compression and

gave good results are illustrated in Table (2).

Table 2. Illustrates a set of experiments results taking into consideration

different generation number, while the population size and file sizes are

fixed.

 Huff word GAs+Huff word
File FileSize CompSize SpaseSaving CompSize SpaseSaving

File5 547632 301112 45.02 312621 42.91

File6 717302 395679 44.84 416992 41.87

File7 884235 524361 40.70 545112 38.35

File8 1023351 611224 40.27 639881 37.47

File9 1272142 825545 35.11 841235 33.87

In the third experiment, we developed a GAs to be able

extending the standard Huffman coding to multi-trees of

character encodings for getting better SpaceSaving, we

used the effect of the probability of genes on the

compression ratio, using GAs Huffman code multi-trees in

set of the files, the increment in the probability of genes

gives the gene the shortest code word and as a result

increases the Space Saving of compression. In the

experiment, results will be satisfied the probability of

compression and gave good results are illustrated in Table

(3).

Table 3. Illustrates a set of experiments results taking into consideration

different generation number, while the population size and file sizes are
fixed.

No
Generation

Number

Population

Size

Compression

Size

GAsHuffTree

SpaceSaving

1 200 42 83021 0.54

2 400 42 80136 0.56

3 600 42 72126 0.60

4 800 42 69141 0.62

In the Fourth experiment, we used GAs with LZWL and

HuffSyllble compression algorithm side by side with

estimating and analyzing the compression ratio ,the results

have been increased compression ratio and getting better

SpaceSaving , we used ‘swap’ and combine mutation to

improve the probability of genes in the compression

process, using GAs Huffman code multi-trees in a set of

the files, the increment in the probability of genes gives

the gene the good code word and as a result increases the

Space Saving of compression. The experiment result was

satisfied the probability of compression and gave good

results are illustrated in Figure 9.

Fig 9. Illustrates a set of examples that comparing different algorithm

with fixed files.

In the fifth experiment, we have to compare GA Huffman

coding with WLZW word-compression algorithm, in a set

of the different files sizes, while the other parameters are

fixed, GAs Huffman encoding that designed as HuffWord,

we compared in this test with compressor LZ77 designed

as the WLZ77 Word-based compression method, this

experiments were effectiveness of GAs Huffman encoding,

Results has shown in figure 10. This test shown, that GAs

Huffman encoding algorithm is much better than WLZ77

Word-based compression algorithm.

Fig 10. Illustrates a set of examples that comparing GAs Huffman
coding with WLZW algorithm in a set of the different files sizes, while

the other parameters are fixed.

Acknowledgment
The author would like to acknowledge the financial support of

this work from the Deanship of Scientific Research, Qassim

University, according to the agreement of the funded project

No.1597-COC-2016-1-12-S, Qassim, Kingdom of Saudi Arabia.

References
[1] D. A. Huffman, ‘A Method for the Construction of

Minimum Redundancy Codes’,'Proceedings of the

IRE,Vol.40, pp.1098-1101,1952 .

[2] Jeffrey N.Ladino,”Data Compression Algorithms”,

http://www.faqs.org/faqs/compression-

faq/part2/section1.html.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 39

[3] Article-Compressing and Decompressing Data using Java

by Qusay H.Mahmoud with contributions from

KonstantinKladko. February 2002.

[4] The Data Compression Book, 2nd edition by Mark Nelson

and Jean-loup Gailly, M&T Books, New York, NY

1995 ,ISBN 1-55851-434-1.

[5] T. A. Welch, “A Technique for High -Performance Data

Compression,'' Computer, pp. 8--18, 1984.

[6] Khalil IbrahimMohammad Abuzanouneh. “Hybrid

MultiObjectives Genetic Algorithms and Immigrants

Scheme for DynamicRouting Problems in Mobile

Networks”. International Journal of Computer Applications

164(5): 49 -57, April 2017.

[7] Khalil IbrahimMohammad Abuzanouneh “Parallel and

Distributed Genetic Algorithm with MultipleObjectives to

Improve and Develop of Evolutionary Algorithm ,

International Journal of Advanced Computer Science and

Applications, Volume7 Issue 5, 2016.

[8] L.ansky J., Zemlicka M. Compression of Small Text Files

Using Syllables.Technical report no. 2006/1. KSI MFF ,

Praha, January 2006.

[9] U çolu k̈ G., Toroslu H.: A Genetic Algorithm Approach

for Verification of the Syllable Based Text Compression

Technique. Journal of Information Science, Vol. 23, No. 5,

(1997) 365–372

[10] Mark.Nelson, Interactive Data Compression Tutor & The

data compression book2nd Ed. by M&T books, http://

www.bham. ac.uk.

[11] LZW Data Compression by Mark Nelson, Dr. Dobb's

Journal October, 1989.

[12] D. Hankerson, P. D. Johnson, and G. A. Harris,

"Introduction to Information Theory and Data

Compression“.

[13] Soumit Chowdhury, Amit Chowdhury, S. R. Bhadra

Chaudhuri, C.T. Bhunia “Data Transmission using Online

Dynami Dictionary Based Compression Technique of Fixed

and Variable Length Coding” published at International

Conference on Computer Science and Information

Technology, 2008.

[14] P.G.Howard , J.C.Vitter, “Arithmetic Coding for Data

Compression,” Proceedings of the IEEE, vol. 82, no.6, 1994,

pp.857-865.

[15] Ahmed Kattan, Riccardo Poli, "Evolutionary lossless

compression with GP-ZIP*," in Proceedings of the 10th

annual conference on Genetic and evolutionary computation,

Atlanta, Georgia, USA, 2008, 2008, pp. 1211-1218.

http://thesai.org/Downloads/Volume7No5/Paper_24-Parallel_and_Distributed_Genetic_Algorithm_with_Multiple_Objectives.pdf
http://thesai.org/Downloads/Volume7No5/Paper_24-Parallel_and_Distributed_Genetic_Algorithm_with_Multiple_Objectives.pdf
http://thesai.org/Downloads/Volume7No5/Paper_24-Parallel_and_Distributed_Genetic_Algorithm_with_Multiple_Objectives.pdf

