
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

40

Manuscript received October 5, 2017
Manuscript revised October 20, 2017

Data Flow Testing of UML State Machine Using Ant Colony
Algorithm (ACO)

Abdul Rauf
College of Computer and Information Sciences Al-Imam Mohammed ibn Saud Islamic University (IMSIU) Riyadh. Saudi

Arabia

Abstract
Automatic data flow testing refers to analysis of flow of data
within models by using data flow analysis rules. To ensure
correct data flow within states we have to consider these data
values. The data flow analysis (DFA) forms a source of testing
data flow (DFT) by considering defines and uses of the variables.
State-based testing examines state changes and its behavior
without focusing on the internal details, thus data faults remain
uncovered. Empirical studies have shown that existing state-
based approaches are not efficient in detecting state based faults.
In this paper, an approach is presented to enhance fault detection
capability state based approaches. All definition-use paths are
used as coverage criterion. We implemented this approach in a
tool named data flow generator (DFG). Tool enhances fault
detection capability of state based approaches by efficiently
detects data flow errors and generates optimal number of feasible
test cases are automatically to provide complete def-use paths
coverage.
Keywords:
State-Based approaches, Data Flow Testing, Coverage Criteria,
Data flow testing

1. Introduction

Unified Modelling Language is de-facto standard defined
by OMG for design and specification of object oriented
system [21]. UML state diagrams describe the behavior of
an object having finite number of states and transitions [4,
5].System change its state, if it receives event trigger
affecting the values of invariants used within state [5].To
represent the correct behavior of UML state machine, we
have to consider these values as data values and analyze
the flow of data [5]. State based approaches focused on the
control flow information of models without focusing on
data flow leading to data flow faults remained uncovered.
Hence when state changes occur, alters the values of
variable within state that can affect the behaviour of the
system.
Testing of data-flow is significant because it supplements
control flow information leading to more efficient as well
as targeted test cases. Data flow analysis analyses the
relationship and association among data objects. Take
account of only the information regarding control flow of
models in model based testing is not adequate to make

sure that flow of data within model is properly flowing
throughout the model [5].
Most of the existing state-based approaches focused on the
control flow structure and don’t examine state changes
and its behaviour. No existing state-based testing
approaches performing data flow testing provide efficient
detection of data faults. However, currently the
approaches perform data flow testing using metaheuristic
approach don’t provide all def-use paths coverage;
generate a number of test cases result in redundant and
infeasible test cases. Our proposed approach t improves
existing state based coverage criteria by enhancing fault
detection capability of existing approaches. And provide a
mechanism to select the Optimum set of test sequences
among alternative while ensuring all definition-use paths
complete coverage.
The rest of the paper is ordered as follows; limitations of
the existing state based approaches are described in
Section 2. Tool is demonstrated in section 3. Evaluation
and validation of approach is presented in section 4.
Section 5 describes the conclusion.

2. Problem Statement

In traditional data flow testing process of state based
approaches, data flow analysis rules are used to analyse
invariants to identify definition-use relationship between
variables. These rules are used for categorization of
variable as define or used in state. These rules identify
definition-use pairs in models. But don’t generate test
cases to cover these definition-use paths and are
inefficient in detection of data flow faults. While in other
approach relies on mechanism that is partially automated
to build feasible sequences of transitions [4]. And
definition-use pairs remained undetected due to infeasible
paths results in incomplete coverage of all definition-use
paths.
Systematic technique should be developed to enhance
fault detection capability for insurance of correct flow of
data through model. Without considering data flow,
changes of data values can affect the overall behaviour of
system [5]. In state bases testing, redundant test cases are
generated to provide coverage a major problem of state

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 41

based testing. For generation of infeasible test cases,
code/Model techniques are used but still rely on user input
to identify them [4]. Only a few techniques focused on
both information of control and data flow of system to test
the models [5]. Moreover, values of variables alter;
affecting the control flow as well as behaviour of system.
The complexity of state machine models having a number
of states with invariants information aggravates the
situation.
So far, a cost-effective strategy is needed that not only
identifies all definition-use paths but also generates
feasible test cases along with optimal test cases that
provide all definition-use paths coverage and makes the
data flow testing of state based system easy,
uncomplicated and unproblematic [4]. According to [4]
definition-use paths that are uncovered are indication of
infeasible path and need to address and should focus on
definition-use paths that are uncovered. Because due to
that data flow faults remain undetected. None of the
existing state based technique is efficient enough to detect
data flow faults with optimal number of test cases. By
seeing all these observations, we propose our approach
based on these state based data flow testing approaches to
perform data flow testing.

3. Tool

Our proposed approach of data flow testing of UML State
Machine is implemented in a tool that is thoroughly
explained in this section.

3.1 Min Idea

 Figure 1 shows the process flow of our proposed
approach and tool is implemented to validate our
approach. XML of different state machine models are
given as input to tool perform data flow testing. Tool load
the XML file and use XML parser to extract relevant
information for data flow testing from XML. XML parser
organizes the source, target state and data flow
information to be used by later components. Tool extract
the source and target states as well as transition to create
adjacency matrix for showing only feasible states of state
machine diagram. Control flow graph is created to show
control flow information. Search engine is major
component of our tool. Major role of the search engine is
to find data flow errors and all definition-use pairs and all
definition-use paths of each definition-use pair.

3.2. Test Case Generator

Automated test case generator component of our tool
produce feasible and minimal number of test cases that not
only provides maximum def-use pair coverage,
corresponding to the input source model while ensure

maximum fault detection. It does the job by using the
optimal solution produced by the search engine
component. Automated test case generator takes input of
optimal solution generated by search engine. For every
input model, it searches the optimal test cases.

3.3 Identification of Definition-Use Pairs

 Tool using search engine identify all definition-use pairs
within any input state model. Tool search the all the
variables exists in model and by analysing each variable,
search the definition and use of variable. By searching
each usage of defining variable, all definition-use pairs are
identified. Identification of all paths is done by search all
paths of each variable definition to its use. Def-clear path
is path from state where variable is defined to place where
that variable is used. Each definition-use pair may have
several definition -use paths. One definition-use pairs may
have one or more than one def-clear paths. For example,
variable cf has deinition-use pair [1, 13] which has six
def-clear paths [1-›2-›3-›8-›7-›13], [1-›9-›10-›13], [1-›6-
›7-›2-›3-›11-›10-›13], [1-›6-›7-›13], [1-›6-›7-›2-›12-›11-
›10-›13], and [1-›2-›12-›8-›7-›13]. After the identification
of def-clear paths, test cases are generated to cover these
definition-use paths. Each def-clear path is examined and
redundant definition-clear paths are removed by tool. For
example, as in table 7.1 the def-clear paths identified by
tool are [1-›6-›7-›13], [1-›6], [1-›6-›7-›2], [1-›6-›7-›2-›3].
Aforementioned 4 definition-use paths, a single test case
can cover these def-clear paths.

Figure 1. Tool Architecture

That is [1 -› 6 -› 7 -› 2 -› 12 -› 11 -› 10 -› 13] cover the [1-
›6-›7-›13], [1-›6], [1-›6-›7-›2], [1-›6-›7-›2-›3]. All these
def-clear paths are included in this test case.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 42

3.4 Data flow testing Process

Data flow testing process using the proposed approach
consists of following steps.

a) XML of state machine are used to given as an
input

b) Control flow graph is created and all definition-
use paths are identified

c) Efficient Detection the data flow errors
d) Optimal test cases are generated to fulfil the all

definition use paths coverage criteria.

4. Evaluation

Our proposed approach is straightforward and
uncomplicated in its application. We applied this approach
on a case study of “telephone system”. State machine
diagram is considered to validate our proposed approach.
Figure 2 shows the state machine diagram of system.

Figure 2 State Machine Diagram of Telephone System

Figure 3 shows the screen shot of input XML file
containing the states as well as invariants information
about system. Output obtained by applying this proposed

approach is shown in figure 4. Results obtained by
applying the approach indicates that our approach not only
generate non-redundant optimal test cases but is also
efficient in detection of data flow faults.

Figure 3. Xml of Input Model

Traditional data flow testing approaches are not efficient
in detection of data flow faults. These state based
approaches generate redundant test cases to fulfil the
coverage criteria and still providing incomplete coverage
due to non-detection of infeasible paths. However, our
approach use metaheuristic technique ACO that by using
heuristic provide efficient detection of data flow faults and
automatically detects infeasible paths. As ACO finds good
paths through the graph, it not only detects feasible paths
but also generate minimal non-redundant test cases in
providing all definition-use paths than existing state based
approaches. That not only avoids redundant number of test
cases while save time consumption. Moreover, our
approach detects infeasible paths that are worthless to
tester and we don’t rely on user input to detect infeasible
paths. The XML of state machine don’t require any
expertise generated using UML modelling tool enterprise
architect. Moreover, XML of any state machine model is
generated and can be given as an input. Output is
generated against each model. In this way our proposed
approach detects data flow errors and generates test cases
of any of the state machine diagram given as an input.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 43

Figure 4. Result: All definition-use paths, feasible test cases & Optimal number of test cases

5. Conclusion

A novel approach is presented in this paper for data flow
testing of UML state machine. Main theme is to solve
state based approaches problems by using metaheuristic
approach. Ant colony algorithm is used to identify all
definition-use paths and for the detection of data flow
faults to ensure correct flow of data through the model.
After that test cases are generated to fulfil the coverage
criteria. Validation of this approach is performed on
software system. Results obtained indicate the efficient
detection of data flow faults. This approach detects
infeasible paths to evade the difficulties associated with
manual detection.

References
[1] Sanjay Singla,"An Automatic Test Data Generation for

Data Flow Coverage Using Soft Computing Approach",
International Journal of Research and Reviews in Computer
Science (IJRRCS), 2011

[2] Mingjie Deng, “Automatic Test Data Generation Model by
Combining Dataflow Analysis with Genetic Algorithm”,
IEEE, 2009

[3] Jun Hou, " DFTT4CWS: A Testing Tool for Composite
Web Services Based on Data-Flow", Sixth Web Information
Systems and Applications Conference, 2009

[4] Lionel Briand, "Improving the coverage criteria of UML
state machines using data flow analysis",Softw. Test. Verif.
Reliab.; 20:177–207, 2009

[5] Tabinda Waheed,"Data Flow Analysis of UML Action
Semantics for Executable Models", Springer-Verlag Berlin
Heidelberg, 2008

[6] Praveen Ranjan Srivastava, “Optimized Test Sequence
Generation from Usage Models using Ant Colony
Optimization”, International journal of software
engineering, 2010

[7] Bor-Yuan Tsai, “An Automatic Test Case Generator
Derived from State-Based Testing”, Department of

Information Management, Tamsui Oxford University
College,2000

[8] Harsh Kumar Dubey, “Automated Data Flow Testing”,
IEEE 978-1-4673-0455-9/12, 2012

[9] XUE Xue-dong, “The Basic Principle and application of
Ant Colony Optimization Algorithm”, IEEE 978-1-4244-
6936-9/10, 2010

[10] Raluca Lefticaru, “Automatic State-Based Test Generation
Using Genetic Algorithms”, IEEE 0-7695-3078-8/08, 2008

[11] Chartchai Doungsa-ard, “Test Data Generation from UML
State Machine Diagrams using Gas”, IEEE International
Conference on Software Engineering Advances(ICSEA
2007), 0-7695-2937-2/07, 2007

[12] Praveen Ranjan Srivastava, “Structured Testing Using Ant
Colony Optimization”, Copyright ACM 978-1-4503-0408-
5/10/12, 2010

[13] Hyeon-Jeong Kim, “Deriving Data Depencies from/for
UML State Machine Diagrams”, IEEE 978-0-7695-4453-3,
2011

[14] Praveen Ranjan Srivastava, “Automated Software Testing
using Metaheuristic Technique Based on Ant Colony
Optimization”, IEEE DOI 101.1109/ISED.2010.52, 2010

[15] AhmedS. Ghiduk,"Using Genetic Algorithms to Aid Test-
Data Generation for Data-Flow Coverage",IEEE, 2007

[16] L.C. Briand, “Improving Statechart Testing Criteria Using
Data Flow Information”, Proceedings of the 16th IEEE
International Symposium on Software Reliability
Engineering (ISSRE’05), 2005

[17] Moheb R. Girgis, “Automatic Test Data Generation for
Data Flow Testing Using a Genetic Algorithm”,Journal of
Universal Computer Science, 2005

[18] Huaizhong LI, "An Ant Colony Optimization Approach to
Test Sequence Generation for State based Software Testing
",Proceedings of the Fifth International Conference on
Quality Software (QSIC’05), 2005

[19] M. R. Girgis, "Automatic test data generation for data flow
testing using a genetic algorithm", Journal of Universal
computer Science, 2005

[20] Hyoung Seok Hong,"Data Flow Testing as Model
Checking", proceedings of the 25th international conference
on Software Engineering (ICSE'03) ,2003

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017 44

[21] “OMG Unified Modeling Language Specification" version
1.3.1, 1st edition 2000

[22] Elaine J. Weyuker, “An Empirical Study of the Complexity
of Data Flow Testing”, IEEE 0225-3/88/0000/0188 , 1988

[23] Phyllis ,"An Applicable Family of Data Flow Testing
Criteria",IEEE Transactions on Software Engineering, 1998

[24] S. Rapps and E. J. Weyuker, "Data flow analysis techniques
for test data selection“, Proceedings of the 6th IEEE-CS
International Conference on Software Engineering, 1982

[25] S. Rapps and E. J. Weyuker, "Selecting software test data
using data flow information", IEEE Transactions on
Software Engineering, 1985

[26] J. Shan, “Research on Formal Description of Data Flow
Software Faults”, International Conference on Computer
Application and System Modeling (ICCASM 2010), 2010

