
IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

45

Manuscript received October 5, 2017
Manuscript revised October 20, 2017

Analysis of Web based Structural Security Patterns by
Employing Ten Security Principles

Rabia Riaz †, Sanam Shahla Rizvi ††, Farina Riaz †††, Nosheen Hameed †, Sana Shokat †

† Department of CS & IT, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan

†† Department of Computer Sciences, Preston University, 15, Banglore Town, Shahrah-e-Faisal, Karachi, 75350, Pakistan
††† Independent Researcher

Summary
Security is an important and reminisce issue of any software. To
ignore security matters or leaving them till later stages of
software development could be dangerous as it is difficult to
retrofit security in an application later on. In the security critical
applications, it is extremely important to avoid mistakes.
Therefore, the use of security patterns is important for
developing a secure system. In this paper we present how
security can boost up by using ten security principles. We
conducted a literature review in the field of security patterns,
identified problems and proposed a pattern for user
authentication function in mobile devices and carried out a
comparison based research. We are using ten security design
principles as matrices comparing with structure patterns. We
summarize which patterns fulfill which of these ten security
principles. We get these security patterns from security patterns
repository.
Key words:
Web applications; security design patterns; security principles;
mobile devices; user authentication

1. Introduction

Patterns approach was invented by Christopher Alexander.
He defined a pattern as “a problem which occurs over and
over again in our environment and that describes the core
of the solution to that problem, in such a way that you can
use this solution a million times over, without ever doing it
the same way twice” [1-2]. Alexander was a buildings
architect, who had created the idea of a design pattern in
the course of his design work. He realized that in buildings
design, there are certain well-defined components that
occur repeatedly and which can be described in design
terms, and reused. He defined these repeating components
as design patterns, and each time the problems recurred he
reused the same design pattern to provide the solution.
This technique maintained accuracy and consistency in
design for the common components in his buildings
designs. Alexander’s patterns ranged from high level to
low level [3].
A security pattern is a well-understood solution to
recurring information from security problem. They are

patterns, in the sense originally defined by Christopher
Alexander, applied to the domain of information security.
Security patterns are intended to capture security expertise
in the form of worked solutions to recurring problems.
These patterns capture the strengths and weaknesses of
different approaches in order to allow developers to make
informed trade-off decisions between security and other
goals. Security patterns instead try to provide constructive
assistance in the form of worked solutions and the
guidance to apply them properly [4-5].
A security pattern describes a particular recurring security
problem that arises in security pattern specific contexts,
and presents a well-proven generic solution for it. The
solution consists of a set of interacting roles that can be
arranged into multiple concrete design structures, as well
as a process to create one particular such structure [1]. Due
to various communication features security considerations
are greater interest these days. Security patterns
encapsulate security expertise in the form of proven
solution to recurring security problems. Security patterns
are used and understood by developers who are not
security expert. Security patterns work like a bridge used
to reduce gaps between developers and security experts [6].
A pattern normally comprises of different important parts.
Table 1 describes essential parts of a pattern.

Table 1: Parts of a Pattern
Name of part Description
Name A standard and comprehensive name

by which the pattern can be discussed.
Problem A concise summary of the problem

addressed by the pattern
Consequences The impact that the pattern has on the

“essential forces” at play
Solution A description of the solution

To improve development of secure software, Viega and
McGraw pointed out ten following guiding principles to
achieve better security and to manage unknown attacks [7].

• Secure the weakest link
• Practice defense in depth

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

46

• Fail securely
• Principle of least privilege
• Compartmentalize
• Keep it simple
• Promote privacy
• Hiding secrets is hard
• Be reluctant to trust
• Use your community resources

The aim of this study is to explore how security of a
system can be increased by using ten security principles,
and how many of security principle are satisfied by these
security patterns. We highlight the objectives of this
research as below:
• Identify a set of security patterns which can be used to

address the issues in web-applications.
• How effectively these security patterns satisfy the

security principles?
• What are the benefits and liabilities of implementing

security pattern in web-application?
• Propose a user authentication pattern for Smartphone

devices.
• Identify set of patterns that can be used together to

increase system security.

In this paper, our work is organized in the following
sequence. Section 2 gives an overview of existing work
that has been done by using security patterns. Section 3
evaluates different structural security patterns from web
domain that we use in a web applications when dealing
with security issues with supporting security principles. In
Section 4, we identify a new security pattern as user
authentication for mobile devises and also compared this
pattern against supporting security principles. In Section 5,
we highlight ten security design principles used as matrix
comparing with structure patterns. We have summarized
which pattern fulfills which of these ten security principles.
Finally, paper is summarized and recommendations for
future are presented in Section 6.

2. Related Work

Patterns are newly introduced technique and now this
technique is extensively being used to resolve general
problems so that the suggested solution can be reused
many times. Pattern study has been made in different areas;
security is one of them [8]. The first research paper about
software cryptography is [9] that later supported and
enhanced towards security patterns [10-11]. Different types
of templates have been used for patterns [6]. In [12]
authors show how security patterns help to secure the
system by using UML. A security pattern describes a

particular recurring security problem that arises in specific
contexts and presents a well-proven generic scheme for its
solution [13]. A security pattern system is a collection of
security patterns, together with guidelines for their
implementation, combination and practical use in security
engineering. Security has become key issue in current
systems. Better security can be achieved by using security
patterns in all phases of software development.
It is recommended to consider security requirement from
the beginning of software development life cycle, avoid the
expenses of rework and minimize security weaknesses [12].
It is not an easy job because not all the software engineers
are security specialist. Therefore, research presents the
guidelines on “how to apply” and “Where apply”
appropriate pattern [13]. Table 2 presents the detail of
related work on security patterns.

3. Evaluation of Structural Security Patterns
with Supporting Security Principles

This section explains security patterns in detail and at the
end of each security pattern a comparison of security
patterns with ten security principles is conducted to check
either those patterns are fulfilling the security principles or
not.

3.1 Account Lockout

Problem
Passwords are the only approach to user authentication that
has gained global user acceptance. Sometimes user
chooses weak passwords that are easily guessed. Password
guessing tools are very effective to find out poorly chosen
passwords. Many operating systems implement login
delays. It does also prove helpful to slow down the process
of guessing attacks. But in the web environment an
attacker is completely unknown during guessing tens of
thousands of passwords per hour.
Solution
The pattern account lockout is used against password
guessing attacks. In this pattern server maintains a
threshold value for incorrect password attempts for each
and every user. When a user inserts wrong password the
count is incremented, and when user logins successfully
account is cleared. When illegal attempts reach to
predefine threshold value account gets locked. When
account gets locked and user tries to gain access to locked
account, system records that request but never processes
and user is unaware of this process, that the request is
rejected. In account lockout pattern account get locked
automatically after some time of inactivity.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

47

Table 2: Related work on security patterns
Citation Article Title Year Explanation

Shahnawaz
Alam [14] Using security patterns in Web – Application 2013 How security patterns efficiently handle web security

problems
Yoder &

Baralow [8]
Architectural Patterns for enabling application

Security 1997 Set of seven patterns present security model to build
secure application

Rubira ,et al
[9]

A pattern language for cryptographic software
 1998 Describe the basic purpose of cryptography &pattern

language
Cuevas, C

[15]
Security Pattern for capturing encryption based

access control to sensor data. 2007 Nine patterns offer four basic purposes for
cryptographic software

Fernandez et
al. [16] Semantic analysis pattern 2000 Using SAPs, a methodology is developed to build

the conceptual model in a systematic way.
Coggeshall

[17] Security Design Session 2001 Eight patterns present guidelines

Dan, W. [18]
Security Functional Requirements Analysis for

Developing Secure
Software.

2007 Description of different security patterns and
comparison

Steel et al.
[19] Core security patterns, Best practices and strategies 2005 Guide to building robust end-to-end security

Supported Security Principles of Account Lockout

Pattern
I. Secure the weakest link
This pattern protects account from password guessing
attacks and secure weakest link. Account lockout pattern
protects an account by implementing lockout mechanism
and stops unauthorized access. If an attacker knows the
actual password of the system then this pattern not plays a
vital role, and attacker gains access to the system.
II. Practice defense in depth
Multiple invalid attempts from users to start the invalid
transactions get rejected and make it more difficult by
adding of best practice defense such as account lockout.
Account lockout increases liability by helping and ensures
that user accounts will not be compromised by using a
password-guessing attack. This pattern does not reveal that
account has been lockout and this also ensures that an
attacker cannot know whether a password guessing attacks
are simply being dropped. It also prevents the attacker
from learning how many attempts are required in order to
lockout an account.
III. Be reluctant to trust
Account lockout does not extend trust unnecessarily only
authorized user have right to gain access to the account.
The good point of this pattern is to keep informed the user
about the login attempts. When a user successfully logins,
it informs the user about number of failed login attempts
since the last successful login. A user who mistypes his
password will be able to identify that the invalid attempts
were legal. But on the other hand if account is under threat
user will be alert. Then user will inform the administrator
about the problem. It’s also important to inform user about
the last successful login.
IV. Principle of least privilege

Account lockout pattern fulfills this principle by allowing
only the minimum access, necessary to perform an
operation. This pattern fulfills the principle of least
privilege by giving access only authorized person, and by
defining a predefined threshold value. It allows a
predefined number of fail login attempts, and when it
reaches to that threshold value, account gets locked.
It grants access to account only authorized user. This
pattern mostly allows three incorrect attempts before the
account is locked out and requires manual intervention by
a customer service representative. Only authorized subjects
may assign privileges to use an account.
V. Promote privacy
Privacy of user data and account will be increased by
additional protection of the account. Reliability of
individual accounts has been improved and this could
indirectly improve the integrity of the site. This pattern
supports the principle of least privilege and practice
defense in depth. So the privacy of the account is
automatically improved. Now a day, all of the on-line
banking systems provide an account lockout mechanism to
protect critical user data. When an attacker tries to gain
access to the account by using password guessing attacks,
and crosses the limit of invalid attempts the account
automatically gets locked. This pattern doesn’t disclose
that account has been locked out and an attacker is
unknown of this mechanism that account lockout is
actually protecting user account.
VI. Hiding secrets is hard
Security of an application also depends on some secrets. If
any application reveals these security secrets then
securities can easily be exploited. This pattern fulfills this
principle by not revealing to attacker that account has been
locked.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

48

3.2 Authentication Session

Problem
Now mostly web applications need some sort of session
model, in which request of multiple pages is combined into
an interesting skill. However, great awareness is needed to
use session semantic, in trusted way [20]. Session
mechanisms are enough for tracking noncritical data and
apply safe transaction. But there are chances to make
mistakes when applying session mechanism in the
condition where accountability, integrity, and privacy are
crucial.
Solution
In this pattern, server keeps the authenticated user identity
and the time of the last request. With every protected page
there is a standard header executes on the server, used to
check the authentication associated with the session. When
the user first time requests for a protected page, then server
checks the authentication check and notes that no
authenticated identity is present in the session information.
Then the server traces the original request and forwards the
user to a login page. When the server receives and verifies
a user’s login record (typically a username and password),
it forward the user back to the originally requested page
[20].
On all subsequent page requests, the server checks the
authenticated identity without requiring that the user re-
authenticate him or herself. There are two ways to end an
authenticated session. First the user can openly invoke a
logout page, which causes the store credentials to be
flushed. Second if the session remains inactive for
predefined time period the session will automatically end
and user needs to re-authenticate for first subsequent page.
This pattern stores user authenticated data on server. So
the application can be very confident that user has not
tempered with it.

Supported Security Principles of Authentication
Session Pattern

I. Promote privacy
Many web banking and e-commerce applications depend
on this pattern. Any site that require user authentication
and does not want to store information on client can use
this pattern. Because it is dangerous to re-enter credit card
numbers on every page, the authenticated session pattern
stores the user’s authenticated identity on the server so the
application can be more secure and confidential. This
pattern maintains session data on server as part of session
object. To associate session object with client the
application server assign unique random identifier to each
session object. This pattern enhances accountability by
providing a secure approach to repeated authentication.
II. Compartmentalize

This pattern compartmentalizes the session security policy
within a single component, so that changes to the policy
like affecting usability, accountability, and performance
does not impact the client or other parts of the application.
III. Practice defense in depth
The authentication session store user’s authenticated
information on the server that makes it more reliable and
confident. No one can temper with it. Application server
grants unique, random identifier to each session object.
This session identifier is then given to the client, and the
client presents it on each subsequent page request. Session
identifier must be hard to guess. These are provided by the
application server and cannot be modified by custom
applications.
IV. Principle of least privilege
This pattern grants access after providing valid session
identifier. When a user submits an invalid session identifier,
the application server does not process that application.
Large numbers of invalid session identifiers are a clear
indicator that something is going wrong with the
application. The client requests a protected page from the
server, passing the session identifier, then session
mechanism call up protected page. Authentication
checkpoint checks that authenticated identity field, if it is
empty then it returns to login screen for correct
information otherwise grants requested page.
V. Be reluctant to trust
This pattern does not extant the trust and increases the
integrity of the data by using secure approach and applying
repeated authentication. Data stores on the server not on
the client, which is very secure for confidential
transactions. For example, this pattern is used by different
online banking systems due to its strong security.
VI. Hiding secrets is hard
This pattern assigns unique random identifier which is hard
to guess and it protects user session. When a user submits
an invalid identifier, the application server should notify
the application about that event.

3.3 Client Input Filters

Problem
In web environment client and server are necessary.
Sometimes client executes on hardware which is un-trusted
and web developer has no control on that. Developers
believe that application will work and behave as they
programmed. But often attackers temper with client that
causes applications to behave in unsecure manner e.g. java
scripts functions are used by many sites for data validation.
But attackers easily copy the source page, change them and
then execute new client code. Some sites use different
security measures on client side like check password and
use account lockout but some time attackers cross these
restrictions.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

49

Solution
The solution of this problem is to re-compute all the data
on the server provided by the client. Checks used for the
data validity, should be reperformed on the server. It is
very important that sensitive data should be kept in
encrypted form. During re-computing server should take
great care. In case of any sign of bogus data transferring, it
simply should reject such type of requests. The pattern
client input filter is capable of changing request before
sending to the required object. In this pattern if any data is
not according to the context, it should just got rejected the
request. In this pattern central logging mechanism is used
to account all the filtering actions and if it detects any
suspicious request it rejects and reports.

Supported Security Principles of Client Input Filter
I. Practice defense in depth
Data store on the client always have risks of data
tempering, an attacker can modify the client code so the
application behaves in un-trusted way. Basic purpose of
the client input filter pattern is, it takes all the transaction
from client suspected and filters it on server. Different
types of data validity checks are performed on the client
repeated on the server before the processing of data. This
pattern is able to filter all the data before transferring to
server or intended object. If any data shows the sign of
tempering and not easily got fixed, the client filter drops
the request. Central logging mechanism is used for
reporting all filtering events.
II. Promote privacy
This pattern increases the privacy of data deal by a web
site, and increases the reliability. Client input filters protect
the application from data tampering performed on un-
trusted clients. Sensitive data that must be stored on the
client should be kept in an encrypted, tamper-proof form.
III. Be reluctant to trust
This pattern does not extent trust unnecessary, by
rechecking all the data again on the server. Mostly long
URLs are dropped. Client filters should be able to modify
requests before delivering them to the intended object. If
the data cannot easily be fixed, the client filter should
reject or simply drop the request. All filtering events
should be reported to the central logging mechanism.

3.4 Encrypted Storage

Problem
Large number of user sensitive information is stored on the
web applications like social security numbers, credit card
numbers, passwords etc. To protect such critical
information every security effort can be used. In past, due
to the loss of sensitive information it was very difficult for
companies to recover their publicity back. So it is

recommended that don’t store sensitive data. But
sometimes it is necessary to store data.

Solution
This pattern encrypts the sensitive user data before
transferring it to disk. Before using, it has to decrypt in
memory. So if an attacker steals the data, he is not able to
get access to critical data. In this pattern single key is
created by the application server and uses to encrypt and
decrypt user information. Under this solution, the
application server maintains a single key that is used to
encrypt and decrypt all critical user data. The most
important thing is that key should be saved in secure way,
and it should be changed timely.

Supported Security Principles of Encrypted Storage
I. Practice defense in depth
Combination with other security techniques, this pattern
practices defense in depth. This pattern supports this
principle by providing security in layered form. This
pattern encrypts the data before transferring to any disk.
Data decrypt in the memory when needed. User
confidential data is protected by using single key. This key
is used to encrypt and decrypt the data, and the key is
changed time to time. When the key is changed the old key
makes it more authenticated and confidential. Different
types of COTS (commercial off-the-shelf) devices can be
used to protect the key
II. Fail securely
Pattern supports the principle of fail securely. There are
huge cases of hackers stealing records containing sensitive
user’s data. The encrypted storage pattern provides a
second line of defense against the theft of data on system
servers. Although server data is typically protected by a
firewall and other server defenses, there are numerous
publicized examples of hackers stealing databases
containing sensitive user information. The encrypted
storage pattern ensures that even if it is stolen, the most
sensitive data will remain safe because data is in encrypted.
III. Promote privacy
This pattern increases privacy by ensuring that user data
cannot be decrypted, even if it has been stolen. Different
sites use encryption to protect the most confidential data to
be stored on the server.
IV. Be reluctant to trust
This pattern minimizes the trust and enhances the security.
In this approach user data is protected by using single key.
Server also protects a single key that is used to decrypt and
encrypt user’s sensitive data and the key is changed time to
time. When the key is changed it must require the old key
which makes it more authenticated and confidential. Key is
also saving in secure way.
V. Hiding secrets is hard

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

50

The encrypted storage pattern encrypts the most critical
data before transferring. Each user data is protected by
using single key. Application server maintains a single key
to encrypt and decrypt all critical user data.

3.5 Minefield

Problem
We make lot of efforts to protect our system but this
possibility always exists that any server which is remotely
accessible has a chance of attack. If an attacker knows the
function of the system, it is easy for attacker to go through
system rather than to carry out the long procedure. Use of
COTs devices is expensive [21].
Solution
It can be used to incompatible the attacker with tools. It
alerts the administrator about the existence of an attacker.
We can rename common, critical commands on the server
and replace alerts, when an attacker uses that command it
awakes the operator about the presence of attacker.

Supported Security Principles of Mine Field Pattern
I. Secure weakest link
To prevent attacking is impossible but using some
techniques it is possible to protect the system to some
extent. An attacker is always looking for parts that are easy
to break, and tries to enter through these weak links. This
pattern can be implemented to secure the weakest link.
Pattern allows the modifications that have different effects.
It breaks the compatibilities with existing attack tools. It
alerts the operator about the presence of an attacker and
then countermeasures can be adopted and stops further
processing. We can rename different commands such a
way, when an attacker tries to enter or type the command it
shuts down the system or alert the operator about the
presence of the attacker.
II. Defense in depth
If security is provided in form of security layers, it better
protects the system. This pattern provides security in
layered form. This pattern commences customization that
detects an attacker and counters this advantage. By adding
different booby traps, it informs operator about the
presence of an attacker. Different deception toolkits can be
used like to change the organization of a file system, to
rename all the administrative commands used on server
and to rename them with tools that alert the administrator
about the suspicious activity initiating by an attacker.
Collectively use of these techniques provides higher
assurance that an attacker will not be able to attack the
server.
III. Fail securely
This pattern can be implemented in fail securely mannered.
It helps to detect if an attacker tries to access the system.
The system uses different techniques and traps to make

uncomfortable the attacker with applications to aim with
that he stops attacking.
IV. Least privilege
When we rename the files and change the location of the
files then only the authorized person knows about these
modifications and only authorized person have access to
those files. So privileges are given only to authorized
person by following the principle of least privilege.
V. Be reluctant to trust
This pattern fulfills this principle by adding different traps
that don’t allow easy access to the system, and not trusting
on everybody. This pattern totally neglects the trust on
suspicious behavior.

3.6 Network Address Blacklist

Problem
Weaknesses in the software had raised the amount of web
theft. Now operating systems are strong enough that the
hacker community shifts to the other side, now their targets
are application layer weaknesses. Unknown access is
achievable in web environment so the chance of attacking
exists there, and it’s not easy to stop them. When
preventions fail to defend against hacking, there should be
some other ways to defend the site. Lockout pattern helps
to defend the individual account but not helpful to protect
the web site.

Solution
Network address blacklist keeps track of network
addresses that show improper behavior or suspicious
activities, and if they originate any request it normally
dropped. In some cases application developers have no
rights to blacklist system, in this case human operator
works as a blacklist. In the manual way when server alarms,
the operator selects the manual safety measures like fire
walls.

Supported Security Principles of Network Address
Blacklist

I. Promote privacy
This pattern definitely improves the privacy. The privacy
depends on how efficiently we implement this pattern and
what sort of security measures we use. If operator has
complained of misusing then it contacts to ISP. If ISP fails
to end this activity then operator has the right to block this
complaint for further activity through firewall.
II. Practice defense in depth
This pattern blocks the IP address that causes some danger
or trying to illegal access. This pattern uses different
intrusion detection systems that help to enhance the
security.
III. Compartmentalize

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

51

This pattern isolates the suspicious activity and blocks that
activity. Any IP address that is involved in suspicious
activity should be blocked. This feature protects the system.
IV. Be reluctant to trust
A network address blacklist mechanism maintains a list of
network addresses that have exhibited in any inappropriate
behavior. When a request is received from a blacklisted
address, it simply is dropped on the floor.

3.7 Password Propagation

Problem
The problem addressed by this pattern is that mostly web
applications create single database account for all users.
Hardcoded password is assigned to database from
application server. And if that account is compromised
then data of every user is at risk. Mostly databases are not
able to hold up huge amount of user account [22].
Solution
This pattern divides the application into two parts, front-
end and back-end. Front-end is used to communicate with
user and presenting data, back-end is used for transaction
process and as well as for maintaining single user account.
In this mechanism front-end does not have the rite of direct
entry to the back-end. User authentication is revalidating
on back-end. If the front-end has hijacked the attacker have
no right of entry or change to user data because back-end
also requires password, and if password is not valid back-
end rejects that request.

Supported Security Principles of Password
Propagation

I. Secure the weakest link
Mostly web applications use single database account to
save and supervise all user data. If this site is hijacked, the
attacker might have complete right of entry to every user
data. This pattern requires that any user’s authentication
information must be verified by the database before
granting access to that user’s data.
This pattern secures the weakest link by defining duel
verification process. In this pattern every application is
broken into two parts a front-end and back-end. The front-
end is used for communicating with user and shows data in
a formatted way. The purpose of back-end is executing the
transaction process and supervises individual user account
data. So by using this security pattern we can secure the
weakest link.
This pattern also appears in web front-ends to existing
banking systems. Most banking systems already use PINs
to authenticate users. But PINs are not strong enough to
withstand automate guessing attacks. Therefore, a web
enabled banking application uses a password to
authenticate the user to the application, and requires the

user to provide a PIN in order to authenticate the user to
the traditional banking system
II. Practice defense in depth
This pattern fulfills this principle by adding the security in
different layers. Pattern enforces the user to authenticate
his/her self before getting access to user’s data. When
front-end verifies a user’s password stored on server as
part of the session data, it starts a transaction by passing
the user information to the back-end. When back-end
verifies the user’s password then it grants access to the
user data. It’s not possible for front-end to have direct
access to user’s data but it has to go through the back-end.
III. Fail securely
Password propagation pattern can be implemented as fail
securely manner if the front-end is under attack or
compromised. An attacker cannot be able to access and
change the user account because every request also is
verified on the back-end for further transaction. If the
front-end is totally under attack only the passwords of the
users are at dangers that are currently logged in.
IV. Principle of least privilege and Compartmentalize
This pattern assigns privileges only to the authorized
persons. Only a user verified both by front-end and back-
end gets granted access to user account. Access is
restricted only to authenticated person. This pattern is an
example of partitioned application. In this pattern back-end
stands for trusted proxy.
V. Promote privacy
This pattern promotes privacy by implementing principle
of least privilege and practice defense in depth. Privacy is
improved because if the web server has been compromised
it will not grant access to an uninformed user to user
account. A well-structured back-end helps a lot to protect
whole web server.
VI. Be reluctant to trust
This pattern fulfills this principle by granting access only
to authorized person. Verification process held at two
levels, front-end and at back-end. If a user authenticates by
the front-end and not by the back-end cannot get access to
user database.

3.8 Secure Assertion

Problem
Any server that is accessible from the internet is more
vulnerable to be attacked. No matter how much efforts are
expended in protecting it, the possibility exists that an
attacker will penetrate the system. The most difficult
attacks to detect are those that exploit vulnerabilities in the
application itself. These attacks are generally not visible to
intrusion detection systems because they are unique to the
application and not widely known attack on standard COTs
component. Application level attacks cannot be defended
at the system level.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

52

The firewall, the operating systems, the intrusion detection
system, and even the application server may view all such
traffic as legitimate application requests. For example, if a
banking application fails to adequately validate electronic
funds transfer requests, an attacker might use the system to
cause a victim’s bank account to become overdrawn. To
the system, these requests look to be legitimate.
Solution
The secure assertion pattern transparently re-links all the
application level sanity checks with a mechanism that
integrates into the system wide intrusion detection or event
reporting system. Any failed assertions encountered by the
application are automatically reported to the system wide
monitoring console as a possible security relevant event.
The secure assertion pattern transparently reports the
events that developers already detect and recover from.

Supported Security Principles of Secure Assertion
I. Secure the weakest link
This pattern is helpful to secure the weakest link. By
sprinkling lots of sanity checks in the application may keep
attentive the administrator about tempering of application.
The secure assertion pattern also offers developers an
interface for reporting detected problems discovered and
recovered from. For example, a function that scans user
input and replaces illegal and dangerous characters should
report any such replacements via the provided reporting
interface. Account lockout strongly helps to secure weakest
link with the combination of this pattern.
II. Defense in depth
Secure assertion pattern transparently re-links all the
application level sanity checks with a mechanism that
integrates into the system wide intrusion detection or event
reporting system. Any failed assertions encountered by the
application are automatically reported to the system wide
monitoring console as a possible security relevant event.
Pattern provides developers with a reporting framework
that allows system administrators to be aware of potentially
security relevant events occurring within the application.
III. Promote privacy
This pattern improves accountability indirectly by
preventing exploits that circumvent authentication. Pattern
improves integrity by removing opportunities for
compromise of the application and helps to ensure
exploitation of remaining weaknesses to not go undetected.
IV. Be reluctant to trust
Pattern informs the system administrator about any sign of
tempering with application that can be evidence for the
presence of an attacker.
V. Hiding secret is hard
This pattern is used to check programmer assumptions
about the environment and proper program behavior.
These are application specific sanity checks sprinkled

throughout the system. An attacker also remains unaware
about this technique.

3.9 Server Sandbox

Problem
Web applications have huge number of unknown users and
can be accessed from anywhere. Website that deals with
user input has chance of hacking, and behaves un-trusted
way. For example, many web servers contain logic errors
that can be exploited to allow private files to be served
over the internet. Other servers contain undiscovered
buffer overflow errors that can allow client provided
malicious code to be executed on the server [9].
Solution
Server sandbox pattern strictly limits the privileges that
web application components possess at run time. This is
most often accomplished by creating a user account that is
to be used only by the server. Operating system access
control mechanisms are then used to limit the privileges of
that account on needed to execute [22]. This approach
accommodates systems that require administrative
privileges to start the application, but does not need those
privileges during normal operations.

Supported Security Principles of Server Sandbox
I. Secure the weakest link
Server sandbox removes any global privilege that is not
essential and replaces with specific user and group
privilege. A compromised web server allows an external
hacker to gain access to all global resources. Eliminating
the global privileges ensure that the hacker have no access
to useful utilities and operating system features.
II. Defense in depth
It applies security in layered form around vulnerable
components that limit the application’s ability to access
resources and operating system APIs. By using operating
system network filtering it prevents the server from
initiating connections to other machines.
III. Least privilege
Server sandbox pattern strictly limits the privileges that
web application components possess at run time. This
approach accommodates systems that require
administrative privileges to start the application but does
not need those privileges during normal operations. The
most common example of this is a UNIX application
server. The application can start with additional privileges
but once those privileges are no longer needed it executes
a privilege drop to revoke it into the less privileged
operating mode.
IV. Compartmentalization
Complex application may require some unsafe privileges
throughout its execution time. In that case, the application
is partitioned so that only a minimal component has the

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

53

dangerous privileges. The other component should run
using restricted user account. Components that
communicate directly with clients should have the bare
minimum privileges. Components with dangerous
privileges should be buffered from client requests by other
components.
V. Promote privacy
This pattern greatly enhances privacy by preventing
component vulnerabilities from causing the entire server to
be compromised.
VI. Be reluctant to trust
A server sandbox removes any global privilege that is not
essential and replaces them with specific user and group
privileges.

4. Proposed Pattern: User Authentication for
Mobile Devices

A recently published online Smartphone’s user
authentication protocol (OSAP) [23] can be used as a
solution pattern by any mobile based client server
application to solve their problems.
Problem
User authentication on mobile devices is difficult. People
want their computing devices to keep the confidentiality of
their private information. If the pin is sent in open form,
users face many problems like session hijacking, man-in-
the-middle attack, spoofing, dictionary attacks etc.
Solution
People want their computing devices to keep the privacy of
their information. For this purpose, these devices must ask
for proof of the user’s right before giving access. This
method is called authentication [24]. Once the given proof
is confirmed the machine will act on the user’s behalf.
Proposed user authentication for mobile devices provides
better authentication of online Smartphone’s users. This
pattern uses server to store user information instead of
device. Pin is sent in encrypted form by using secure
technique. This technique decreases the drawbacks of
existing user authentication schemes developed for
applications like internet banking, E-commerce, and
instant messaging. Pattern provides online registration and
pin is generated on server. Following attacks have been
removed by using this pattern.
• Man in the middle attack
• Phishing attacks
• Dictionary attacks
• Brute force
• Shoulder force
• Guessing attacks

How to Authenticate Users?

User authentication pattern consists of two element, client
side and server side. Client side is used for entering data
by user. Server side is responsible for generating the pin
and authenticating the legitimate users. In this pattern,
user’s detail like contact number, IMEI number, and pass
code is used to register the client at server. PIN is
generated at server side and LSB technique is used to hide
the PIN inside cover image. Server sends back the image
to user then user decrypts the image to get the pin. Whole
process is summarized in Figure 1. Trade-offs is explained
in Table 3.

Security Principles Supported by User Authentication

for Mobile Devices Pattern
I. Secure the weakest link
Pattern successfully fulfills this principle. User would not
be authenticated successfully if IMEI of device is changed
and user has provided incorrect PIN. This pattern provides
authentication and resistance against attacks like phishing,
shoulder surfing, brute force, content injection, dictionary,
and guessing attack. Successful authentication ensures that
LSB has safely transferred the pin from server to user, and
user has not changed his /her device. It has successfully
authenticated the device and user.
II. Practice defense in depth
User authentication pattern defenses in depth by securing
user pin by applying LSB technique. If someone steals user
pin and tries to access the account, the server will reject
that access. This pattern provides authentication of user as
well as device. If device is changed it will not authenticate
even the original user because it joins the user account
with that exact device.
III. Least privilege
This pattern limits unauthorized access and provides better
authentication in online applications using mobile phones.
Our scheme is efficient and user friendly. User asks to
enter his data once in the registration phase. LSB technique
is used to cover the pin. Therefore, illegal user cannot
decrypt it. Only legitimate user will be able to decrypt and
confirm back.
IV. Fail securely
If an attacker obtains the stego image, he will have to X-
OR his IMEI with pin for authentication. This X-ORed pin
is then sent to server for confirmation. Server authenticates
the pin by X-ORing this pin with IMEI that it has saved
earlier from original user. Since attacker IMEI will be
different from original user, a different pin will be
generated. This will not match at server side thus attacker
will not get authenticated, as a result the attacker will not
be able to steal authentication details.
V. Keep it simple.
This pattern is simple in use. It provides ease for non-
technical users. User will decrypt and confirm back by just
pressing the confirm button.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

54

VI. Promote privacy
This pattern highly promotes privacy and improves the
efficiency. User information will not leak by using this
pattern.
VII. Hiding secrets is hard
In this pattern, user information is encapsulated by using
highly secure technique.
VIII. Be reluctant to trust
This principle is foundation of this pattern. It only
authorizes legitimate user. Any user with wrong pin or
wrong IMEI number will simply be rejected.

Table 3: Trade-offs of user authentication for mobile devices pattern

Accountability

User authentication pattern increases
accountability by ensuring user

accounts not to be compromised using a
password guessing attack.

Confidentiality Confidentiality of user data is increased
by using user authentication pattern.

Integrity
Integrity of individual account is

enhanced to improve the integrity of the
site.

Performance It improves the performance of the
account and application.

Cost Cost has reduced.

Enter CN, IN & Auto-get IMEI

Concatenate CN, PC= IU

IU XOR IN= X'

Server decrypts IMEI & generates P

Hide pin using LSB

User gets P by decryption

User confirm A by X-ORING P and IN

Server decrypts the pin A'

Compare A and A'

End

Start

Yes

NoIf Equal

Authentication FailedAuthentication Successful

Legends:

CN= Contact Number

IN= IMEI Number

PC= Pass Code

CN5= first five letters of CN

IN7= first 7 letters of IN

PC3= first 3 letters of PC

IU= Concatenation of CN and PC

A= X-OR PIN with IMEI at user side

A’= X-OR A with IMEI at server side

P= Pin

Figure 1: OSAP Process

5. Security Pattern Comparison

Table 4 provides comprehensive results of this study. It
shows evaluation of ten security principles against web
based security patterns. This comparison helps us in
deciding that which pattern we should follow to fulfill our
security requirements while designing a system. The results
of this research encourage the use of pattern based
approach to develop secure business processes and web
applications. At the same time, it helps management and
designers in selection of the most suitable patterns
according to their circumstances and requirements. The

enforcement of security in the software development life
cycle of the application reduces the high cost and efforts
associated with implementing security at a later stage. This
study clearly emphasizes the effectiveness of these patterns
in handling the security issues. It is specifically useful in
deciding what security patterns to apply by keeping the
security attacks in the mind. As the attack rate is increasing
at an exponential rate in web applications due to the
advancement of technology.
Sometimes one pattern cannot take care of all the security
requirements and we need a group of patterns to meet all
the security requirements in our system. Some patterns use
others as base to improve security. So system designers
can use other patterns to support and improve security

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

55

measures. Based on the conducted survey and evaluation
of patterns against security principals, we have grouped
various patterns which can be combined to achieve high

level of security. Table 5 shows the related patterns, the
collective use of these patterns help to achieve the ten
security principles in any system.

Table 4: Security patterns vs Security principles

Patterns

Se
cur

e w
eak

est
 lin

k

De
fen

se
in

dep
th

Fa
il s

ecu
rel

y

Le
ast

 pr
ivi

leg
e

Co
mp

art
me

ntl
ize

Ke
ep

it s
im

ple

Pro
mo

te p
riv

acy

Be
 re

luc
tan

t to
 tru

st

Hi
din

g s
ecr

et i
s h

ard

Co
mm

un
ity

 re
sou

rce
s

Account lockout Yes Yes No Yes No No Yes Yes Yes No

Authenticated session No Yes No Yes Yes No Yes Yes Yes No

Client input filter No Yes No No No No Yes Yes No No

Encrypted storage No Yes Yes No No No Yes Yes Yes No

Mine field Yes Yes Yes Yes No No No Yes No No

Network address blacklist No Yes No No Yes No Yes Yes No No

Password propagation Yes Yes Yes Yes No No Yes Yes No No

Secure assertion Yes Yes No No No No Yes Yes Yes No

Server sand box Yes Yes No Yes Yes No Yes Yes No No

User authentication for mobile devices Yes Yes Yes Yes No Yes Yes Yes Yes No

Table 5: Related patterns
Patterns Related Patterns

Authenticated session Network Address Blacklist and Password Propagation

Account lockout Authenticated Session, User authentication for mobile devices,
Network Address Blacklist

Encrypted storage Client Input Filters
Minefield Network Address Blacklist

Network address blacklist Account Lockout, Client Input Filters and Minefield, User
authentication for mobile devices

Password propagation Account Lockout and Authenticated Session
Secure assertion Server Sandbox and Network Address Blacklist
Server sandbox Minefield a related pattern

Client input filter Network Address Blacklist
User authentication for mobile

devices Account Lockout, Encrypted Storage, Password Propagation

6. Conclusion and Future Work

Patterns are a promising proposal towards security. These
are useful to build and evaluate systems. Security patterns
help us consider non-functional security requirements at
the beginning of the design. In the security critical
applications, it is extremely important to avoid mistakes.
Therefore, the use of security patterns is important for
developing a secure system.
This study highlights template of pattern, security patterns,
and ten security principles and also presents set of patterns
that are used in different web applications to handle
security issues. We have discussed structural security
patterns in detail and compared them with ten security
principles. Combinations of patterns are extensible because
of the possibility of replacing a pattern with another
concrete realization of the same pattern. They are reusable
because of the possibility of replacing several of the used
patterns to fit the requirements of a new application.

There are many patterns with different purposes. Reason
why developers must combine many patterns may include
establishing a high degree of security within the system.
But they have the problem of choosing which pattern must
be used and deciding which pattern will better adapt to the
system security requirements. We also propose a security
pattern for mobile device.
In future, this work would be extended by studying the
different security architectures existing in the systems
design, together with defining a method to specify flexible
security architectures that can easily adapted to systems
with very different security requirements as well as
guarantee security using security patterns.

References
[1] Alexander, C.; Ishikawa, S.; Silverstein, M. The Timeless

Way of Building. International Journal of Computer Science
and Network Security, 1979, 2(4), 123-220.

[2] Tešanović, A. What is a pattern. In Dr.ing. course DT8100
(prev 78901/45942/DIF8901) Object-oriented Systems. IDA
Department of Computer and Information Science,
Linköping, Sweden, 2005.

IJCSNS International Journal of Computer Science and Network Security, VOL.17 No.10, October 2017

56

[3] Blackley, B.; Heath, C. Technical Guide, Security Design
Patterns. International Journal of Research in Engineering
and Technology software, 2004, 2(3), 25-55.

[4] Aleksandra, T. What is a pattern?. Journal of Research in
Computer and Information Science, 2002, 55-134.

[5] Heyman, T.; Yskout, K.; Scandariato, R. An Analysis of the
Security Patterns Landscape, Proc. Of 29th International
Conference on Software Engineering Workshops, 2007, 25-
65.

[6] Kienzle, D.; Elder, M.; Tyree, D.; Edwards, J. Security
Patterns Template and Tutorial. 2002. Available online:
http://www.securitypatterns.com/documents.html.

[7] Viega, J.; McGraw, G. Building Secure Software. In How to
Avoid Security Problems the Right Way, Addison-Wesley
Professional Computing Series, 2011.

[8] Yoder, J.; Barcalow, J. Architectural Patterns for Enabling
Application Security. Proc. of the Pattern Languages of
Program Design, 2000, 301-336.

[9] Braga, A.; Rubira, C.; Dahab, R. Tropyc: A pattern
language for cryptographic software, 1998.

[10] Fernandez, E.B.; Yuan, X.Y. Securing analysis patterns.
Proc. of the 45th ACM South East Conference, 2007, 36-57.

[11] Eduardo, B.F.; Rouyi, P. A pattern language for security
models. Proc. of 8th Conference on Pattern Languages of
Programs, 2001, 234-368.

[12] Wassermann, R.; Cheng, B.H. Security patterns.
International Journal of Computer Science, 2003, 8(6), 23-
125.

[13] Schmidt, D.C.; Stal, M.; Rohnert, H.; Buschmann, F.
Pattern-oriented Software Architecture, In Patterns for
Concurrent and Networked Objects. Wiley & Sons, 2000,
4(2), 57-156.

[14] Alam, S. Using security patterns in Web Application, GRIN
Verlag, 2013, USA .

[15] Cuevas, A. et. al. Security Pattern for Capturing Encryption
based Access Control to Sensor Data. Proc. International
Conference on Emerging Security Information, Systems and
Technologies, 2008, 62-67.

[16] Fernandez, E. B.; Yuan, X.Y. Semantic Analysis Patterns.
Proc. of the 19th International Conference on Conceptual
Modeling, 2000, 183-195.

[17] Coggeshall, J. Session Authentication. 2001. Available
online:
http://www.zend.com/zend/spotlight/sessionauth7may.php.

[18] Dan, W. Security Functional Requirements Analysis for
Developing Secure Software. Dissertation, USC. May 2007.

[19] Steel, C.; Nagappan, R.; Lai, R. Core Security Patterns. Best
Practices and Strategies for J2EE. Pearson Education, 2005,
India.

[20] Morrison, P.; Fernandez, E.B. The Credentials Pattern. Proc.
of Pattern Languages of Programs Conference, 2006, 345-
360.

[21] Hallstrom, J. O.; Soundarajan, N.; Tyler, B. Monitoring
Design Pattern Contracts. Proc. of the FSE-12 Workshop on
Specification and Verification of Component-Based
Systems, 2004, 87-94.

[22] Hafiz, M. A. Collection of Privacy Design Patterns, Proc. of
ACM PLoP., 2006, 1–13.

[23] Riaz, R. Rizvi, S.S. Mushtaq, E. Shokat, S. OSAP: Online
Smartphone’s User Authentication Protocol. International

Journal of Computer Science and Network Security, 17(3),
2017, 7-12.

[24] Riaz, R. Chung, T.S. Rizvi, S.S. Yaqub, N. BAS: The Bi-
phase Authentication Scheme for Wireless Sensor Networks.
International Journal of Security and Communication
Networks, 2017.

Rabia Riaz is working as assistant professor in university of
Azad Jammu and Kashmir. She is currently chairperson of
department of Software Engineering. She holds a PhD in
electrical engineering from AJOU University, South Korea. Her
research interests include, wireless network, sensor networks,
data security, encryption and authentication mechanism.

Sanam Shahla Rizvi received the B.C.S.
degree in Computer Science from Shah
Abdul Latif University, Khairpur Pakistan,
in 2003, and the M.C.S. degree in
Computer Science from KASBIT
University, Karachi Pakistan, in 2004, and
M.S. degree in Computer Science from
Mohammad Ali Jinnah University, Karachi
Pakistan, in 2006, and Ph.D. degree in

Information and Communication Engineering from Ajou
University, Suwon, South Korea, in 2010. She is currently
working as associate professor at Department of Computer
Sciences at Preston University, Karachi, Pakistan. Her research
interests include flash memory storages, data management,
database systems, indexing structures, and wireless sensor
networks.

 Farina Riaz received the BSCS degree in
Computer Science from Quaid-e-Azam
University, Islamabad Pakistan, in 2007,
and the M.S. degree in Software
Engineering from National University of
Science and Technology, Islamabad
Pakistan, in 2010. She has been working as
adjunct lecturer in Manipal University,
Dubai Campus for more than two years.

Her research interests include wireless networks, sensor networks,
data security, and encryption and authentication mechanism.

Sana Shokat received her MS (Software Engineering) degree
from Bahria University Islamabad. She is currently candidate of
P.h.D degree at University of Azad Jammu & Kashmir,
Muzaffarabad, Pakistan.

	3.4 Encrypted Storage
	3.5 Minefield
	3.6 Network Address Blacklist
	3.7 Password Propagation
	3.8 Secure Assertion
	3.9 Server Sandbox

